用户名: 密码: 验证码:
利用拟南芥Na~+/H~+逆向转运蛋白基因(AtNHXl)提高杨树耐盐性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐胁迫是抑制植物生长,导致减产的主要因素之一,并对世界农业的发展构成较大威胁。为适应盐渍环境,植物可以通过把吸收过多的Na+排到细胞外,或者将其区隔化在液泡膜内来降低胞质内的Na+。其中,Na+在液泡内的区域化是通过植物液泡膜Na+/H+逆向运转蛋白来实现的。过量表达液泡膜Na+/H+逆向运转蛋白基因显著提高转基因植株的耐盐性已在多种植物中得到证实,说明过量表达该基因在植物的耐盐性中起着重要的作用。
     杨树是我国最重要的用材树种之一,大多数杨树均属非耐盐品种,提高优质杨树耐盐性对我国农业的发展具有重要的现实意义。过量表达Na+/H+逆向运转蛋白基因提高转基因植株耐盐性的研究主要集中在草本和灌木中,而对乔木树种的研究甚少。为提高优质用材林树种欧美107杨的耐盐性,本课题组采用根癌农杆菌介导法,已经成功将拟南芥Na+/H+逆向转运蛋白基因(AtNHX1)转入其中,并证实已获得转AtNHX1基因植株。本研究以欧美107杨非转基因(WT)和转AtNHX1基因植株(TR)为材料,用NaCl、海水和土培加盐对其进行处理,分析盐胁迫对2个株系生长和生理的影响,试图阐明转AtNHX1基因杨树的耐盐机制,揭示AtNHX1基因在杨树耐盐中的作用;通过海水处理,探索转基因植株的耐海水能力,阐明AtNHX1基因与树木耐海水胁迫的关系,拓宽对转基因植物耐盐机理的了解。主要结果如下:
     1、经PCR和RT-PCR对转AtNHX1基因欧美107杨的检测,证实AtNHX1基因已整合到欧美107杨基因组中,并进行了表达。
     2、用不同浓度NaCl(0、75和150mmol·L-1)浇灌欧美107杨WT和TR幼苗30d,2个株系植株的生长受到不同程度抑制。WT和TR植株生长和生理指标差异显著,TR植株耐盐性显著高于WT植株。在75和150mmol·L-1NaCl处理下,TR比WT植株的苗高相对生长率(RGRH)分别高46%和44%,直径相对生长率(RGRD)高36%的61%;TR比WT维持了更大的叶面积,积累了更多的干物质。
     NaCl处理下,TR植株比WT植株具有更高的生长速率和积累更多的干物质主要是由于维持了更高的光合能力。在75和150mmol·L-1NaCl处理5d,TR比WT植株的Pn分别高22%和9%;而在75和150mmol·L-1NaCl处理30d,TR比WT植株的Pn分别高13%和48%。气孔限制是盐胁迫下欧美107杨光合速率下降的主要因素。盐处理导致2个株系的PS Ⅱ最大光化学效率(Fv/Fm)、PS Ⅱ实际光化学量子产量(ΦPSⅡ)、光化学猝灭系数(qP)和电子传递速率(ETR)均下降,而非光化学猝灭系数(NPQ)则有不同程度的提高。但是,在同等NaCl处理下,TR植株比WT植株维持了更高Fv/Fm、ΦPSⅡ、qP、ETR和较低的NPQ。课件,TR植株在盐胁迫下能够更好的保护光系统,使其具有较高的光系统活性和光能转化效率,能将所吸收的光能有效地转化为化学能,提高光合电子传递速率,从而提高生物量,这在一定程度上提高了其抵御盐胁迫的能力。
     NaCl胁迫下,活性氧清除剂SOD、POD、CAT活性在TR植株叶片中受盐诱导上调的幅度较大。NaCl处理30d,WT植株中的这些参数则显著低于对照。说明盐胁迫下,TR植株比WT植株能更有效地清除H202。
     NaCl胁迫下,2个株系植株体内离子含量存在较大差异。总的说来,在75和150mmol·L-1NaCl处理下,TR植株的根、茎和叶均比WT植株积累了更多的Na+。在同等NaCl处理下,TR植株对K+的吸收明显大于WT植株。例如,在150mmol·L-1NaCl处理下,TR植株根、茎和叶的K+含量比WT植株分别高32%、38%和35%。尽管TR植株较WT植株吸收了更多的Na+,但维持了更高的K+和K+/Na+比率,说明TR植株具有更高的耐盐性,可能是由于对K+具有更好的吸收。
     3、用不同浓度的海水(0%、10%、20%和30%)浇灌WT和TR幼苗30d,比较了二者的生长指标、光合参数和离子含量。2个株系植株的生长受到不同程度抑制,但二者的植株生长和生理指标存在显著的差异。在同等海水处理下,TR植株比WT植株具有更高的生长速率、总叶面积、光合速率和Fv/Fm,并积累了更多的干物质。TR植株的组织中比WT植株的积累了更多的Na+和K+,TR植株耐海水能力显著高于WT植株。在10%的海水处理下,TR植株的干重与对照相比并无显著差异,在20%和30%的海水处理下,其干重分别下降了8%和22%。可见,10%~20%海水用于浇灌TR欧美107杨是可行的。尽管如此,海水胁迫对TR植株个体发育的影响尚待进一步的田间耐盐试验研究。
     4、以不同浓度NaCl(0、75和150mmol·L-1)浇灌土培盆栽的欧美107杨WT和TR幼苗30d。低盐处理下,WT植株生长显著受到抑制,随盐分强度加大,抑制作用增大,高盐处理下其干重只有对照的50%;而TR植株在低盐处理下干重与对照差异不显著,高盐处理时其干重为对照的74%。同等盐度处理下,TR的干重显著高于WT,且随着盐度升高,2个株系间植株干重差异增大。盐处理后,TR植株叶片叶绿素和类胡萝卜素的含量均显著高于WT,并能维持较高的Pn和Fv/Fm;虽然TR叶片和根系均较WT积累了更多的Na+,但同时也维持了更高的K+和K+/Na+比率,而且叶片对K+选择性的运输明显高于WT;同时,盐胁迫下TR叶片MDA含量和相对电导率显著低于WT。盐对TR叶片叶绿体超微结构的影响较轻,在高盐下仍保持了较好的内部结构。
     5、AtNHX1的导入能够显著提高转基因欧美107杨的耐盐性。耐盐转基因杨树的获得也为提高树木耐盐性提供了一种可行的研究方法。本研究结果也验证了转单一的Na+/H+逆向转运蛋白基因是能够明显提高植物耐盐性的。
Salt stress is one of the major stresses that depress plant growth and limit crop production, and has been a great threat to agricultural development all over the word. To cope with salt stress, some plants have the ability of either extruding Na+out of cells or sequestering Na+into the vacuole in order to decrease excessive Na+in the cytoplasm. The compartmentation of Na+into vacuoles is implemented by Na+/H+antiporter located in tonoplast. The importance of vacuolar sequestration to plant salinity resistance has been underlined by experiments in which constitutive overexpression of different vacuolar Na+/H+antiporter genes can greatly increase salinity resistance in a wide range of plant species.
     Poplar is one of the most important timber tree species planted in China. Therefore, understanding of the mechanism of its response to salt stress is of paramount importance to agriculture application and plant improvement. Overexpression of Na+/H+antiporters have been reported to increase the salt resistance of various herbaceous or shrub species, but very little is known about the role of these antiporters in the salt resistance of trees. Successful Agrobacterium-mediated transformation of AtNHXl to the shoot stem explants of Populus×euramericana 'Neva' and regeneration of transgenic plants has been previously performed. In order to elucidate mechanism of overexpressing the AtNHXl gene response to salt-tolerance in woody plants, the wild-type plants (WT)(Populus×euramericana'Neva') and its transgenic varieties (TR) that overexpress the AtNHX1gene were investigated to identify their growth and physiological character responses to salt stress. Moreover, the WT and TR were also exposed to different concentrations of seawater to clarify the correlation between overexpressing the AtNHXl gene and seawater-tolerance in poplars. All these would help to develop strategies for improving the understanding of transgenic plants response to salt stress. The main results obtained were shown as follows:
     1. All tests using PCR and RT-PCR indicated that the AtNHX1gene was integrated into the genome of Populus×euramericana 'Neva' and transcribed in transgenic poplar plants.
     2. Seedlings of WT and TR were subjected to different concentrations of NaCl (from0to150mmol·L-1) stress for30days. Plant growth was inhibited by salinity in both WT and TR but in different degrees, and salt-resistance of TR was much higher than that of WT. The relative growth rate of stem diameter (RGRH) values of TR were46%and44%and the relative growth rate of shoot height (RGRD) values were36%and61%more than that of WT at75and150mM NaCl treatments, respectively. Moreover, TR produced much more total leaf area and dry weight than WT.
     Under the same NaCl level treatments, TR maintained higher RGR, total leaf area, and dry weight than WT because TR had a higher Pn. The Pn values in TR were22%and9%higher than that of WT when grown at75and150mmol·L-1NaCl for5days, and13%and48%higher for30days. Stomatal limitation was the primary factor limiting Pn in Populus×euramericana 'Neva' under salt stress. At the same time, maximum photochemical efficiency of PS Ⅱ (Fv/Fm), actual quantum yield of PS Ⅱ (Φps Ⅱ), photochemical quenching coefficient (qP) and relative electron transport rate (ETR) in both WT and TR decreased while non-photochemical quenching coefficient (NPQ) increased in various degrees. However, under the same level of NaCl treatment, TR maintained higher Fv/Fm, ΦpsⅡ qP, ETR and lower NPQ than those of WT. These suggest that TR could better protect PSⅡ from injury induced by the salt stress. So it had higher PSⅡ activity and light energy transform efficiency, which could turn the absorbed light energy into chemical energy effectively, and then increased the transmitting rate of photosythetic electrons, thereby enhancing biomass. To some extent, the propertites of TR decribed above improved salt resistance.
     The activity of antioxidant enzymes such as SOD, POD and CAT were induced to increase greatly in the leaf of TR. To WT. salt stress for30days induced obvious decline on the activity of these enzymes. These indicate that TR was likely to be more effective in removing H2O2than WT under salt stress.
     Differences in the pattern of K+accumulation between WT and TR were apparent under NaCl stress. In general, TR accumulated more Na+in the root, stem, and leaf than WT at both75and150mmol·L-1NaCl concentrations. The K+uptake in TR was much more than that in WT under the same NaCl level. For example, the K+contents of TR in the root, stem, and leaf were32%,38%, and35%more than those of WT under the150mmol·L-1NaCl treatment. Despite a higher accumulation of Na+in TR, it maintained relatively higher K+and K+/Na+ratio compared to WT. Results show that plants that TR was markedly more resistant to NaCl, possibly because of intracellular K+content regulation.
     3. Seedlings of WT and TR were exposed to different seawater concentrations (from0to30%) for30days to determine the effects of seawater on seedling growth, photosynthetic productivity, and ion content. Plant growth was inhibited by seawater in both WT and TR but in different degrees, and seawater-resistance of TR was much higher than that of WT. TR could maintain higher RGR, total leaf area, Pn, and Fv/Fm, so that it is able to accumulate more dry mass than WT at the same seawater level. TR accumulated more Na" and K+contents in plant tissue than WT. At10%seawater treatment, the dry weight of TR was unaffected, but decreased by8%and22%at20%and30%seawater treatments, respectively. These findings indicate that10%-20%seawater could be used to irrigate TR plants, thus implying the viable utilization of seawater. However, further investigations of the effects of stresses relative to transgenic poplar ontogeny are necessary to assess realistic stress pressures that occur naturally in the field.
     4. Seedlings of WT and TR which cultivated in pot with soil were subjected to different concentrations of NaCl (from0to150mmol·L-1) stress for30days. We investigated the salt-resistance of the WT and TR plants by measuring growth parameters, chlorophyll (Chl) and carotenoid (Car) content, Pn, ion content, leaf malondialdehyde (MDA) and electrolytic leakage. Compared with the control, the growth of WT was restrained significantly in the presence of both low salt and high salt. The dry weight of WT was significantly lower under salt stress than that of control, the dry weight decreased gradually with increasing NaCl concentration and their dry weight under high salt was just50%of the control. However, the dry weight of TR in low salt was similar to the control, up to the high salt treatment, where their dry weight was74%of the control. Moreover, the dry weight of TR was significant higher than that of WT in both NaCl treatments, and the discrepancy of dry weight was increased with increasing NaCl concentration. In the presence of NaCl, Chl and Car content of TR were significantly higher than that of WT, and the TR maintained a remarkably high Pn and Fv/Fm. Although TR accumulated more Na+in their roots and leaf tissues under salinity conditions compared with the WT, they absorbed more K+and maintained a higher K+/Na+ratio. Moreover, these TR plants kept a lower MDA and electrolytic leakage level than that of wild-type. Under salt stress, the chloroplasts of TR under low salt stress were not different from the control, and the structure of chloroplasts under high salt was better than that of WT. Under the same salinity level, the TR can maintain a relative integrated chloroplast, high chlorophyll contents and preferable net photo synthetic rate, so its salt tolerance were improved.
     5. These findings indicate that transformation of AtNHXl gene into Populus×euramericana 'Neva' can confer plants more tolerance to salinity than its wild-type plants. These transgenic poplars provided a feasible way for improving important trees to adapt to salt stress conditions that are common in saline and arid soils. Our result also proved that transformation of single AtNHXl gene into plants can confer plants more resistance to salinity.
引文
Allakhverdiev S I, Sakamoto A, Nishiyama Y, et al. Ionic and osmotic effects of NaCl-induced inactivation of photosystems Ⅰ and Ⅱ in Synechococcus sp.[J]. Plant Physiology,2000,123: 1047-1056.
    Amor N B, Jimenez A, Megdiche W, et al. Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima[J]. Physiologia Plantarum,2006,126:446-457.
    Anderson J M, Park Y I, Chow W S. Unifying model for the photoinactivation of photosystem Ⅱ in vivo under steady-state photosynthesis[J]. Photosynthesis Research,1998,56:1-13.
    Apse M P, Aharon G S, Snedden W A, et al. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiporter in Arabidopsis[J]. Science,1999,285:1256-1258.
    Baccio D D, Navari-Izzo F, Izzo R. Seawater irrigation:antioxidant defence responses in leaves and roots of a sunflower (Helianthus annuus L.) ecotype[J]. Journal of Plant Physiology,2004,161: 1359-1366.
    Baker N R. A possible role for photosystem Ⅱ in environmental perturbations of photosynthesis[J]. Physiologia Plantarum,1991,81:563-570.
    Barkla B J, Pantoja O. Physiology of ion transport across the tonoplast of higher plants[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:159-184.
    Bashan Y, Moreno M, Troyo E. Growth promotion of the seawater-irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp.[J]. Biology and Fertility of Soils,2000,32:265-272.
    Bayuelo-Jimenez J S, Debouck D G, Lynch J P. Growth, gas exchange, water relations, and ion composition of Phaseolus species grown under saline conditions[J]. Field Crops Research,2003,80: 207-222.
    Belkhodja R, Morales F, Abadia A, et al. Effects of salinity on chlorophyll fluorescence and photosynthesis of barley (Hordeum vulgare L.) grown under a triple-line-source sprinkler system in the field[J]. Photosynthetica,1999,36:375-387.
    Bethke P C, Drew M C. Stomatal and nonstonmatal components to inhibition of photosynthesis in leaves of Captcum annuum during progressive exposure to NaCl salinity[J]. Plant Physiology,1992,99: 219-226.
    Blumwald E, Aharon G S, Apse M P. Sodium transport in plant cellsfJ]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2000,1465:140-151.
    Blumwald E, Poole R J. Na+/H+ antiport in isolated tonoplast vesicles from storage tissue of Beta vulgaris[J].Plant Physiology,1985,78:163-167.
    Blumwald E. Sodium transport and salt tolerance in plants[J]. Current Opinion in Cell Biology,2000,12: 431-434.
    Bohnert H J, Jensen R G. Strategies for engineering waterstress tolerance in plants[J]. Trends in Biotechnology,1996,14:89-97.
    Bowler C, Montagu M C. Superoxide dismutase and stress tolerance[J]. Annual Review of Plant Physiology,1992,43:83-116.
    Brini F, Hanin M, Mezghani I, et al. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt and drought stress tolerance in Arabidopsis thaliana plants[J]. Journal of Experimental Botany,2007,58:301-308.
    Brugnoli E, Bjorkman O. Growth of cotton under continuous salinity stress:influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy[J]. Planta,1992,187:335-347.
    Burman U, Garg B K, Kathju S. Water relations, photosynthesis and nitrogen metabolism of Indian mustard (Brassica juncea Czern.& Coss.) grown under salt and water stress[J]. Journal of Plant Biology,2003,30:55-60.
    Carter D R, Cheeseman J M. The effect of external NaCl on thylakoid stacking in lettuce plant[J]. Plant, Cell & Environment,1993,16:215-223.
    Chen K, Hu G Q, Norbert Keutgen, et al. Effects of NaCl salinity and CO2 enrichment on pepino (Solanum muricatum Ait.) leaf photosynthetic properties and gas exchange[J]. Scientia Horticulturae, 1999,81:43-56.
    Chen L H, Zhang B, Xu Z Q. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHXl in common buckwheat (Fagopyrum esculentum)[J].Transgenic Research,2008,17:121-132.
    Chen S L, Eberhard Fritz, Wang S S, et al. Cellular distribution of ions in salt-stressed cells of Populus euphratica and P. tomentosa[J]. Forestry Studies in China,2000,2(2):8-16.
    Chen S L, Li J K, Fritz E, et al. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress[J]. Forest Ecology and Management,2002,168:217-230.
    Chen S L, Li J K, Wang S S, et al. Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of Populus euphratica and Populus tomentosa[J]. Canadian Journal of Forest Research,2003,33(6):967-975.
    Chen S L, Li J K, Wang S S, et al. Salt, nutrient uptake and transport, and ABA of Populus euphratica; a hybrid in response to increasing soil NaCl[J]. Trees:structure and Function,2001,15(3):186-194.
    Cramer G R, Lauchli A, Polito V S. Displacement of Ca2+ by Na+ from the plasmalemma of root cells: Primary response to salt stress? [J]. Plant Physiology,1985,79:207-211.
    Cuartero J, Bolarin M C, Asins M J, et al. Increasing salt tolerance in the tomato[J]. Journal of Experimental Botany,2006,57:1045-1058.
    Dionisio-Sese M L, Tobita S. Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance[J]. Journal of Plant Physiology,2000,157:54-58.
    Elkahoui S, Hernandez J A, Abdelly C, et al. Effects of salt on lipid peroxidation and antioxidant enzyme activities of Catharanthus roseus suspension cells[J]. Plant Science,2005,168:607-613
    Everard J D, Gucci R, Kann S C, et al. Gas exchange and carbon partitioning in the leaves of celery(Apium graveolens L.) at various levels of root zone salinity[J]. Plant Physiology,1994,106: 281-292.
    Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology,1982,33:317-345.
    Foyer C H, Noctor G. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria[J]. Physiologia Plantarum,2003,119:355-364.
    Fukuda A, Nakamura A, Tanaka Y. Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa[J]. Biochimica et Biophysica Acta,1999,1446:149-155.
    Ghadiri H., Dordipour I., Bybordi M., et al. Potential use of Caspian Sea water for supplementary irrigation in Northern Iran[J]. Agricultural Water Management,2006,79:209-224.
    Ghoulam C, Foursy A, Fares K. Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars[J]. Environmental and Experimental Botany,2002,47:39-50.
    Giraudat J, Parcy F, Bertauche N, et al. Current advances in abscisic acid action and signaling[J]. Plant Molecular Biology,1994,26(5):1557-1577.
    Glenn E P, Brown J J, O'Leary J W. Irrigating crops with seawater[J]. Scientific American,1998,279(2): 76-81.
    Glenn E P, Watson M C, Oleary J W, et al. Comparison of salt tolerance and osmotic adjustment of low-sodium and high-sodium subspecies of the C4 halophyte, Atriplex canescens[J]. Plant, Cell & Environment,1992,15:711-718.
    Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes[J]. Annual Review of Plant Physiology,1980,31:149-190.
    Guillaume S, Xavier L R, Jacques G, et al. Leaf gas exchange characteristics and water- and nitrogen-use efficiencies of dominant grass and tree species in a West African savanna[J]. Plant Ecology,2004,173:233-246.
    Halliwell B. Oxidative damage, lipid peroxidation and antioxidant protection in chloroplasts[J]. Chemistry and Physics of Lipids,1987,44:327-340.
    Hasegawa P M, Bressan P A, Zhu J K, et al. Plant cellular and molecular response to high salinity[J]. Annual Review of Plant Physiology and plant Molecular Biology,2000,51:463-499.
    He C X. Analysis of AtNHXl-expressing transgenic cotton under high salt conditions and in the field[D]. Ph.D. Thesis, Texas Tech University,2005.
    He C X, Yan J Q, Shen G X, et al. Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field[J]. Plant and Cell Physiology,2005,46:1848-1854.
    Hernandez J A, Campillo A, Jimenez A, et al. Response of antioxidant systems and leaf water relations to NaCl stress in pea plants[J]. New Phytologist,1999,141:241-251.
    Hernandez J A, Ferrer M A, Jimenez A, et al. Antioxidant system and O2·-/H2O2 production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins[J]. Plant Physiology,2001,127:817-831.
    Hernandez J A, Jimenez A, Mullineaux P, et al. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defenses[J]. Plant, Cell & Environment,2000,23: 853-862.
    Hernandez J A, Olmos E, Corpas F J, et al. Salt-induced oxidative stress in chloroplast of pea plants[J]. Plant Science,1995,105:151-167.
    Hu L, Lu H, Liu Q, et al. Overexpression of mtlD gene in transgenic Populus tomentosa improves salt tolerance through accumulation of mannitol[J]. Tree Physiology,2005,25:1273-1281.
    Imada S, Yamanaka N, Tamai S. Effects of salinity on the growth, Na partitioning, and Na dynamics of a salt-tolerant tree, Populus alba L.[J]. Journal of Arid Environments,2009,73:245-251.
    Iyengar E R R, Reddy M P. Photosynthesis in highly salt tolerant plants. In:Pesserkali, M. (Ed.), Handbook of photosynthesis. Marshal Dekar, Baten Rose, USA,1996:897-909.
    Jiang M, Zhang J. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings[J]. Plant and Cell Physiology,2001,42:1265-1273.
    Kao W Y, Tsai T T, Tsai H C, et al. Response of three Glycine species to salt stress[J]. Environmental and Experimental Botany,2006,56:120-125.
    Kawasaki S, Borchert C, Deyholos M, et al. Gene expression profiles during the initial phase of salt stress in rice[J]. Plant Cell,2001,13:889-905.
    Keiper F J, Chen D M, De Filippis L F. Respiratory, photosynthetic and ultrastructural changes accompanying salt adaptation in culture of Eucalyptus microcorys[J]. Journal of Plant Physiology, 1998,152:564-573.
    Khatun S, Flowers T J. Effects of salinity on seed set in rice[J]. Plant, Cell & Environment,1995,18: 61-87.
    Kingsbury R W, Epstein E, Pearcy R W. Physiological responses to salinity in selected lines of wheat[J]. Plant Physiology,1984,74:417-423.
    Kooter J M, Matzke M A, Meyer P. Listening to the silent genes:transgene silencing, gene regulation and pathogen control[J]. Trends in Plant Science,1999,4:341-347.
    Kumar A, Singh D P. Use of physiological indices as a screening technique for drought tolerance in oilseed Brassica species[J]. Annals of Botany,1998,81:413-420.
    Kurban H, Saneoka H, Nehira K, et al. Effect of salinity on growth, photosynthesis and mineral position in leguminous plant Alhagi pseudoalhagi (Bieb.)[J]. Soil Science and Plant Nutrition,1999,45: 851-862.
    Lal A, Ku M S B, Edwards G E. Analysis of inhibition of photosynthesis due to water stress in the C3 species Hordeum vulgare and Vicia faba:Electron transport, CO2 fixation and carboxylation capacity[J]. Photosynthesis Research,1996,49:57-69.
    Lawlor D W and Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants[J]. Plant, Cell & Environment,2002,25:275-294.
    Lawlor D W. Limitation to photosynthesis in water-stressed leaves:stomata vs. metabolism and the role of ATP[J]. Annals of Botany,2002,89:871-885.
    Leidi E O, Barragan V, Rubio L, et al. The AtNHXl exchanger mediates potassium compartmentation in vacuoles of transgenic tomato[J], Plant Journal,2010,61:495-506.
    Liu H, Wang Q Q, Yu M M, et al. Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots[J]. Plant, Cell & Environment,2008,31:1325-1334.
    Liu P, Yang G D, Li H, et al. Overexpression of NHXls in transgenic Arabidopsis enhances photoprotection capacity in high salinity and drought conditions[J]. Acta Physiologiae Plantarum, 2010,32:81-90.
    Long X H, Huang Z R, Zhang Z H, et al. Seawater stress differentially affects germination, growth, photosynthesis, and ion concentration in genotypes of Jerusalem artichoke (Helianthus tuberosus L.)[J]. Journal of Plant Growth Regulation,2009,29:223-231
    Lu C M, Vonshak A. Characterization of PSⅡ photochemistry in salt-adapted cells of cyanobacterium Spirulina platensis[J]. New Phytologist,1999,141:231-239.
    Lutts S, Kinet J M, Bouharmont J. Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance[J]. Plant Growth Regulation,1996a,19:207-218.
    Lutts S, Kinet J M, Bouharmont J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance[J]. Annals of Botany,1996b,78:389-398.
    Lv S, Zhang K, Gao Q, et al. Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance[J].Plant and Cell Physiology,2008,49:1150-1164.
    MacRobbie E A C. Osmotic effects on vacuolar ion release in guard cells[J]. The Proceedings of the National Academy of Sciences of the United States of America,2006,103(4):1135-1140.
    Martino C D, Delfine S, Pizzuto R, et al. Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress[J]. New Phytologist,2003,158:455-463.
    Melon D A, Gulotta M R, Martinez C A. Salinity tolerance in Schinopsis quebracho colorado:Seed germination, growth, ion relations and metabolic responses[J]. Journal of Arid Environments,2008, 72:1785-1792.
    Mimura T. Homeostasis and transport of inorganic phosphate in plants[J]. Plant and Cell Physiology, 1995,36(1):1-7.
    Mishra S K, Subrahmanyam D, Singhal G S. Interrelationship between salt and light stress on primary processes of photosynthesis[J]. Journal of Plant Physiology,1991,138:92-96.
    Mitsuya S, Takeoka Y, Miyake H. Effects of sodium chloride on foliar ultrastructure of sweet potato (Ipomoea batatas Lam.) plantlets grown under light and dark conditions in vitro[J]. Journal of plant physiology,2000,157:661-667.
    Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science,2002,7(9): 405-410.
    Montero E, Cabot C, Barcelo J, et al. Endogenous abscisic acid levels are linked to decreased growth of bush bean plants treated with NaCl[J]. Physiologia Plantarum,1997,101:17-22.
    Munns R. Comparative physiology of salt and water stress[J]. Plant and Cell Physiology,2002,25: 239-250.
    Munns R. Physiological processes limiting plant growth in saline soils:some dogmas and hypotheses[J]. Plant and Cell Physiology,1993,16:15-24.
    Munns R, Termatt A. Whole plant responses to salinity[J]. Australian Journal of Plant Physiology,1986, 13:143-160.
    Murata N, Takahashi S, Nishiyama Y, et al. Photoinhibition of photosystem Ⅱ under environmental stress[J]. Biochim Biophys Acta,2007,1767:414-421.
    Netondo G W, Onyango J C, Beck E. Sorghum and salinity:Ⅱ. Gas exchange and chlorophyll fluorescence of sorghum under salt stress[J]. Crop Science,2004,44:806-811.
    Niu X, Bressan R A, Hasegawa P M, et al. Ion homeostasis in NaCl stress environments[J]. Plant Physiology,1995,109:735-742.
    Ottow E A, Brinker M, Teichmann T, et al. Populus euphratica displays apoplastic sodium accumulation, osmotic adjustment by decreases in calcium and soluble carbohydrates, and develops leaf succulence under salt stress[J]. Plant Physiology,2005a,139:1762-1772.
    Ottow E A, Polle A, Brosche M, et al. Molecular characterization of PeNhaDl:the first member of the NhaD Na+/H+ antiporter family of plant origin[J]. Plant Molecular Biology,2005b,58:75-88.
    Ou Z Y, Peng C L, Lin G Z, et al. Relationship between PSⅡ excitation pressure and content of Rubisco large subunit or small subunit in flag leaf of super high-yielding hybrid rice[J]. Acta Botanica Sinica,2003,45:929-935.
    Parida A K, Das A B, Mittra B. Effects of NaCl stress on the structure, pigment complex compsition and photosynthetic activity of mangrove Bruguiera parviflora chloroplasts[J]. Photosynthetica,2003,41: 191-200.
    Parida A K, Das A B, Mittra B. Effects of salt on growth, ion accumulation, photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora[J]. Trees:Structure and Function,2004,18:167-174.
    Peever T L, Higgins V J. Electrolyte leakage, lipoxygenase and lipid peroxidation induced in tomato leaf tissue by specific and nonspecific elicitors from Cladosporium fulvum[J]. Plant Physiology,1989,90: 867-875.
    Qiu N, Lu C. Enhanced tolerance of photosynthesis against high temperature damage in salt-adapted halophyte Atriplex centralasiatica plants[J]. Plant, Cell & Environment,2003,26:1137-1145.
    Qiu N W, Lu Q T, Lu C M. Photosynthesis, photosystem Ⅱ efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica[J]. New Phytologist,2003,159:479-486.
    Quintero F J, Batt M R, Pardo J M. Fuctional conservation between yeast and plant endosomal Na+/H+ antiporters[J]. FEBS Letters,2000,471:224-228.
    Ratner A, Jacoby B. Effect of K+ its counter anion and pH on sodium efflux from barley roots[J]. Journal of Experimental Physiology,1976,148:425-433.
    Reddy M P, Sanish S, Iyengar E R R. Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata Roxb. under saline conditions[J]. Photosynthetica,1992,26:173-179.
    Rehman S, Harris P J C, Bourne W F. The effect of sodium chloride on the Ca2+, K+ and Na+ concentrations of the seed coat and embryo of Acacia tortilis and A. coriacea[J]. Annals of Applied Biology,1998,133(2):269-279.
    Rickauer M, Tanner W. Effects of Ca2+ on amino acid transport and accumulation in roots of Phaseolus vulgaris[J]. Plant Physiology,1986,82:41-46.
    Rout N P, Shaw B P. Salt tolerance in aquatic macrophytes:ionic relation and interaction[J]. Biologia Plantarum,2001,44:95-99.
    Ruiz J M, Blumwald E. Salinity-induced glutathione synthesis in Brassica napus[J]. Planta,2002,214: 965-969.
    Santos C V. Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves Scientia[J]. Horticulturae,2004,103:93-99.
    Savoure A, Thorin D, Davey M, et al. NaCl and CuSO4 treatments trigger distinct oxidative defense mechanism in Nicotiana plumbaginifolia L.[J]. Plant, Cell & Environment,1999,22:387-396.
    Scandalios J G. Oxygen stress and superoxide dismutases[J]. Plant Physiology,1993,101:7-12.
    Schreiber U, Schliwa U, Bilger W. Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer[J]. Photosynthesis Research,1986,10:51-62.
    Shalata A, Mittova V, Volokita M, et al. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress:The root antioxidative system[J]. Physiologia Plantarum,2001,112:487-494.
    Shi H, Lee B H, Wu S J, et al. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana[J].Nature Biotechnology,2003,21(1):81-85.
    Shi H Z, Ishitani M, Kim C, et al. The Arabidopsis thaliana salt tolerance gene SOSl encodes a putative Na+/H+ antiporter[J]. The Proceeding of the National Academy Sciences of the United States of American,2000,97:6896-6901.
    Sibole J V, Montero E, Cabot C, et al. Role of sodium in the ABA-mediated long-term growth response of bean to salt stress[J]. Physiologia Plantarum,1998,104:299-305.
    Silberbusb M. Ben-Asber J. Simulation study of nutrient uptake by plants from soilless cultures as affected by saliniy buildup and transpiration[J].Plant and soil,2001,233:59-69.
    Singh A K, Dubey R. S. Changes in chlorophyll a and b contents and activities of photosystems 1 and 2 in rice seedlings induced by NaCl[J]. Photosynthetica,1995,31:489-499.
    Sivakumar P, Sharmila P, Saradhi P P. Proline alleviates salt-stress-induced enhancement in ribulose-1, 5-bisphosphate oxygenase activity[J]. Biochemical and Biophysical Research Communications,2000, 2792:512-515.
    Smillie R M, Nott R. Salt tolerance in crop plants monitored by chlorophyll fluorescence in vivo[J]. Plant Physiology,1982,70:1049-1054.
    Souza R P, Machado E C, Silva J A B, et al. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery[J]. Environmental and Experimental Botany,2004,51:45-56.
    Storey R, Walker R R. Citrus and salinity[J]. Scientia Horticulturae,1999,78:39-81.
    Sultana N, Ikeda T, Itoh R. Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains[J]. Environmental and Experimental Botany,1999,42:211-220.
    Suzuki K, Kasamo K. Effects of aging on the ATP- and pyrophosphate-dependent pumping of protons across the tonoplast isolated from pumpkin cotyledons [J]. Plant and Cell Physiology,1993,34(4): 613-619.
    Tiwari B S, Bose A, Ghosh B. Photosynthesis in rice under salt stress[J]. Photosynthetica,1997,34: 303-306.
    Trieu A T, Burleigh S H, Kardailsky L V, et al. Transformation of Medicago truncatula via infiltration of seedlings or flowering plants with Agrobacterium[J]. Plant Journal,2000,22:531-541.
    Wang R G, Chen S L, Deng L, et al. Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars[J]. Trees: structure and Function,2007,21:581-591.
    Wang R G, Chen S L, Zhou X Y, et al. Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress[J]. Tree Physiology,2008,28,947-957.
    Wang Y Z, Sze H. Similarities and differences between the tonoplast-type and mitochondrial H+-ATPase of oat roots[J]. The Journal of Biology Chemistry,1985,260:10434-10443.
    Wittenbach V A, Ackerson R C, Giaquinta R T, et al. Changes in photosynthesis, ribulose bisphosphate carboxylase, proteolytic activity, and ultrastructure of soybean leaves during senescence[J]. Crop Science Society of America,1980,20:225-231.
    Wyn Jones R G, Brady C J, Speirs J. Ionic and osmotic regulation in plants[A]. In recent advances in biochemistry of cereals, eds. D.L. Laidman and R.G. Wyn Jones, pp.63-103, Academic Press, London/New York.1979.
    Xue Z Y, Zhi D Y, Xue G P, et al. Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+[J]. Plant Science,2004,167:849-859.
    Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants:challenges and opportunities[J]. Trends Plant Science,2005,10:615-620.
    Yang F, Xiao X W, Zhang S, et al. Salt stress responses in Populus cathayana Rehder[J]. Plant Science, 2009,176:669-677.
    Yang X, Lu C. Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants[J]. Physiologia Plantarum,2005,124:343-352.
    Ye C Y, Zhang H C, Chen J H, et al. Molecular characterization of putative vacuolar NHX-type Na+/F+ exchanger genes from the salt-resistant tree Populus euphratica[J].Physiologia Plantarum,2009,137: 166-174.
    Yokoi S, Qunitero F J, Cubero B, et al. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response[J]. Plant Science,2002,30:529-539.
    Zhang H X, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit[J]. Nature Biotechnology,2001,19:765-768.
    Zhang H X, Hodson J N, Williams J P, et al. Engineering salt-tolerant Brassica plants:Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation[J].The Proceedings of the National Academy of Sciences of the United States of America,2001,98: 12832-12836.
    Zhao G Q, Ma B L, Ren C Z. Growth, gas exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity[J]. Crop Science,2007,47:123-131.
    Zheng Q S, Liu L, Liu Z P, et al. Comparison of the response of ion distribution in the tissues and cells of the succulent plants Aloe vera and Salicornia europaea to saline stress[J]. Journal of Plant Nutrition and Soil Science,2009,172:875-883.
    Zhu J K. Plant salt tolerance[J]. TRENDS in Plant Science,2001,6:66-71.
    Zhu J K. Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant Biology,2003,6: 441-445.
    Zhu J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology,2002, 53:247-273.
    陈德明,俞仁培.盐胁迫下不同小麦品种的耐盐性及其离子特征[J].十壤学报,1998,35(1):88-94.
    陈观平,王慧中,施农农,等.Na+/H+逆向转运蛋白与植物耐盐性关系研究进展[J].中国生物工程杂志,2006,26(5):101-106.
    陈少良,李金克,毕望富.盐胁迫条件下杨树盐分与甜菜碱及糖类物质变化[J].植物学通报,2001,18(5):587-596.
    陈少良,李金克,尹伟伦,等.盐胁迫条件下杨树组织及细胞中钾、钙、镁的变化[J].北京林业大学学报,2002,24(5/6):84-88.
    陈万超.三个杨树品种耐盐性和耐盐机制的比较研究[D].东北师范大学硕士学位论文,2007.
    戴松香,陈少良,Eberhard Fritz,等.盐胁迫下胡杨和毛白杨叶细胞中的离子区隔化[J].北京林业大学学报,2006,28(2):1-5.
    刁丰秋,章文华,刘友良.盐胁迫对大麦叶片类囊体膜组成和功能的影响[J].植物生理学报,1997,23(2):105-110.
    樊军锋,韩一凡,李铃,等.84K杨树耐盐基因转化研究[J].西北林学院学报,2002,17(4):33-37.
    龚明,丁念诚,贺子义,等.盐胁迫下大麦和小麦等叶片脂质过氧化伤害与超微结构变化的关系[J].植物学报,1989,31(11):841-846.
    谷瑞升,蒋湘宁,郭仲琛.胡杨细胞和组织结构与其耐盐性关系的研究[J].植物学报,1999,41(6):576-579.
    郭巧生,王桃银,汪涛,等.药用菊花不同栽培类型叶片超微结构比较研究[J].中国中药杂志,2008,33(1):10-14.
    郝鲁宁,余叔文.大麦根质膜微囊的制备及其H+,Ca2+转运活性[J].植物生理学报,1992,18(4):383-392.
    贾燕涛,麻密,屈贵平,等.RolC基因的克隆及细胞分裂素在烟草中的过量表达[J].植物学报,1998,40(3):211-215.
    贾洪涛,赵可夫.盐胁迫下Na+、K+、Cl对碱蓬和玉米离子的吸收效应[J].山东师大学报(白然科学版),1998,13(4):437-400.
    姜国斌,丁丽娜,金华,等.盐胁迫对杨树幼苗叶片光合特性及叶绿素荧光参数的影响[J].辽宁林业科技,2007,(1):20-23,43.
    李合生.植物生理生化实验原理及技术[M].北京:高等教育出版社,2000.
    刘斌,李红双,王其会,等.反义磷脂酶Dγ基因转化毛白杨的研究[J].遗传,2002,24(1):40-44.
    刘建平,李志军,何良荣,等.胡杨、灰叶胡杨种子萌发期抗盐性的研究[J].林业科学,2003,40,(2):165-169.
    刘建新,赵国林,明浩斌,等NaCl胁迫对骆驼蓬属植物渗透调节作用的影响[J].干旱地区农业研究,2006,24(5):115-119.
    刘群录,张旭家,李义,等.胡杨液泡膜微囊的纯化及其质子转运活性[J].中国生物化学与分子生物学报,2000,16(3):372-376.
    刘兆普,邓力群,刘玲,等.莱州海涂海水灌溉下菊芋生理生态特性研究[J].植物生态学报,2005,29(3):474-478.
    刘兆普,刘玲,陈铭达,等.利用海水资源直接农业灌溉的研究[J].自然资源学报,2003,18(4):423-429.
    刘兆普,隆小华,刘玲,等.海岸带滨海盐土资源发展能源植物资源的研究[J].自然资源学报,2008,23(1):9-14.
    刘兆普,沈其荣,尹金来,等.滨海盐土农业[M].北京:中国农业科技出版社,1998.
    隆小华,刘兆普.不同品种菊芋对海水处理响应的生理指标筛选[J].水土保持学报.2006,20(6):79-82,86.
    马焕成,陈少良,王沙生.脱落酸与胡杨抗盐性的关系[J].西南林学院学报,1998a,18(3):8-14.
    马焕成,王沙生,蒋湘宁.盐胁迫下下胡杨的光合和生长响应[J].西南林学院学报,1998b,18(1):33-41.
    马焕成,王沙生.胡杨对渗透胁迫和盐分胁迫的不同响应[J].西南林学院学报,1998a,18(1):1-7.
    马焕成,王沙生.胡杨膜系统的盐稳定性及盐胁迫下的代谢调节[J].西南林学院学报,1998b,18(1):15-23.
    潘瑞炽.植物生理学(第五版)[M].北京:高等教育出版社,2004.
    邱念伟,杨洪兵,王宝山.Na+/H+逆向转运蛋白及其与植物耐盐性的关系[J].植物生理学通讯,2001,37(3):260-264.
    孙建吕,王兴盛,杨生龙.植物耐盐性研究进展[J].干旱地区农业研究,2008,26(1):226-230.
    唐奇志,刘兆普.半干旱区海水灌溉农田土壤盐分运移规律的研究[J].水土保持学报.2004,18(1):47-50.
    王宝山,赵可夫,Luttge U盐生车前根液泡膜ATPase对盐胁迫的响应[J].西北植物学报,1995,15(3):189-196.
    王宝山,赵可夫,邹琦.作物耐盐机理研究进展及提高作物抗盐性的对策[J].植物学通报,1997,14:25-30.
    王关林,方宏筠.植物基因工程[M].北京:科学出版社,2002.
    王莱,杨颖丽,李科文,等.盐胁迫下植物质膜H+-ATPase研究进展[J].西北师范大学学报,2006,42(6):72-77.
    王仁雷,华春,刘友良.盐胁迫对水稻光合特性的影响[J].南京农业大学学报,2002,25(4):11-14
    王瑞刚,陈少良,刘力源等.盐胁迫下3种杨树的抗氧化能力与抗盐性的关系[J].北京林业大学学报,2005,27(3):46-52.
    王世绩.杨树研究进展[M].北京:中国林业出版社,1995.
    王树耀,陈其军,王文龙,等.转OsNHXl基因耐盐84K杨的培育[J].科学通报,2005,50(2):140-144.
    王素平,郭世荣,胡晓辉,等.盐胁迫对黄瓜幼苗叶片光合色素含量的影响[J].江西农业大学学报,2006,28(1):32-38.
    王维正,刘红.林木良种指南[M].北京:中国林业出版社,2003:88-96.
    王霞,王金满.海水灌溉农业发展状况及其前景[J].新疆农垦经济,2006(6):48-51.
    魏国强,朱祝军,方学智,等.NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢 的影响[J].中国农业科学,2004,37(11):1754-1759.
    伍国强,王强龙,包爱科,等.液泡膜Na+/H+逆向转运蛋白与植物耐盐性[J].中国农业科技导报,2008,10(2):13-21.
    徐文君,刘兆普,隆小华,等.农杆菌介导转AtNHX1基因杨树的获得[J].植物生理学通讯,2007,43(3):413-416.
    徐文君.转AtNHX1基因杨树的培育及其耐盐性的鉴定[D].南京农业大学硕十学位论文,2007.
    徐质斌.海水灌溉农业的展望与对策[J].农业现代化研究,2002,23(12):89-92.
    许大全.光合作用效率[M].上海:上海科学技术出版社,2002.
    杨敏生,李艳华,梁海永,等.盐胁迫下白杨无性系苗木体内离子分配及比较[J].生态学报.2003,23(2):271-277.
    尹建道,张洪岭,王淑英,等.转抗盐基因中天杨新品种扦插育苗耐盐试验[J].生态学杂志,2006,25(2):125-128.
    於丙军,罗庆云,刘友良.盐胁迫对盐生野大豆离子分布的影响[J].作物学报,2001,27:776-780.
    张俊莲.有用拟南芥液泡膜Na+/H+逆向转运蛋白基因(AtNHX1)改良马铃薯耐盐性的研究[D].甘肃农业大学博士学位论文,2006.
    张宁.应用甜菜碱醛脱氢酶基因工程提高马铃薯抗逆性的研究[D].甘肃农业大学博士学位论文,2004.
    张其德.胁迫对植物及其光合作用的影响(中)[J].植物杂志,2000,(1):28-29.
    张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16:444-448.
    张霞,曾幼玲,李金耀,等.胡杨(Populus euphratica Oliv)的耐盐性[J].植物生理学通讯,2006,42(6):1190-1194.
    张学彬,夏秀英,毕晓颖,等.欧美杨107耐盐转基因植株的试验[J].沈阳农业大学学报,2006,37(5):712-715.
    张云霞,石勇,王瑞刚,等.初始盐胁迫下ABA与CaM对胡杨叶片气体交换的调控[J].林业科学,2008,44(11):57-64.
    赵华燕,卢善发,晁瑞堂.杨树的组织培养及其基因工程研究[J].植物学通报,2001,18(2):169-176.
    赵可夫,范海.世界上可以用海水灌溉的盐生植物资源[J].植物学通报,2000,17(3):282-288.
    郑青松,陈刚,刘玲,等.盐胁迫对油葵种子萌发和幼苗生长及离子吸收、分布的效应[J].中国油料作物学报,2005,27(1):60-64.
    郑青松,刘兆普,刘友良,等.等渗的盐分和水分胁迫对芦荟幼苗生长和离子分布的效应[J].植物生态学报,2004a,28(6):823-827.
    郑青松,刘兆普,刘友良,等.盐和水分胁迫对海蓬子、芦荟、向日葵幼苗生长及其离子吸收分配 的效应[J].南京农业大学学报,2004b,27(2):16-20.
    朱会娟,王瑞刚,陈少良,等.NaCl胁迫下胡杨(Populus euphratica)和群众杨(P.popularis)抗氧化能力及耐盐性[J].生态学报,2007,27:4113-4121.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700