用户名: 密码: 验证码:
船用低压电缆剩余寿命预测理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球经济一体化速度加快,世界贸易也随之繁荣,船舶已成为海上防御以及客货运输不可或缺的工具。船用电缆承担着传输电能和电信号的重要任务,故而成为军舰、客轮、货轮等船舶设备的电气系统的重要组成部分。众所周知,船用电缆工作环境十分复杂,在温度、油雾、湿度等众多因素的综合影响下,电缆的绝缘层材料非常容易受到损坏,导致电缆的绝缘下降甚至失效,对船上电气系统的安全及稳定造成了严重影响,而定期更换电缆成为了解决此安全隐患的有效方法之一。由于电缆造价高,更换过程繁琐,故频繁更换电缆是一项价格昂贵且繁重的工作,如何减少对电缆的盲目更换是本文研究的主要目的,如何在复杂的电缆工作环境中有效预测船用电缆的剩余寿命是本文要解决的主要问题。本文从船用电缆老化机理开展研究,采用多种方法有效的预测了船用电缆的剩余寿命,在保证船舶安全的情况下减少对电缆的盲目更换。本文主要完成的工作有:
     首先,根据国标,在不同温度条件下,对绝缘层为丁苯橡胶的电缆和绝缘层为乙丙橡胶的电缆在恒温烘箱中进行热空气老化实验,老化时间2000小时,采集丁苯电缆138个老化试样、乙丙电缆492个老化试样,分析了630组老化实验数据;
     其次,运用化学反应速率描述在温度影响下的船用电缆绝缘老化机理,在一阶动力学模型基础上引入二阶动力学模型动态描述电缆老化过程,引入时温叠加理论论证高温加速老化与常温老化其机理存在一致性,提出基于二阶动力学模型的时温叠加理论的电缆热寿命预测模型,充分利用各加速老化温度下的实验数据,以时温平移因子αT完成在外推正常温度下电缆的剩余寿命预测;
     再次,设计温度、油雾老化实验方案,利用恒温油浴搭建老化实验平台,采集老化数据,首次系统研究温度和油雾浓度对船用电缆使用寿命的影响,运用非线性回归理论建立温度、油雾影响下的船用电缆剩余寿命预测模型,通过船用乙丙电缆老化实验数据验证了所建立预测模型正确性;
     最后,运用灰色理论进行电缆剩余寿命预测,为提高预测精度,引入粒子群算法优化灰色GM(1,1)模型参数αGM,为了提高模型的寻优速度,优化并给出粒子群算法中惯性权重c0的定义式,建立基于改进粒子群的不等距GM(1,1)电缆剩余寿命预测模型,并通过船用丁苯电缆老化数据验证所建立模型的正确性。
With the acceleration of global economic integration and prosperity of world trade, vessels have become indispensable tools for defense operations at sea, and for passengers and cargo transportation. Shipboard cable, responsible for the transmission of electrical energy and signals, is an integral part of the marine electrical system. As we all known, under the influence of multi-factors, the insulating materials can be easily damaged, resulting in the decline and even failure of the insulation, thereby affecting the safety and stability of the marine electrical system, replacing the cable can to be an approach to deal with the issues. Because of the high cost, complex process, cable replacement is very expensive and onerous. How to reduce the blind replacement cable is the main purpose of this study, how to effectively predict the residual Life of the marine cable is the scientific problem to be solved. From the aging mechanism of marine cables, using a variety of methods to predict the residual life of the marine cable, and reduce the blind replacement of the cable to ensure the safety of the ship. Major achievements are as follows:
     Firstly, according to the international standards, Ethylene Propylene Rubber (EPR) cable and Styrene Butadiene Rubber (SBR) cable were given the hot air aging tests in the thermostat drier. The aging time lasted for two thousand hours, and138aging samples of SBR and492samples of EPR were collected and630sets of experimental data were analyzed.
     Secondly, the chemical reaction rate was used to depict the shipboard cable aging mechanism under the influence of temperature. Based on the first order dynamic model, the second order dynamic model was introduced to describe the cable aging process. TTSP theory was led to verify that the mechanism of accelerated aging and that of normal aging were of no difference. Moreover, an improved model based on the second order dynamic model and TTSP for cable thermal lifespan prediction was proposed, which took full advantage of the experimental data collected at varying temperatures. TTSP displacement factor aT was adopted to predict cable lifespan at extrapolated temperatures.
     Thirdly, by constructing an aging experimental system and collecting the aging data, the impacts of temperature and concentration of oil mist on cable lifespan were discussed systematically for the first time. Based on the nonlinear regression theory, a model for prediction of cable lifespan under the influence of temperature and oil mist was built and tested. The technical data of the EPR cable was used to testify the correctness of the model.
     Fourthly, by applying the Grey Theory, an unequal GM (1,1) model has been constructed to predict the cable lifespan. Furthermore, parameter a GM of the improved PSO-based grey model and inertia weight c0were brought in to improve the prediction accuracy and increase search speed. The accuracy of the model was tested by the technical data of the SBR cable.
引文
[1]单浩明.浅析船舶电气火灾.见:中国国际救捞论坛组委会编.中国国际救捞论坛论文集.北京:海洋出版社,2008:378.
    [2]中远航运船员管理部.中远航运简讯.来源:http://www.coscol.com.cn/pics/ 2012213493498640.pdf.
    [3]浙江台州海域3艘渔船失火电线老化漏电引发.来源:新浪网,http://news.sina.com.cn/ o/p/2011-05-03/110822397268.shtml.
    [4]船只电路老化起火救援及时无人伤亡.来源:新晚报数字报,http://xwb.my399.com/html/ 2011-08/16/content_6091153.htm.
    [5]货轮淮河失火 盱眙海事消防联手扑救.来源:上海航运交易所,http://www.sse.net.cn/ info/0-280675-12176520019611167208, html.
    [6]郑晓泉,曹晓珑,陈平,刘磊.补偿电动势在直流叠加法在线检测XLPE电缆绝缘老化技术中的应用,电工技术杂志,1997,7(4):7-10.
    [7]Boukezzi L, Boubakeur A, Laurent C et al.DSC study of artificial thermal aging of XLPE insulation cables.2007 International Conference on Solid Dielectrics, Winchester,2007. Piscataway:IEEE Press,2007:146-149.
    [8]Densley J. An overview of aging mechanisms and diagnostics for extruded power cables. IEEE Power Engineering Society Winter Meeting, Singapore, 2000. Piscataway:IEEE Press,2000:1587-1592.
    [9]Fothergill J C, Montanari G C, Stevens G C et al. Electrical, microstructural, physical and chemical characterization of HV XLPE cable peelings for an electrical aging diagnostic data base. IEEE Trans on Dielectrics and Electrical Insulation,2003, 10(3):514-527.
    [10]Bruning A M, Kasture D G, Ascher H E. Absolute vs. comparative end-of-life age. IEEE Transactions on Dielectrics and Electrical Insulation,1996,3(4):567-576.
    [11]Hvidsten S, Kvande S, Ryen A et al. Severe degradation of the conductor screen of service and laboratory aged medium voltage XLPE insulated cables. IEEE Transactions on Dielectrics and Electrical Insulation,2009,16(1):155-161.
    [12]Hashizume T, Shinoda C, Nakamura K et al. A consideration on changes of AC breakdown voltages during an accelerated test of immersed dry-cured XLPE cables. Proceedings of the 3rd International Conference on Properties and Applications of Dielectric Materials, Tokyo,1991. IEEE Press,1991:490-493.
    [13]Motorl A, Sandrolini F. Electrical properties for detection of thermal aging in XLPE cable models. Proceedings of the 3rd International Conference on Properties and Applications of Dielectric Materials, Tokyo,1991. IEEE Press,1991:761-764.
    [14]Uematsu T, Matsumoto T, Fukuda T et al. Thermal fatigue and aging properties of water-impervious cable. IEEE Transactions on Power Delivery,1990,5(3):1231-1238.
    [15]Nakiri T, Maekawa Y, Takashima H et al. Long-term reliability testing of 500 kV DC PPLP-insulated oil-filled cable and accessories. IEEE Transactions on Power Delivery,1999,14(2):319-326.
    [16]杜伯学,马宗乐,高宇等.采用温差法的lOkV交联聚乙烯电缆水树老化评估.高电压技术,2011,37(1):143-149.
    [17]王雅群,尹毅,李旭光等.等温松弛电流用于lOkVXLPE电缆寿命评估的方法.电工技术学报,2009,24(9):33-37.
    [18]Walton M D, Bernstein B S. Smith J T et al. Accelerated cable life testing of EPR-insulated medium voltage distribution cables. IEEE Transactions on Power Delivery, 1994,9(3):1195-1208.
    [19]Katz C, Seman G W, Bemstein B S. Low temperature aging of XLPE and EP insulated cables with voltage transients. IEEE Transactions on Power Delivery,1995,10(1): 34-42.
    [20]Pinel B, Boutaud F. Life prediction of electrical cable equipment EPR insulating material. Conference Record of the 1994 IEEE International Symposium on Electrical Insulation, Pittsburgh,1994. IEEE Press,1995:395-397.
    [21]Couderc D, Belec M, Chaaban M et al. Long-term testing of a low-loss 800 KV PPLP insulated SCFF cable. IEEE Transactions on Power Delivery,1996,11(1):51-57.
    [22]Eager G S, Katz C, Fryszczyn B et al. High voltage VLF testing of power cables. IEEE Transactions on Power Delivery,1997,12(2):565-570.
    [23]Katz C, Walker M. Evaluation of service aged 35 kV TR-XLPE URD cables. IEEE Transactions on Power Delivery,1998,13(1):1-6.
    [24]李咏今.丁腈硫化胶烘箱加速老化与室内自然老化相关性的研究.合成橡胶工业,1985,8(6):423-428.
    [25]李咏今.丁腈硫化胶烘箱加速老化与室内自然老化相关性的研究.特种橡胶制品,2001,22(4):51-56.
    [26]王彩凤,姜义.高压开关设备用氟橡胶密封制品的优化设计.高压电器,2002,38(6):46-48.
    [27]杜跃兵,倪海鹰,陈军等.发动机用氟橡胶胶料的研究.特种橡胶制品,2001,22(3):11-13.
    [28]张录平,李晖,刘亚平等.橡胶材料老化试验的研究现状及发展趋势.弹性体,2009,19(4):60-63.
    [29]Zhang Y, Bai Y, Ma Y. Comparison of reliability of conventional and rapid aging methods for insulating materials. IEEE Transactions on Electrical Insulation,1992, 27(6):1159-1165.
    [30]张盈锁.绝缘材料各种快速热老化试验方法综述.绝缘材料通讯,1995(5):41-47.
    [31]IEC 216-1,确定电气绝缘材料耐热性的导则,1990.
    [32]Zhang Y. New progress of studies on thermogravimetric point slope (TPS) method. Proceedings of the 4th International Conference on Properties and Applications of Dielectric Materials, Brisbane,1994. IEEE Press,1995:823-826.
    [33]张盈锁.热重点斜法(TPS)验证数据汇总.绝缘材料通讯,1994(4):20-30.
    [34]蒋钟,金熹高,罗远芳.聚芳醚醚酮的热老化寿命研究.功能高分子学报,1993,6(4):309-314.
    [35]Nelson W. Accelerated life testing-step-stress models and data analysis. IEEE Trans Reliability,1980,29(1):103-108.
    [36]赵疆皞,孙慧琴,冉海潮等.电缆热老化寿命的预测.河北电力技术,2007,26(3):3-4.
    [37]李国锋,王志强,王翠华等.一种评估船用低压橡胶绝缘电缆剩余寿命的方法.中国,中华人民共和国知识产权局,CN 101470058A.2009.
    [38]张瑞云,马德柱,罗筱烈.DSC法快速评定阻燃剂对聚丙烯结晶及力学性能的影响.高分子材料科学与工程.1991(2):55-59.
    [39]Dakin T W. Electrical insulation deterioration treated as a chemical rate phenomenon. Transactions of the American Institute of Electrical Engineers,1948, 67(1):113-118.
    [40]Berberich L J. Guiding principle in the thermal evaluation of electrical insulation. Transactions of the American Institute of Electrical Engineers,1956, 75(8):752-761.
    [41]Gillen K T, Celina M, Bernstein R et al. Lifetime predictions of EPR materials using the wear-out approach. Polymer Degradation and Stability,2006,91 (12):3197-3207.
    [42]Fonseca O A, Witczak M W. Prediction methodology for the dynamic modulus of in-place aged asphalt mixtures. Asphalt Paving Technology:Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions,1996,65(2):532-572.
    [43]Pellinen T K, Witczak M W, Bonaquist R F. Asphalt mix master curve construction using sigmoidal fitting function with non-linear least squares optimization.15th ASCE Engineering Mechanics Conference, Columbia University,2002. Reston:American Society of Civil Engineers,2003:83-101.
    [44]张盈锁.绝缘材料快速热老化试验方法—定斜法的研究.绝缘材杆通讯,1992(3):35-38.
    [45]张盈锁.热重点斜法(TPS)的优点及联合验证.玻瑞钢/复合材料,1992(2):15-19.
    [46]张盈锁.热重点斜法研究的新进展.玻瑞钢/复合材料,1994(2):35-39.
    [47]张盈锁.复合绝缘材料热老化试验方法的研究.绝缘材料通讯,1993(4):25-32.
    [48]李咏今.橡胶老化性能变化或寿命预测的计算方法.合成橡胶工业,1989,12(3):205-209.
    [49]李咏今.硫化橡胶热氧老化时物理机械性能变质规律的研究.特种橡胶制品,1997,18(1):41-51.
    [50]李咏今.橡胶热老化定量和定性评定方法研究的进展.特种橡胶制品,1996,17(6):40-48.
    [51]李咏今.硫化胶热老化性能变化的数学模型.合成橡胶工业,1984,8(1):38-40.
    [52]李咏今.现行橡胶及其制品贮存期快速测定方法的可靠性研究.1994,41(5):289-296.
    [53]蒋佩南.挤包绝缘电缆电压击穿试验的数理统计.电线电缆.2007(1):1-6.
    [54]朱爱荣,蔡信成,王建军.用近似简化法估计XLPE绝缘电缆的寿命指数.电线电缆.1999(4):25-27.
    [55]张铁岩.一类基于改进Weibull分布模型的电力电缆寿命评估方法.中国工程科学.2008,10(10):42-46.
    [56]孙秋野,张化光,张铁岩.决策树技术在电缆绝缘状态评估中的应用.中国工程科学.2010,12(2):90-94.
    [57]高亚娟,赵选勃,许婉等.变压器用丁腈橡胶密封垫使用寿命推断.变压器,2007,44(12):20-23.
    [58]陈金爱,钟庆明,陈允保.橡胶O形密封圈的老化寿命试验研究.合成材料老化与应 用.1998(1):6-12.
    [59]张凯,黄渝鸿,马艳等.丁基橡胶密封材料贮存寿命的预测.四川化工,2004,7(1):4-6.
    [60]宣卫芳.小口径弹用密封材料贮存寿命预测.环境技术,2002(4):10-11.
    [61]Bartnikas R, Densley R J, Eichhorn R M. Accelerated aging tests for polymer insulated cables under wet conditions. IEEE Transactions on Power Delivery,1991,6 (3):929-937.
    [62]全国电线电缆标准化技术委员会,中国标准出版社.电线电缆标准汇编船用电缆卷.北京:中国标准出版社,2002.
    [63]王春江.电线电缆手册(第2版).北京:机械工业出版社,2002.
    [64]姜蔚.电线电缆用绝缘材料.橡胶参考资料,2005(3):12-18.
    [65]于景丰,赵锋.电力电缆实用技术.北京:中国水利水电出版社,2003:4.
    [66]史传卿.电力电缆安装运行技术问答.北京:中国电力出版社,2002:19-27.
    [67]化学工业部合成材料老化研究所.高分子材料老化与防老化.北京:化学工业出版社,1979.
    [68]刘春和,李久祥,袁玉华.橡胶、塑料的老化机理及预防措施.第九届全国可靠性物理学术讨论会,延安,2001:200-203.
    [69]夏新民.电力电缆制作与故障测寻.北京:化学工业出版社,2008:135.
    [70]朱德恒,严璋,谈克雄.电气设备状态监测与故障诊断技术.北京:中国电力出版社,2008:12.
    [71]姚志.船用电缆绝缘老化的研究:(硕士学位论文).大连:大连理工大学,2007.
    [72]《电气电子绝缘技术手册》编辑委员会.电气电子绝缘技术手册.机械工业出版社,2008:200-201.
    [73]山西省电力工业局.供电线路(电缆)施工、运行、检修(高级工).北京:中国电力出版社,1999:286.
    [74]李昂.橡胶老化与寿命估算.橡胶参考资料,2009,39(3):2-77.
    [75]任圣平,张立.高分子材料老化机理初探.信息记录材料,2004,5(4):57-60。
    [76]袁立明.芳纶纤维橡胶基密封材料的热氧老化研究:(硕士学位论文).南京:南京工业大学,2004.
    [77]刘仲强.城市燃气管道密封圈橡胶材料老化程度测试与剩余寿命预测的研究:(硕士学位论文).杭州:浙江大学,2006.
    [78]杨清枝.现代橡胶工艺学.北京:中国石化出版社,1997.
    [79]朱敏庄.橡胶工艺学.广州:华南理工大学出版社,1993.
    [80]袁亚莉.无机化学.武汉:华中科技大学出版社,2007.
    [81]化学工业部合成材料老化研究所.高分子材料老化与防老化.北京:化学工业出版社,1979.
    [82]钟世云、许乾慰、王公善.聚合物降解与稳定性.北京:化学工业出版社,2002.
    [83]潘才元.高分子化学.合肥:中国科学技术大学出版社,1997.
    [84]Zou X, Uesaka T, Gurnagul N. Prediction of paper permanence by accelerated aging I. Kinetic analysis of the aging process. Cellulose,1996,3(1):243-267.
    [85]Emsley A M. The kinetics and mechanisms of degradation of cellulosic insulation in power transformers. Polymer Degradation and Stability,1994,44(3):343-349.
    [86]Heywood R J, Stevens G C, Ferguson C, Emsley A M. Life assessment of cable paper using slow thermal ramp methods. Thermochimica Acta,1999,332(2):189-195.
    [87]Calvini P. The influence of levelling-off degree of polymerisation on the kinetics of cellulose degradation. Cellulose,2005,12(4):445-447.
    [88]Alwis K,Burgoyne C. Time-temperature superposition to determine the stress-rupture of aramid fibres. Applied Composite Materials,2006,13(4):249-264.
    [89]杨丽君.变压器油纸绝缘老化特征量与寿命评估方法研究:(博士学位论文).重庆:重庆大学,2009.
    [90]刘盖世.船用CXF型号电缆的绝缘老化实验以及寿命分析:(硕士学位论文).大连:大连海事大学,2011.
    [91]郑亮.原油对丁腈橡胶密封件性能的影响.橡塑技术与装备.2012,38(3):53-57.
    [92]陈经盛.硫化橡胶湿热老化试验方法.合成材料与应用.1994(3):22-24.
    [93]Nikolajevic S V. Accelerated aging of XLPE and EPR cable insulations in wet conditions and its influence on electrical characteristics.1998 IEEE International Conference on Condnction and Breakdown in Solid JXelectrics, Vasteras. Piscataway:IEEE,1998:337-340.
    [94]余超,文庆珍,余宏伟等.丁苯橡胶在热空气和海水中老化性能的比较.合成橡胶工业.2010,33(1):56-59.
    [95]Elayyan H S B, Abderrazzaq M H. Electric field computation in wet cable insulation using finite element approach. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12 (6):1125-1133.
    [96]范洪欣,周保华,江守和,李海波等.图像处理技术在电缆绝缘层参数测量系统中的应用.电线电缆,2010,8(4):8-11.
    [97]吕桂英,朱华,林安等.高分子材料的老化与防老化评价体系研究.化学与生物工程,2006,23(6):1-4.
    [98]Mohanty A K, Misra M and Drzal L T. Surface modifications of natural fibers and performance of the resulting biocomposites:an overview. Composite Interfaces,2001, 8(5):313-343.
    [99]Mohammad I E, Gihan F M, Yuh-Shan H. On the Use of Linearized Pseudo-second-order Kinetic Equations for Modeling Adsorption Systems. Desalination,2010,257 (1-3): 93-101.
    [100]Ivan I M, Farida G. Robust Tensor Estimation in Diffusion Tensor Imaging. Journal of Magnetic Resonance,2011,213 (1):136-144.
    [101]Srinivas R B B, Paul K, Ian L, et al. Morton and Peter Stewart Kinetics of Emitted Mass-A Study with Three Dry Powder Inhaler Devices,2011,66 (21):5284-5292.
    [102]Fotopoulos, S, Jandhyala V, Chen K H. Regression Properties for Asymmetric Generalized Scale Mixtures of Multivariate Gaussian Variables. Communications in Statistics. Part A:Theory and Methods,2007,36 (3):613-628.
    [103]Jahar L B, Maxwell L K. Maximal Invariant Likelihood Based Testing of Semi-linear Models. Statistical Papers,2007,48 (3):357-383.
    [104]Vijayaraj B, Saravanan R, Renganarayanan S. Studies on Thin Layer Drying of Bagasse. International Journal of Energy Research,2007,31 (4):422-437.
    [105]Curry B. Parameter Redundancy in Neural Networks:An Application of Chebyshev Polynomials. Computational Management Science,2007,4 (3):227-242.
    [106]Neumeyer N, Dette H, Nagel E. Bootstrap Tests for the Error Distribution in Linear and Nonparametric Regression Models. Australian and New Zealand Journal of Statistics,2006,48 (2):129-156.
    [107]Watkins P, Puxty G. A Hybrid Genetic Algorithm for Estimating the Equilibrium Potential of an Ion-selective Electrode. TALANTA,2006,68 (4):1336-1342.
    [108]易德生,郭萍.灰色理论与方法——提要·题解·程序·应用.北京:石油工业出版社,1992:1-6.
    [109]邓聚龙.农业系统灰色理论与方法.济南:山东科学技术出版社,1988:1.
    [110]邓聚龙,郭洪.灰预测原理与应用.新北:全华书局,1996:13-64.
    [111]邓聚龙.灰理论基础.武汉:华中科技大学出版社,2002.
    [112]Kennedy J, Eberhart R. Particle swarm optimization. IEEE International Conference on Neural Networks-Conference Proceedings. Piscataway:IEEE,1995:1942-1948.
    [113]Kennedy J. In search of the essential particle swarm.2006 IEEE Congress on Evolutionary Computation, Vancouver. Piscataway:IEEE,2006:1694-1701.
    [114]Kennedy J. Some issues and practices for particle swarms.2007 IEEE Swarm Intelligence Symposium, Honolulu. Piscataway: IEEE,2007:162-169.
    [115]Shi Y, Eberhart R. A modified particle swarm optimizer. Proceedings of the 1998 IEEE International Conference on Evolutionary Computation, Anchorage. Piscataway:IEEE Press,1998:69-73.
    [116]张顶学,关治洪,刘新芝.一种动态改变惯性权重的自适应粒子群算法.控制与决策.2008,23(11):1253-1257.
    [117]Chatterjee A, Siarry P. Nonllinear inertia weight variation for dynamic adaptation in particle swarm optimization. Computers and Operations Research,2004, 33(3):859-871.
    [118]沈继红.灰色系统理论预测方法研究及其在舰船运动预报中的应用:(博士学位论文).哈尔滨:哈尔滨工程大学,2002.
    [119]冯春时.群智能优化算法及其应用:(博士学位论文).合肥:中国科学技术大学,2009.
    [120]席慧玲,禹思敏.混沌粒子群算法对GM(1,1)模型参数的优化.辽宁师范大学学报(自然科学版),2010,33(2):141-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700