用户名: 密码: 验证码:
基于岩石物理的地震储层预测方法应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
储层预测研究主要在于弄清储层构造特征、岩性特征及储层参数,进而减少勘探开发风险。储层参数包括孔隙度、渗透率、流体类型等,而地震资料提供的是地震波旅行时和振幅信息,再通过反演可得到弹性参数。地震岩石物理学则为储层参数和弹性参数之间搭建桥梁。本文讨论了不同地质条件下储层物性和流体特征与地震响应特征之间的关系,建立不同尺度岩石物理分析模型,开展了横波速度估算该方法研究、基于岩石物理的AVO正演、地震奇异性属性提取等方面研究,结合地震吸收特征及叠前叠后联合反演技术进行储层岩性预测和流体检测。
     横波速度是重要的地球物理参数。在近些年发展起来的叠前地震储层弹性参数反演及流体检测方面起着重要作用。本文深入研究了通过地震岩石物理理模型结合叠前弹性波波形反演精细估算横波速度方法,在方法实现上利用Xu-White模型为初始模型计算岩石模量,该模型是砂泥岩介质模型,考虑了砂泥岩孔隙特性差异及孔隙空间形状,克服了传统等效介质模型的不足;以此为基础,利用测井曲线重构反演方法对模型所需的经验模量参数进行修正,得到较精确的横波速度;再进一步结合地震叠前弹性波波形反演方法对测井曲线重构得到的横波速度进一步修正,最终获得高精度横波速度。整套方法考虑了不同岩性孔隙形状影响,修正了原始模型参数的误差,结合叠前地震数据丰富的振幅和旅行时信息,使横波估算结果更为合理,为进一步研究储层预测和流体识别奠定了技术基础。
     AVO分析是利用反射振幅随偏移距变化特征来分析和反演岩性。根据本文提出的横波估算法得到纵横波速度及密度,构建AVO正演模型;利用正演模拟,分析不同地质条件下油气水及特殊岩性体的AVO特征,建立相应检测标志,有助于从实际地震记录中直接识别油气和岩性。正演模拟需解决旅行时与振幅计算两个关键问题。本文基于常速度梯度网格射线追踪法计算旅行时及确定入射角,利用Zoeppritz方程获取振幅值。射线追踪正演模拟方法较适用于纵向非均匀地层,经测试,算法的稳定性及准确性均达到了正演模拟要求。文中利用此方法研究典型AVO油气藏,结合流体替代的正演模拟分析,分析不同流体状态的AVO效应和地震属性的判别模式。
     以某实际工区为研究目标,将上述横波速度估算结果分别应用于地震奇异性属性提取和检测弹性阻抗反演中。地震数据既反映地层中岩性的信息(速度和密度),也包含过渡界面上的奇异性信息(反射系数)。本文利用具有较好时频局部化性质的小波变换,通过利普希茨指数刻画信号中奇点位置和大小,能够检测地震信号局部奇异性,利用小波变换系数的模极大值法提取地震奇异性属性,不仅能刻画地质体的外部形态,亦清晰呈现出沉积界面与沉积期次,为进一步精细解释提供了新的信息。叠前弹性阻抗反演充分利用可反映振幅随偏移距变化的角度部分叠加道集进行反演,因而具有良好的保真性和多信息性,由此反演得到的弹性阻抗数据体,由此进一步计算可获得纵波速度、横波速度、密度、纵、横波速度比、泊松比等这些能够反映岩性及流体特征的岩性参数,最终形成丰富的AVO(或AVA)属性,帮助我们更加准确地描述地下储层的信息。
The study of reservoir prediction is mainly to investigate the characteristics of reservoir structure, lithologic features and reservoir parameters, aim to reduce the risk of exploration. Reservoir parameters include porosity, permeability, fluid type, etc., but seismic data only reflects on seismic traveltime, amplitude information, and elastic parameters which can be obtained through seismic inversion. Seismic rock physics builds bridges for reservoir parameters and elastic parameters. This dissertation discusses the relationship between reservoir properties, fluid characteristics and seismic response characteristics under different geological conditions, establishing rock physics analysis models of different scale, carrying out the studies of S-wave velocity estimate method, AVO forward modeling based on rock physics, seismic singularities attributes extraction, etc., in combination with earthquake absorption characteristics and post-stack and pre-stack inversion technologies to perform the prediction of reservoir lithology and fluid detection.
     S-wave velocity, an important geophysical parameter, plays an important role in pre-stack seismic reservoir elastic parameter inversion and fluid detection which developed in recent years. In this dissertation, the author delves into the study of meticulous estimate method of S-wave velocity through the seismic rock physics model and pre-stack elastic wave waveform inversion, using Xu-White model as the initial model to calculate rock module. The model is a sandshale medium model, taking into account of the differences of sandshale porosity and pore space shape, overcoming the shortcomings of traditional equivalent medium models. On this basis, well log reconstruction inversion method is employed to make modification to the experience modulus parameters which are necessary for the model; pre-stack seismic waveform inversion method is used to further amend the S-wave velocity from the well log reconstruction to finally get high precision S-wave velocity. The methodology takes into account the impact of different lithological pore shape and corrects the error of the original model parameters, combining rich amplitude and travel time information of pre-stack seismic data, so that the estimated S-wave is more reasonable, laying technical foundation for further research of reservoir prediction and fluid discrimination.
     AVO analysis performs the analysis and inversion of the lithology through reflection amplitude variation with offset distance., We get P and S wave velocities and density through the S-wave estimate method put forward in this dissertation, building AVO forward model; and forward modeling is used to analyze AVO characteristics of oil-gas-water and special lithologic bodies under different geological conditions, so as to establish corresponding detection signs, which are useful for oil gas and lithology discrimination from the actual seismic records directly. Traveltime and amplitude calculation are critical for forward modeling. This dissertation calculates traveltime and determines the angle of incidence in the method of ray tracing with constant velocity gradient, using Zoeppritz equation to obtain the amplitude value. Ray tracing forward modeling approach is more applicable to vertical non-uniform strata, and the experimental results show that the stability and accuracy of the algorithm have been up to the requirements of forward modeling. The dissertation studies typical AVO reservoirs in this method, and analyzes AVO effects of different fluids and seismic properties discrimination model, with the forward modeling analysis of fluid substitution.
     Through studying certain actual work area, S-wave velocity estimation results above are separately applied to seismic singularity attribute extraction and elastic impedance inversion detection. Seismic data reflects the lithology (velocity and density) as well as seismic singularity attributes on the transition interface. This dissertation gives a description of external morphology of geological bodies as well as a clear presentation of sediment interface and deposition stages in the fans, which provides an effective guarantee for the further precise interpretation and prediction of reservoirs in geologic bodies, by using wavelet transformation characterized by its good time-frequency localization properties, which can depict the location and size of the singular points of the seismic signal through Lipschitz index, to detect the local singularity of seismic signals and using wavelet transformation coefficient modulus maxima method to extract seismic singularity attributes. Pre-stack elastic impedance inversion can be performed by making full use of stacking gathers of the angles which reflect the AVO, so it has high fidelity and much information. Then elastic impedance data derived from the above inversion can be used to obtain the lithologic parameters reflecting the characteristics of lithology and fluid, such as P-wave velocity, shear velocity, density, longitudinal and transversal wave velocity ratio and Poisson’s ratio, etc. by further calculation, and finally rich AVO (or AVA) attributes will be gained to help us describe the underground reservoir more accurately.
引文
[1]白晓寅.基于地震波衰减理论的地层吸收参数提取方法研究[D].中国石油大学(华东), 2008
    [2]陈颙,黄庭芳.岩石物理学[M].北京:北京大学出版社, 2000
    [3]杜世通.地震波动力学[M],石油大学出版社,1996
    [4]杜世通.地震层序模型与高分辨率处理技术[J].勘探家,1997,9:170~173
    [5]傅容珊等,地展层析成像板块构造及地慢演化动力学[J].地球物理学进展,2001,16(4):85~95
    [6]黄绪德,反褶积与地震道反演[M],石油工业出版社:北京, 1992
    [7]黄绪德,油气层的速度问题[J].石油物探, 1997, 36 (4):1~15
    [8]何绪全,赵佐安等.复杂碳酸盐岩储层流体性质识别新技术[J].天然气工业, 2005: 25(增刊A):32~34
    [9]江义荣,戴志坚,李克文.低渗透率岩芯气液相对渗透率及其敏感参数的影响[J].石油勘探与开发, 1997, 24(6):61~64
    [10]刘斌,王宝善,季卫国.围压作用下岩石样品中微裂纹的闭合[J].地球物理学报, 2001, 44(3):421~428
    [11]刘芬霞,程启荣,原海涵,张国庆.低孔低渗储层测井解释方法研究[J].高校地质学报, 1996, 2(l):65~74
    [12]刘向君,夏宏泉,赵正文.砂泥岩地层渗透率预测通用计算模型[J].西南石油学报, 1999, 21(1):10~20
    [13]李维彦等.偶极横波成像测井资料处理[J].江汉石油学院学报.1999, 21(4):29~30
    [14]李庆忠.走向精确勘探的道路[M],石油工业出版社:北京, 1993
    [15]李乐天译.层系结构解释中地震资料时间谱的分析方法[J].国外油气勘探, 1990, 2(1):56~64
    [16]李生杰.综合三维地震资料与岩石物理学进行储层预测方法研究[D],中国科学技术大学博士论文. 2003
    [17]李生杰,施行觉等.地层衰减在地震记录上的特征分析[J].石油地球物理勘探, 2002, 37(3): 248~253
    [18]李生杰,施行觉等.准噶尔盆地岩石品质因子与速度分析[J].内陆地震, 2001, 15(3):224~231
    [19]李红梅,韩文功.济阳坳陷横波速度研究及应用[J].物探与化探, 2003, 27(5):362~365
    [20]马中高,周巍,孙成龙.地震岩石物理软件系统设计和实现[J], 2006, 30(3):260~265
    [21]马中高,邓道静.岩石物理性质研究技术[J].勘探地球物理进展, 2003, 26 (5 - 6) :387
    [22]马中高,管路平,贺振华等.模型正演优选地震属性进行储层预测[J].石油学报, 2003, 24(6):35
    [23]马中高.计算干岩石的体积模量:修正的临界孔隙度模型[A].第21届中国地球物理学会年刊[C].长春:吉林大学出版社, 2005
    [24]马中高,解吉高.岩石的纵、横波速度与密度的规律研究[J].地球物理学进展, 2005, 20(4):905
    [25]马中高,伍向阳.有效压力对纵横波速度的影响[J].勘探地球物理进展, 2006,29 (3):183~186
    [26]马昭军,刘洋.地震波衰减反演研究综述[J].地球物理学进展, 2005, 20(4):1074~1082
    [27]牟永光,裴正林.三维复杂介质地震数值模拟[M].北京:石油工业出版社, 2005
    [28]孟凡顺,郭海燕等.复杂地质体粘弹性波正演模拟的有限差分法[J].青岛海洋大学学报, 2000, 30(2):315~320
    [29]牛滨华,孙春岩.半空间介质与地震波传播[M].北京:石油工业出版社, 2002
    [30]曲寿利.地震勘探技术的发展促进油气勘探新发现.石油地球物理勘探, 2005, 40(3):366~370
    [31]石玉梅.弹性参数在岩石油气藏勘探中的应用—以苏里格气田为例[J].勘探技术, 2006, 4:80~85
    [32]申辉林等.交叉偶极子声波测井在柴达木盆地的应用[J].石油仪器, 2006, 20(3):64~66
    [33]苏晓捷等.岩石孔隙及泥质含量对地震波速度的影响[J].海洋地质动态, 2005, 21(9):3~7
    [34]施行觉,夏从俊,吴永刚.储层条件下波速的变化规律及其影响因素的实验研究[J].地球物理学报, 1998, 41(2):231~241
    [35]施行觉等.岩石的含水饱和度对纵、横波速度及衰减影响的实验研究[J].地球物理学报, 1995, 38 Supp 1:281~287
    [36]施行觉等.模拟引潮力作用下的岩石破裂特征一加卸载响应比理论的实验研究之一[J],地球物理学报, 1994, 37(5):633~637
    [37]施行觉等.用能量法测定柱状样品的衰减Q值[J].中国地震, 1999, 15(4):304~309
    [38]单启铜.粘弹性波动方程正演模拟与参数反演[D].山东东营:中国石油大学(华东), 2007
    [39]吴国忱,印兴耀,张广智等.小波变换在提高地震分辨率及其在地震层序分析中的应用.石油物探(增刊), 1997:46~51
    [40]吴国忱等.三维时频分析方法在地震层序分析中的应用[J].石油大学学报(自然科学版), 2000, 24(1):81~84
    [41]吴国忱.各向异性介质地震波传播与成像[M],中国石油大学出版社, 2006
    [42]王有新,王延光.地震勘探技术概述[J].油气地球物理, 2007, 5(1),1~9
    [43]王玉梅,季玉新,李东波等.应用地震属性技术预测A地区储层[J].石油物探, 2001, 40(4):69~76
    [44]王元君,肖建斌,肖伟.基于测井资料岩石物理模拟的储层识别法[J].石油地球物理勘探, 2006, 41(6):644~650
    [45]王保丽,印兴耀,张繁昌.弹性阻抗反演及应用研究[J].地球物理学进展, 2005, 20(1):89~92
    [46]谢占安,周锦明.提高隐蔽油气藏勘探能力的新思路[J].石油地球物理勘探, 2005, 40(5):609~615
    [47]熊晓军.单程波动方程地震数值模拟新方法研究[D].四川成都:成都理工大学, 2007
    [48]奚先,姚姚.二维粘弹性随机介质中的波场特征分析[J].地球物理学进展, 2004,19(3):608~615
    [49]徐果明.岩石的饱和度对地震波衰减的影响.地震地磁观测与研究[J], 1985, 6:125~127
    [50]席道瑛,张程远,田象燕,储层砂岩地各相异性.石油地球物理勘探[J]. 2001, 36(2):187~192
    [51]雍世和,张超谟,测井数据处理与综合解释[M].山东东营:石油大学出版社.1996
    [52]殷八斤,曾灏,杨在岩. AVO技术的理论与实践[M].北京:石油工业出版社,1995
    [53]俞寿朋.高分辨率地震勘探[M].北京:石油工业出版社, 1993:35~56
    [54]云美厚,张国富,张国才.温度与压力对注水地震监测的影响[J].石油地球物理勘探, 2001, 36(4):465~470
    [55]云美厚,易维启.孔隙流体地震特征的计算[J].石油物探,2001, 40(2):13
    [56]周静毅,印兴耀,吴国忱.小波变换与地震奇异性属性[J].物探化探计算技术, 2006, 28(2):117~120
    [57]赵宪生等.地震记录的Q值正演模拟与反滤波[J].石油物探, 1994, 33(2):42~48
    [58]张静.线性粘弹介质中的频散和衰减特征研究[D].北京:中国地质大学(北京), 2006
    [59]张繁昌,印兴耀.层状半空间叠前地震记录的波动方程正演模拟[J].石油大学学报(自然科学版), 2004, 28(3):25~29
    [60]张繁昌,印兴耀.一种叠前地震记录的全波场正反演方法[J].石油物探.2004, 43(3):217~222
    [61]张繁昌,印兴耀.层状半空间地震数据的弹性波方程反演[J].石油地球物理勘探.2005, 40(5):523~529
    [62] Aki K., and Richards P.G.. Quantitative seismology:Theory and methods[J]: W. H. Freeman and Company, 1980, volumes 1 and 2
    [63] Aki K. I., Richards P. G.. Quantitative seismology: theory and methods[M]. W H Freeman and Co Cambridge, 1980:144~154
    [64] Arneodo A., E. Bacry, S. Jaffard and J.F. Muzy.. Singularity spectrum of multifractal functions involving oscillating singularities[J], J.Fourier Anal.1998;159~174
    [65] Backus G.E.. Long-wave elastic anisotropy produced by horizontal layering[J]. J. G.. R., 1962, 67, 4427~4440
    [66] Banik N.C., Lerche I., and Shuey R.T.. Straigraphic Filtering, Part I:Derivation of the O’Doherty-Anstey Formula.Geophysiscs.1985, 50(3):2768~2774
    [67] Batzle M., Wang Z.. Seismic properties of pore fluids[J]. Geophysics, 1992, 57:1396~1408
    [68] Berryman J.G.. Elastic wave propagation in fliud-saturated porous media[J]. Journal of the Acoustical Society of America, 1981, 69:416
    [69] Berryman J., Milton G.. Exact results for generalized Gassmann’s equation in composite porous media with two constituents[J].Geophysics, 1991, 56(11):1950~1960
    [70] Bourbie, T., O. Coussy, and B. Zinszner. Acoustics of Porous Media[J], Institut Francais du Pttrole Publications, 1987, Gulf Publishing Co
    [71] Biot M.. A. Theory of propagation of elastic waves in a fluid saturated porous solid.II.Higher-frequency range[J]. J. Acoust. So.c Am., 1956, 28 (1):168
    [72] Carcione J. M.. Wave propagation in a linear viscoustic medium[J]. Geophys. J. Roy. Astr. Soc., 1988, Vol.93
    [73] Castagna J. P., Batzle M. L.. Eastwood R L.Relationship s between compressional waveand shear wave velocities in clastic silicate rocks[J].Geophysics, 1985, 50 (5):571~581
    [74] Castagna J P., BatzleM L., Kan T K.. Rock physics: The link between rock p roperties and AVO response[A]. Castagna J P, BackusM.Offset Dependent Reflectivity:Theory and Practice of AVO Analysis, Investigations in Geophysics[C].Tulsa:Society of Exploration Geophysicists, 1993, (8):135
    [75] Castagna J. P.. Petrophysical imaging using AVO. The Leading Edge, 1993, 12(3):172~178
    [76] Castagna J. P.. Recent advances in seismic lithologic analysis. Geophysics, 2001, 66(1):42~46
    [77] Cohen L.. Time-frequency distributions-a review. Proceeding of the IEEE,1989, 77(7):941~981
    [78] Connolly P.. Elastic impedance.The Leading Edge,1999,18(4):438~452
    [79] Domenico S N.. Effect of brine-gas mixture on velocity in an unconsolidated sand reservoir.Geophysics, 1976, 41(4):882~894
    [80] Dvorkin J., and Nur A.. Dynamic poroelasticity:A unified model with the squirt and the Biot mechanism.Geophysics,1993, 58(3):524~533
    [81] Domenico SN.. Effect of brine-gas mixture on velocity in an unconsolidated sand reservoir[J]. Geophysics, 1976, 41:882
    [82] Dvorkin J., Nolen H. R., and Nur A.. The squirt flow mechanism: macroscop ic description[J]. Geophysics, 1994, 59:428~438
    [83] Dvorkin J., Gutierrez M. A.. Textural sorting effect on elastic velocities, Part II:elasticity of a bimodal grain mixture SEG, 200, [R].1768
    [84] Eberhart P. D, Han D.H., ZobackM D.. Empirical relationship samong seismic velocity, effective pressure, porosity, and clay content in sandstone[J]. Geophysics, 1989, 54 (1):82
    [85] Gassmann F.. Elastic waves through a packing of spheres[J]. Geophysics, 1951, 16:673
    [86] Gardner G.H.F., Gardner L.W., Gregory A. R.. Formation velocity and density: The diagnostic basics for stratigraphic traps[J]. Geophysics, 1974, 39 (6):770
    [87] Greenberg M.L., and Castagna J.P.. Shear-wave Velocity Estimation in Porous Rocks:Theoretical Formulation, Preliminary Verification and Applications[J].Geophysics Prospecting, 1992, 40(2):195~209
    [88] Hashin Z., Shtrikman S.. A variational app roach to the elastic behavior of multiphase materials[J]. J Mech Phys Solid, 1963, 11:127
    [89] Han D.H., Nur A., Morgan D.. Effects of porosity and clay content on Wave velocities insandstones [J]. Geophysics, 1986, 51(11):2003
    [90] Hackert C.L., Parra J.O., Brown R.L., and Collier H.A.. Characterization of dispersion, attenuation, and anisotropy at the Buena Vista Hills field, California.Geophysics, 2001, 66(1):90~96
    [91] Han D.H., Nur A., and Morgan D.. Effects of porosity and clay content on wave velocities in sandstones.Geophysics, 1986, 51(11):2093~2107
    [92] Hashin Z., and Shtrikman S.. A variational approach to the elastic behavior of multiphase materials. J. Mech. Phys. Solids, 1963, 11(1):127~140
    [93] Hill R.. The elastic behavior of crystalline aggregate[M]. London: Pro Phys Soc, 1952, A65:349
    [94] Daubechies I.. The wavelet transform:time-frequency location and signal analysis.IEEE Trans.on Information Theory, 1990, 36(5):961~1005
    [95] Kreif M., Garat J., Stellingwerff J., and Ventre J.. A petrophysical interp retation using the velocities of P and S waves ( full waveform sonic)[J]. The Log Analyst, 1990, 31:355
    [96] Kim K.Y.,孔祥宁.横向各向同性对含气砂岩P波AVO的影响[J].勘探地球物理进展,1993,6
    [97] King M.S., et al. Biot dispersion for P- and S-wave velocity in partially and fully saturated sandstone[J]. Geophysical Prospecting, 2000,48:1075~1089
    [98] Klimentos T.. The effects of porosity-permeability-clay content on the velocity of compressional waves.Geophysics, 1991, 56(11):1930~1939
    [99] Knight R., et al. Seismic signature of partial saturation, 65th Ann.Internat.Mtg., SET., Expanded Abstracts 1995
    [100] Lee M., Yung W.. Proposed Moduli of Dry Rock and their application to predicting elastic velocities of sandstones.U.S.Geological Survey Scientific Investigations Report, 2005, 2005-5119, 14
    [101] Li C. F.. Information passage from acoustic impedance to seismogram:Perspectives from wavelet-based multiscale analysis[J]. Journal of geophysical research, 2004, vol.109:1~10
    [102] Lindsay R., and Van Koughnet R.. Sequential Backus averaging:Upscaling well logs to seismic wavelengths[J].The Leading Edge, 2001, 20(1):188~191
    [103] Mavko G., Sacchi M.D., and Fertig J.. The Hartley transform in seismic imaging[J]. Geophysics, 2001, 66(4):1251~1257
    [104] Mavko G., Quantitative Seismic Interpretation, 2005
    [105] Mavko G., Mukerji T., Dvorkin J.. The Rock Physics Handbook[M]. Cambridge University Press, 1998
    [106] MacBeth C.. Azimuthal variation in P-wave signatures due to fluid flow[J].Geophysics, 1999, 64, 1181~1192
    [107] Marion D., Mukerji T., and Mavko G.. Scale effects on velocity dispersion:From ray to effective-medium theories in stratified media[J]. Geophysics, 1994, 59(12):1613~1619
    [108] Mavko G., and Nolen-Hoeksrma R.. Estimating seismic velocity at ultrasonic frequencies in partially saturated rocks[J]. Geophysics, 1994, 59(2):252~258
    [109] Mavko G.. Estimaitng grain-scale fluid effect on velocity dispersion in rock[J]. Geophysics, 1991, 56(10):1940~1949
    [110] Mavko G.. Bound on low-frequency seismic velocity in partially saturated rocks[J]. Geophysics, 1998, 63(11):918~924
    [111] Mavko G., Chen C., and Mukerji T.. Fluid substitution:Estimating changes in Vp without knowing Vs[J].Geophysics, 1995, 60(12):1750~1755
    [112] Mavko G., Mukerji T.. Short Note-Comparison of the Krief and critical porosity models for prediction of porosity and Vp/Vs[J].Geophysics, 1998, 63(8):925~927
    [113] Mavko G., Mukerji T.. Frictional attenuation:An inherent amplitude dependence[J]. J.Geophys.Res., 1979, 80:1444
    [114] Mukerji T, Jorstad A., Avseth P., Mavko G., and Granli J.R.. Mapping lithofacies and pore-fluid probabilities in a North Sea reservoir:Seismic inversions and statistical rock physics[J].Geophysics, 2001, 66(6):988~1001
    [115] Murphy W. F. I.. Acoustic measures of partial gas saturation in tight sandstone[J]. J.Geophys.Res., 1984, 89:11549~11559
    [116] Murphy W. F., Reische A., and Hsu K.. Modulus decomposition of compressional and shear velocity in sand bodies[J], Geophysics, 1993, 58(2):227~239
    [117] Murphy W. F.. Sonic and ultrasonic velocities:Theory versus experiment[J], Geophys. Res. Lett., 1985, 12:85~95
    [118] McCain W. D.. The properties of petroleum fluids[M].Tulsa: Penn Well Pub Co, 1990
    [119] Mushin J.A., Makarov V.V., et al. Structural-formational interpretation tools for seismic strtigraphy[J].Geophysical Prospecting, 2000, 48:953~981
    [120] Mushin J.. A Structure-formation interpretation of seismic data. Nedro, Moscow (Russian),1990
    [121] Nolen H. R.. Modulus-porosity relations, Gassmann’s equations, and the low-frequencyelastic-wave response to fluids[J]. Geophysics, 2000, 65(5):1353~1363
    [122] Nur A.. Critial porosity, elastic bounds, and seismic velocities in rocks. 53rd Mtg.: Eur.Assn of Expl.Geophys., 1991, 248~249
    [123] Nur A.. Critical porosity and seismic velocity in rocks[J]. EOS TransAm GeophysUnion, 1992, 73:43
    [124] O’Connell R. J.. Budiansky B., Viscoelastic p roperties of fliud saturated cracked solid[J]. J Geophy Res, 1977, 82:5701
    [125] Per ?. A.. Combining statistical rock physics and sedimentology to reduce uncertainty in seismic reservoir characterization, Norsk Hydro Research Centre, FORCE seminar, June 5 2001, Stavanger
    [126] Parra J. O.. The transversely isotropic poroelasics wave equation including the Biot and the squirt mechanism[J]. Theory and application.Geophysics, 1997,62, (2):309~318
    [127] Parra J.O., Hackert C.L., Gorody A.W., Gorody A.W., Korneev V., and Korneev V.. Detection of guided waves between gas wells for reservoir characterization[J]. Geophysics, 2002, 67(1):38~49
    [128] Pratt R. G., Ship R. M.. Seismic waveform inversion in the frequency domain, part 2:Fault delineation in Sediments using crosshole data:Geophysics, 1999, 64, 902~914
    [129] Raymer L.L., Hunt E.R., and Gardner J.S.. An Improved Sonic Transit Time-to-Porosity Transform, Trans.Soc.Prof.Well Log Analysts, 21st Annual Logging Symposium, 1980,
    [130] Reuss A. Berechnung der fleissgrense von mischkristallen auf grand der plastizitats-bedinggung fur einkristalle[J]. Zeitschrift fur Ange wandte Mathematik and Mechanik, 1929, 9:46~58
    [131] Rio P., Mukerji T., Mavko G., and Marion D.. Velocity dispersion and upscaling in a laboratory-simulated VSP[J]. Geophysids, 1996,61(4):584~593
    [132] ShengJie S., Determination of seismic attenuation from surface and downhole measurements[D]. Oklahoma:University of Oklahoma Graduate College,2000
    [133] Shuey R. T.. A simplication of the Zoeppritz equations[J]. Geophysics, 1985, 50: 609~614
    [134] Mallet S.. A Theory for Multi-resolution signal decomposition[J]. The Wavelet Representation. IEEE Trans.on Pattern Analysis and Machine, 1989, 11(7):674~693
    [135] Stephane M., Liang H. W.. Singularity detection and processing with wavelets[J]. IEEE Transactions on Information Theory, 1992, vol.38,617~642
    [136] Toksǒz M N., Cheng C. H.. Timur A.Velocities of seismic waves in porous rocks[J]. Geophysics, 41:621
    [137] Tong X., George A.. McMechan.Efficient 3-D vciscoelastic modeling with application to near-surface land seismic data[J]. Geophysics, 1998, 63(2):601~612
    [138] Tosaya C., and Nur A.. Effects of Diagenesis and Clays on Compressional Velocities in rocks[J], Geophysics, Res.Lett., 1982, 9:5~8
    [139] Wang Z.. Fundamentals of seismic rock physics[J]. Geophysics, 2001, 66(2):398~412
    [140] White J.E.. Computed seismic speeds and attenuation in rocks with partial gas saturation[J]. Geophysics, 1975, 40:224
    [141] Wyllie M. R. J.. Gardner G. H. F., Gregory A R., Studies of elastic wave attenuation in porousmedia[J]. Geophysics, 1963, 27:569
    [142] Xu S., White R. E.. A new velocitymodel for clay-sand mixtures[J]. J Geophys Prospecting, 1995, 43:91
    [143] Yin H., Mavko G., and Nur A.. Critical porosity; a physical boundary in poroelasticity[J]. Interational Journal of Rock Mechanics and Mining Sciences & Geomechanics, 1993, 30:805~808
    [144] Ziolkowski A.. Why don't we measure seismic signatures?[J], Geophysics, 1991, 56(1):190~201
    [145] Amos Nur著,许云译,双相介质中波的传播[M],石油工业出版社,1986
    [146] Aki K and Richard P.著,李钦祖与邹起嘉译.1986,定量地震学—理论和方法(第一卷)[M],北京:地震出版社
    [147] Fred J. Hilterman著;孙夕平等译.地震振幅解释[M].北京:石油工业出版社.2006.12
    [148] Ercill Hunt等著,虞绍永等译,测井分析基础[M],石油物探译丛,1997
    [149] T.布尔贝等著,许云译,孔隙介质声学[M],石油工业出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700