用户名: 密码: 验证码:
P92钢焊接接头IV型蠕变开裂机理及预测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超超临界发电机组主蒸汽管道采用P92钢制造,其焊接接头的高温蠕变性能是薄弱环节之一。本文针对P92钢焊接接头中最危险的IV型蠕变开裂,对其开裂机理及蠕变损伤的演化过程及数值计算预测技术进行了深入研究。
     本文对P92钢焊接接头进行了650℃和70MPa下的蠕变试验,经7000多小时的蠕变试验后,发生典型的IV型蠕变开裂,并通过显微组织分析和有限元方法分析了IV型开裂机理。
     显微组织分析表明,P92钢焊接接头的IV型蠕变开裂过程即为细晶区的蠕变损伤过程。在焊接过程中,原先母材中粗大奥氏体晶界上的碳化物没有完全溶解,而是在焊接后形成的细晶区的晶界上析出。在高温蠕变中,细晶区中原来起强化作用的碳化物减少,而晶界上的碳化物长大及在晶界上生成新的粗大碳化物,成为蠕变空穴的形核源,导致细晶区的蠕变性能降低。当晶界上的蠕变空穴长大、聚合及连接后,发生晶界分离,随着分离的晶界不断增加,在原先的奥氏体晶界上形成微裂纹,直至试样发生断裂。
     采用热处理法制备了P92钢焊接粗晶区和细晶区的模拟组织,并与焊逢金属和母材组织一起,通过单轴蠕变试验获得了接头各微区的蠕变曲线及蠕变参数,建立了描述接头各微区蠕变损伤的改进的K-R方程,并自行编写了具有高计算精度的、与ABAQUS软件接口的用户材料子程序UMAT,实现了对P92钢焊接接头的蠕变损伤的有限元计算。
     有限元分析结果表明,除了试验应力和细晶区的低蠕变强度,IV型蠕变开裂还与应力再分布和应力三轴度有关。应力再分布对IV型开裂起到一定的阻碍作用,这是因为应力再分布使得细晶区承受的拉应力降低,而与细晶区临近的粗晶区和母材中的拉应力增加。
     另外,由于低蠕变强度的细晶区被夹在高蠕变强度的粗晶区(焊缝金属)和母材之间,接头在承受拉伸载荷下,会引起细晶区的应力三轴度高于与其临近的粗晶区和母材。高应力三轴度可促进细晶区内蠕变空穴的萌生和长大,从而促进细晶区蠕变损伤的更快发展,而试样中心处较高的应力三轴度也使得试样中心处先出现蠕变损伤,并从试样中心向外表面发展,最终发生蠕变断裂。
     根据对IV型蠕变开裂机理的研究,提出在焊接前对P92钢管进行多次短时间的正火热处理,尽可能溶解母材奥氏体晶界上的碳化物,可在一定程度上抑制P92钢焊接接头IV型开裂的倾向。
The main steam tubes of ultra supercritical fossil-fired power plants are usually produced by P92 steel, and the high-temperature creep properties of the welded joints is one of the weak links. In this paper, the most dangerous cracking type-Type IV cracking of P92 steel welded joints was studied, involving the cracking mechanism, the evolution of creep damage and the numerical calculation prediction techniques.
     The various time creep test for welded joints of P92 steel had been conducted at 650℃under 70 MPa. When the total creep time reached to more than 7000 h, the Type IV cracking occurred. Then the Type IV cracking mechanism of P92 steel welded joint was investigated through the microstructure analysis and FEM analysis, respectively.
     The microstructure analysis indicates that the Type IV cracking process essentially is the creep damage evolution process of the fine-grain HAZ in the welded joint. The carbides which were located at the coarse austenite grain boundary of the original base metal, were not completely dissolved during the welding process, and were precipitated on the grain boundaries of FGHAZ after the welding. In the creep, the carbides will grow up and new coarse carbides will form in the grain boundaries, and may become the nucleation site of the creep voids, so the coarse carbides lead to the decline of the FGHAZ creep strength. As the creep voids growing, they will coalesce together and connect each other, and the grain boundaries will be separated from the substrates. As the separated grain boundaries increase, the micro crack will form on the original austenite boundaries, and lead to the final fracture of the welded joint.
     The creep specimens of the simulated FGHAZ and CGHAZ, which were prepared by heat treatment method, together with the weld metal specimens and base metal specimens, were tested in the uniaxial creep condition. The creep curves and creep parameters of the different zones of the welded joints were achieved and the modified K-R creep damage equations of the different micro zones were constructed. Then, the user material subroutine in ABAQUS-UMAT coupled with modified K-R damage equations was complied to calculate the creep damage in the P92 steel welded joint with a high accuracy.
     The FEM analysis results showed that Type IV cracking was related to the stress redistribution and the stress triaxiality in the welded joints, beside the tested stress level and the low creep strength of the FGHAZ. The stress redistribution could suppress the Type IV cracking, because it made the tensile stress decrease in the FGHAZ and made the tensile stress increase in the CGHAZ and base metal.
     In addition, the FGHAZ with low creep strength was located between the CGHAZ and base metal with high creep strength, so that the stress triaxiality of FGHAZ was higher than that of CGHAZ and that of base metal during the stress redistribution. The higher stress triaxiality could promote the initiation and growth of creep voids in FGHAZ, and accelerates of creep damage in FGHAZ. The FEM results also showed that the inner elements of welded joints specimen occurred firstly, and developed to the elements of outer surface. This can be explained that the stress triaxiality of the inner of the welded joint is higher than that of the outer surface.
     According to the analyses of Type IV creep cracking mechanism, adding a suitable number of normalizing treatments on the P92 steel before welding ,which can dissolve the carbides in the austenitic grain boundaries as many as possible, is thought to be a better choice to suppress the descend of Type IV cracking in the welded joint.
引文
[1]包镇回,沈刚,华能玉环电厂工程P92、P122钢现场焊接及热处理工艺,电力建设,2007,28(4),70-72.
    [2] B. Neubauer, U. Weded, Rest life estimation of creeping components by means of replicas. Advances in life prediction methods, ASME, 1983, 307-315.
    [3] C.D. Lundin, K.K. Khan, D. Yang et al, Failure analysis of a service-exposed hot reheat steam line in a utility steam plant, WRC Bulletin,1990, 354:1-38.
    [4] G.M. Bucheim, D.A. Osage, R.G. Brown et al, Failure investigation of a low chrome long-seam weld in a high temperature refinery piping system. ASME Pressure Vessels and Piping Conference, Minneapolis, June, 1994, 336.
    [5] R. Viswanathan, J.R. Foulds, Failure experience with seam-welded hot reheat pipes in the USA. Service Experience, Structural Integrity, Severe Accidents, and Erosion in Nuclear and Fossil Plants, ASME PVP, 1995, 303:187-205.
    [6] H.J. Westword, M.A. Clark, D. Sidey, Creep failure and damage in main steam line welments, Proc. Fourth Inter. Conf. On Creep and Fracture of Engng. Mater. And Struct. (ed. R.W. Evans and B. Wilshire), London, 1990.
    [7] S.T. Kimmins, M.C. Coleman, D.J. Smith, An overview of creep failure associated with heat affected of ferritic weldments, Proc. Fifth Inter. Conf. On Creep and Fracture of Engng, Mater. and Struct. (ed. R. W. Evans and B. Wilshire), London, 1993, 681-694.
    [8] C.T. Middlton, E. Metcalfe, An assessment of the relative susceptibilities to type IV cracking of high and low chromium ferritic steel pipework systems, In Proc. I. Mech. E., London, Apr. 1990, 275-282.
    [9]卢征然,王炯祥,元安芳等,超超临界锅炉用钢SA-335P92焊接性试验研究,锅炉技术,2006,37(1): 38-46.
    [10]肖凌,朱平,史春元等,P92新型耐热钢焊接粗晶区回火参数选择,焊接,2006,11: 52-55.
    [11]赵建仓,迟鸣声,李建勇等,P92钢及其焊接材料冷裂纹敏感性研究,电力设备,2007,8(2): 45-49.
    [12]王淦刚,赵军,赵建仓等,P92新型耐热钢焊接接头的力学性能研究及其工程应用,电力设备,2007,8(5): 1-5.
    [13]李宜男,杨松,丁冶,超超临界锅炉用SA-335P92钢的焊接工艺性能研究,焊接,2007,6: 44-46.
    [14]乔亚霞,郭军,电站锅炉用马氏体耐热钢P92钢的焊接,电力建设,2007,28(6): 87-90.
    [15]杨建平,郭军,乔亚霞,超超临界机组用马P92钢焊接技术的研究,中国电机工程学报,2007,27(23): 55-90.
    [16]乔亚霞,郭军,汪爱霞,后热处理对新型马氏体耐热钢焊缝性能的影响,热加工工艺,2007,36(7): 36-38.
    [17]李以善,王勇,韩彬等,超超临界锅炉P92钢焊接工艺及组织性能研究,压力容器,2007,24(7): 1-4.
    [18]包镇回,沈刚,P92、P122钢现场焊接及热处理工艺的实施,电力建设,2007,28(9): 80-82.
    [19]严正,冯建辉,肖德铭,超超临界机组SA335-P92钢焊接工艺方案和焊接工艺评定实践,焊接技术,2008,37(1): 21-26.
    [20]井绪成,尤冲,1000MW超超临界机组锅炉技术特点研究,华电技术,2008,30(1): 22-24.
    [21]许惠斌,伍光凤,罗怡,SA-335P92耐热钢焊接区域组织和性能研究,热加工工艺,2008,37(8): 66-68,72.
    [22]李文彬,姜运建,张文建,P92钢焊接接头存在的问题及防范措施,河北电力技术,2008,27(2): 35-37.
    [23]傅育文,王炯祥,卢征然等,SA-335P92钢的焊接,动力工程,2008,28(5): 807-811.
    [24]李俊,张忠文,P92钢焊接接头的组织和性能研究,山东电力技术,2009,267(3): 28-30.
    [25]苏海青,马世辉,齐向前,锰、镍含量对P92钢焊缝组织性能的影响,热加工工艺,2009,38(1): 30-33.
    [26]藤亚兰,浦娟,王军等,回火条件对P92钢熔敷金属组织及性能的影响,热加工工艺,2008,37(9): 73-77.
    [27]田旭海,齐向前,孙忠波等,T/P92钢国产焊条的研制,华北电力技术,2009,7: 4-5,17.
    [28]补充国网北京电力建设研究院KJ92的信息
    [29]张筑耀,超(超)临界机组用T/P92钢焊缝金属的高温性能及对其蠕变数据的分析,金属加工,2008,12: 31-34.
    [30]王根士,栗卓新,魏福军等,P92钢焊接接头性能及其焊接材料研究进展,机械工程材料,2007,31(8): 42-44.
    [31]柯文石,刘金生,洪道文等,P92钢主蒸汽管道运行安全性和寿命评估的研究,华电技术,2009,31(5): 31-35,46.
    [32]赵强,彭先宽,王然,P92钢蠕变特性探讨,热力发电,2008,37(12),107-109.
    [33]姜运建,张文建,李文彬,Laves相对P92钢焊接接头蠕变的影响,河北电力技术,2009,28(1): 1-3.
    [34] W. Bendick, J. Gabrel,新型9%Cr马氏体钢E911和T/P92持久强度评估,东方锅炉,2005,4: 30-40.
    [35] C.D. Lundin, P. Liu, Y. Cui, A literature review on characteristics of high temperature ferritic Cr–Mo steels and weldments, WRC bulletin 454, Welding Research Council, Inc., New York, NY, USA, 2000.
    [36] Metals handbook, 10th edn, Elevated temperatureproperties of ferritic steels, Materials Park, OH, ASM International,1990,1: 617-652
    [37] K. Haarmann, J. C. Vaillant, B. Vandenberghe et al, The T91/P91 book, Boulogne, Vallourec & Mannesmann Tubes, 2002.
    [38] D. Richardot, J. C. Vaillant, A. Arbab et al, The T92/P92 book, Boulogne, Vallourec & Mannesmann Tubes,2000.
    [39] V. K. Sikka, P. Patriarca, Analysis of weldment mechanical properties of modified 9Cr–1Mo steel, Technical report, Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 1984.
    [40] K.Iwanaga, T. Tsuchiyama, S. Takaki, Strengthening mechanisms in heat-resistant martensitic 9Cr steels , Key Engineering Materials, 2000,171-174: 477-482.
    [41] F. Abe, Contribution of tungsten to microstructure stabilization and improvement of creep resistance in simple 9Cr-W steels , Key Engineering Materials ,2000, 171-174: 395-402.
    [42] Y. Hasegawa, T. Muraki, M. Ohgami, Creep strengthening mechanism of Mo and W in 9% Cr heat resistant steels ,Key Engineering Materials, 2000, 171-174: 427-436.
    [43] C. Berger, A. Scholz, Y. Wang, K. H. Mayer et al, Creep and creep rupture behaviour of 650℃ferritic/martensitic super heat resistant steels , Materials Research and Advanced Techniques ,2005, 96 (6): 668-674.
    [44] Y. Otoguro, M. Matsubara, I. Itoh et al, Creep rupture strength of heat affected zone for 9Cr ferritic heat resisting steels, Nuclear Engineering and Design, 2000, 196 (1): 51-61.
    [45] F. Abe, T. Horiuchi, M. Taneike, Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature,Materials Science and Engineering A,2004,378: 299-303.
    [46] M.Taneike, K. Sawada and F. Abe, Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment, Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35A(4): 1255-1262.
    [47] S. K. Albert, M. Kondo, M. Tabuchi, F. Yin, K. Sawada and F. Abe, Improving the creep properties of 9Cr-3W-3Co-NbV steels and their weld joints by the addition of Boron ,Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36A(2): 333-343.
    [48] J. Hald, Microstructure and long-term creep properties of 9–12% Cr steels,International Journal of Pressure Vessels and Piping, 2008, 85(1-2): 30-37.
    [49] F. Abe, M. Taneike, K. Sawada, Alloy design of creep resistant 9Cr steel using a dispersion of nano-sized carbonitrides, International Journal of Pressure Vessels and Piping,2007,84: 3-12.
    [50] H. J. Shuller, L. Hagn and A. Woitscheck, Cracks in the Area of Welded Joints of Superheated Steam Tubing - Materials Testing, Maschinenshaden, 1974, 47(1): 1-13.
    [51] Shimpei.Fujibayashi,Endo.Takao, Creep behavior at the intercritical HAZ of a 1.25Cr-0.5Mo steel ,ISIJ International, 2002 ,42(11): 1309-1317.
    [52] Francis, J.A, Mazur, W., Bhadeshia, et al. Type IV cracking in ferritic power plant steels,Materials Science and Technology, 2006,22(12): 1387-1395.
    [53] Masakazu MATSUI, Masaaki TABUCHI, Takashi WATANABE,Degradation of Creep Strength in Welded Joint of9%Cr Steel,ISIJ International, 2001,41: S126-S130.
    [54] M.Igarashi, S. Muneki, H. Hasegawa, Creep deformation and the corresponding microstructural evolution in high-Cr ferritic steels ,ISIJ International, 2001 ,41(suppl): S101-105.
    [55] KENJI Shinozaki,LI De-jun,HIDENORI Duroki,et al.Analysis of degradation of creep strength in heat-affected zone of weldment of high Cr heat-resisting steels based on void observation[J].ISIJ International,2002,42(12): 1578-1584.
    [56] F. Masuyama, M. Matsui and N. Komai, Creep rupture behavior of advanced 9-12%Cr steel weldment ,Key Eng. Mater. 2000,171-174: 99-108.
    [57] Nobuyoshi KOMAI, Fujimitsu Masuyama, Microstructural Degradation of the HAZ in 11Cr-0.4Mo-2W-V-Nb-Cu Steel (P122) during Creep,ISIJ International, 2002,42(12): 1364-1370.
    [58] T. Sourmail,Precipitation in creep resistant austenitic stainless steels, Mater. Sci. Technol., 2001,17: 1-13.
    [59] P.J. Budden, Analysis of the Type IV creep failures of three welded ferritic pressure vessels, International Journal of Pressure Vessels and Pinping, 1998, 75: 509-519.
    [60] E. Bell. Elevated temperature midlife weldment cracking (Type IV)—A review, TWI Report, March 1997.
    [61] E. L. Bergquist, Consumables and welding modified 9Cr-1Mo steel,Svetsaren, 1999, 54 (1-2): 22-25.
    [62] S. K. Albert, M. Tabuchi, H. Hongo, T. Watanabe, K. Kubo and M. Matsui: Sci. Technol. Weld. Join., 2005, 10 (2): 149-157.
    [63] S. K. Albert, M. Matsui, T. Watanabe et al, ISIJ Int., 2002, 42 (12), 1497-1504.
    [64] S. K. Albert, M. Matsui, T. Watanabe, H. Hongo, K. Kubo and M. Tabuchi: Int. J. Press. Vess. Pip., 2003, 80: 405-413.
    [65] Gooch DJ, Kimmins ST, Type IV cracking in 0.5Cr 0.5Mo 0.25V/2.25Cr 1Mo weldments. In: Wilshire B, Evans RW, editors. Proceedings of the Third International Conference on Creep and Fatigue of Engineering Materials and Structure, Swansea, 1987, 689-703.
    [66] M. Tabuchi, T. Watanabe, K. Kubo, et al, Creep crack growth behavior in the HAZ of weldments of W containing high Cr steel, Int. J. Pressure Vessels Piping, 2001,78(11-12): 779-784.
    [67] F. Masuyama, M. Matsui, N. Komai. Creep rupture behavior of advanced 9–12%Cr Steel weldment. Key Eng Mater, 2000,171-174: 99-107.
    [68] M. Tabuchi, H. Hongo, Y. Li, T. Watanabe, Y. Takahashi, Proc. of 2007 ASME Pressure Vessels and Piping Division Conference, 2007, PVP2007-26495.
    [69] Y. Tanaka, M. Yamauchi, M. Sugesawa, Study on life evaluation procedure of 21/4Cr–1Mo steel longitudinal seam weldment of boiler main steam pipe. Proceedings of the 33rd symposium on strength of materials at high temperatures. Yokohama, Japan: The Society of Materials Science,1995, 70-74.
    [70] T. Igari, F. Kawashima, T. Tokiyoshi, Micro-macro damage simulation of low-allow steel welds subject to type IV creep failure, ACTA Metallurgica Sinica (English Letters), 2004, 17(4): 393-399.
    [71] Takashi Watanabe, Masaaki Tabuchi, Masayoshi Yamazaki,Hiromichi Hongo, Tatsuhiko Tanabe,Creep damage evaluation of 9Cr–1Mo–V–Nb steel welded joints showing Type IV fracture,International Journal of Pressure Vessels and Piping,2006,93: 63-71.
    [72] Yongkui Li, Hiromichi Hongo, Masaaki Tabuchi, Evaluation of creep damage in heat affected zone of thick welded joint for Mod.9Cr-1Mo steel, International Journal of Pressure Vessels and Piping,2009,86: 585-592
    [73] K. Shinozaki, Dejun Li, H. Kuroki,Observation of type IV cracking in welded joints of high chromium ferritic heat resistant steels,Science and Technology of Welding and Joining,2003,8(4): 289-295.
    [74] Masaaki Tabuchi, Takashi Watanabe, Kiyoshi Kubo et al, Microstructures and creep strength of welded joint for W strengthened high Cr ferritic steel, J. Soc. Mat. Sci., Japan, 2001, 50(2): 116-121.
    [75] D.J. Smith, N.S. Walker, S.T. Kimmins, Type IV creep cavity accumulation and failure in steel welds, International Journal of Pressure Vessels and Piping, 2003,80(9): 617-627.
    [76] S. L. Mannan and K. Laha, Comparative study of tensile flow parameters in forged and rolled 9Cr-1Mo steel, International Journal of Pressure Vessels and Piping ,1996, 67 (2): 155-160.
    [77] Laha K, Bhanu K, Mannan SL. Creep behaviour of post-weld heattreated 2.25Cr–1Mo ferritic steel base, weld metal and weldments. Mater Sci Engng A, 1990,129: 183-195.
    [78] J.D. Parker, A.W.J. Parsons, The tempering performance of low-alloy steel weldments, Int J Pressure Vessels Piping, 1994,57: 345-352.
    [79] J.D. Parker, A.W.J. Parsons, High temperature deformation and fracture processes in 2.25Cr 1Mo–0.5Cr 0.5Mo 0.25V weldments. Int J Pres Ves Piping, 1995,63: 45-54.
    [80] J.D. Parker, G.C. Stratford, Microstructure and performance of 1.25Cr0.5Mo steel weldments, Materials at High Temperatures, 1995,13(1): 37-45.
    [81] Mann SD, Muddle BC, Metallographic characterisation of Type IVcracking in CrMoV steels. Several experience, structural integrity, severe accidents, and erosion in nuclear and fossil plants, ASME PVP,1995,303: 247-256.
    [82] I.J. Perrin, D.R. Hayhurst, Continuum damage mechanics analyses of type IV creep failure in ferritic steel crossweld specimens, International Journal of Pressure Vessels and Piping,1999,76: 599-617.
    [83] B.E. Peddle, C.A. Pickles, Carbide development in the heat affected zone of tempered and post-weld heat treated 2.25Cr–1Mo steel weldments, Can Metall Q, 2001, 40(1): 105–25.
    [84] S. Fujibayashi , T. Endo: Proc. Int. Conf. on Creep and Fracture of Engineering Materials and Structures, The Institute of Materials,London, 2001, 603.
    [85] Shimpei FUJIBAYASHI and Takao ENDO,Effect of Carbide Morphology on the Susceptibility to Type IV Cracking of a 1.25Cr–0.5Mo Steel,ISIJ International, 2003,43(5): 790-797.
    [86] Shimpei FUJIBAYASHI, Grain Boundary Damage Evolution and Rupture Life of Service-exposed 1.25Cr–0.5Mo Steel Welds, ISIJ International, 2003,43(12): 2054-2061.
    [87] Shimpei FUJIBAYASHI, Koji KAWANO, Takayuki KOMAMURA1,et al,Creep Behavior of 2.25Cr–1Mo Steel Shield Metal Arc Weldment,ISIJ International, 2004, 44(3): 581-590.
    [88] K. Kimura, T. Watanabe, H. Hongo, et al, Effects of full annealing heat treatment on long-term creep strength of 2.25Cr-1Mo steel welded joint, Q. J. Jpn. Weld. Soc., 2003,21(2): 195-203.
    [89] Abe F, Tabuchi M, Microstructural and creep strength of welds in advanced ferritic power plant steels. Mater Sci Technol Welding Joining 2004,9,22-30.
    [90] Watanabe T, Yamazaki M, Hongo H, etal, Effect of stress on microstructural change due to aging at 823K in multilayer welded joint of 2.25Cr-1Mo steel. Int J Pressure Vessels Piping, 2004,81: 279-284.
    [91] Hideshi Tezuka, Takashi Sakurai, A trigger of Type IV damage and a new heat treatment procedure to suppress it. Microstructural investigations of long-term ex-service Cr–Mo steel pipe elbows, International Journal of Pressure Vessels and Piping, 2005, 82: 165-174.
    [92] Toshifumi KOJIMA, Kenji HAYASHI, Yasuyuki KAJITA, HAZ Softening and Creep Rupture Strength of High Cr Ferritic Steel Weldments, ISIJ International, 1995, 35(10): 1284-1290.
    [93] Hasegawa Y, Ohgami M, Okamura Y. Creep properties of heat affected zone of weld in W containing 9-12% chromium creep resistant martensitic steels at elevated temperature. Advanced heat resistant steels for power generation. Cambridge: IOM Communications, The University Press, 1999, 655-657.
    [94] Shaju K,ALBERT,Masakazu MATSUI, Takashi WATANABE et al, Microstructural Investigations on Type IV Cracking in a High Cr Steel, ISIJ International, 2002, 42(12): 1497-1504.
    [95] Tabuchi M, Matsui M, Watanabe T, Hongo H, Kubo K, Abe F. Creep fracture analysis of W strengthened high Cr steel weldment. Mater Sci Res Int, 2003,9: 23-28.
    [96] S.K. Albert, M. Matsui, H. Hongo, Creep rupture properties of HAZs of a high Cr ferritic steel simulated by a weld simulator, International Journal of Pressure Vessels and Piping, 2004,91: 221-234.
    [97] Letofsky E, Cerjak H. Metallography of 9Cr steel power plant weld microstructures. Mater Sci Technol Welding Joining, 2004,9: 31-36.
    [98] Watanabe T. Relationship between Type IV fracture and microstructure on 9Cr-1Mo-V-Nb steel welded Joint creep-ruptured after long term. Tetsu-to-Hagane, 2004,90: 206-212.
    [99] Fujio Abe, Masaaki Tabuchi, Masayuki Kondo,Suppression of Type IV fracture and improvement of creep strength of 9Cr steel welded joints by boron addition,International Journal of Pressure Vessels and Piping,2007,84: 44-52.
    [100]Kim,B.J., Jeong,C.S. and Lim,B.S., Creep behavior and microstructural damage of martensitic P92 steel weldment. Material Science Engineering A, 2008,483-484: 544-546.
    [101]Dasa,C.R., Albert,S.K., Bhaduri,A.K.,etal, Effect of prior microstructure on microstructure and mechanical properties of modified 9Cr-1Mo steel weld joints. Material Science Engineering A, 2008,477: 185-192.
    [102]Takashi Ogata, Takyuki Sakai, Masatsugu Yaguchi, Damage characterization of a P91 steel weldment under uniaxial and multiaxial creep, Materials Science and Engineering A,2009,510-511: 238-243.
    [103]J. Besson,S. Leclercq,V. Gaffard et al, Analysis of creep lifetime of a ASME Grade 91 welded pipe, Engineering Fracture Mechanics, Engineering Fracture Mechanics,2009,76: 1460-1473.
    [104]L. Falata, A. Vyrostkova, V. Homolova et al, Creep deformation and failure of E911/E911 and P92/P92 similar weld-joints, Engineering Failure Analysis,2009,16: 2114-2120.
    [105]K. Sawada, M. Bauer, F. Kauffmann, Microstructural change of 9% Cr-welded joints after long-term creep, Materials Science and Engineering A,2009, xxx , xxx–xxx.
    [106]R. Wu, R. Sandstrom and F. Seitisleam, Influence of extra coarse grains on the creep properties of 9 percent CrMoV (P91) steel weldment ,J. Eng. Mater. Technol., 2004, 126 (1): 87-94.
    [107]J. A. Francis, W. Mazur and H. K. D. H. Bhadeshia, Estimation of type IV cracking tendency in power plant steels ,ISIJ Int., 2004, 44(11): 1966-1968.
    [108]J. A. Francis, W. Mazur and H. K. D. H. Bhadeshia, Proc. 7th Int. Conf. on“Trends in welding research”, Pine Mountain, GA, USA, May 2005, ASM International.
    [109]F. Brun, T. Yoshida, J. D. Robson, V. Narayan, H. K. D. H. Bhadeshia and D. J. C. Mackay: Mater. Sci. Technol., 1999, 15 (5): 547-554.
    [110]J. Hald, in: J. Lecomte-Beckers, et al, 8th Liege Conf. on“Materials for Advanced Power Engineering”, Forshungs-zentrum, Jülich GmbH, Jülich, 2006, 917.
    [111]L. Cipolla, H.K. Danielsen, J. Hald, et al, Proc. Creep & Fracture in High Temperature Components-Design & Life Assessment Issues, DEStech Publications, Inc., Lancaster, 2009,863-876.
    [112]A. Strang and V. Vodarek, Z phase formation in martensitic 12CrMoVNb steel, Mater. Sci. Technol., 1996, 12 (7): 552-556.
    [113]J. D. Parker, G. C. Stratford and H. J. Westwood: Int. Conf. on Creep and Fatigue, IMechE, London, 1996, 351.
    [114]M. Bauer, A. Klenk, K. Maile, E. Roos, C. Jochum, in: J. Lecomte-Beckers, et al. (Eds.), 8th Liege Conf. on“Materials for Advanced Power Engineering”, Forshungs-zentrum, Jülich GmbH, Jülich, 2006,3: 1341-1344.
    [115]M. Tabuchi, J. Ha, H. Hongo, T. Watanabe, et al, Experimental and numerical study on the relationship between creep crack growth properties and fracture mechanisms, Metall. Mater. Trans,2004,35A(6): 1757-1764.
    [116]K. Sawada, K. Maruyama, Y. Hasegawa, T. Muraki, Creep life assessment of high chromium ferritic steels by recovery of martensitic lath structure, Key Eng. Mater,2000,171-174: 109-114.
    [117]Shimpei FUJIBAYASHI,The Effect of Grain Boundary Cavities on the Tertiary Creep Behavior and Rupture Life of 1.25Cr-0.5Mo Steel Welds , ISIJ International, 2004, 44(8): 1441-1450.
    [118]Ogata T, Sakai T, Yaguchi M. Creep damage evolution and life assessment of P91 weld joint. Proceedings of 3rd International Conference on Integrity of High Temperature Welds. London: IOM Communication; 2007.
    [119]Kimmins ST, Smith DJ. On the relaxation of interface stresses during creep of ferritic steel weldments. J Strain Anal 1998,33(3): 195–206.
    [120]Kachanov LM. On creep rupture time. Proc Acad Sci USSR Div Eng Sci, 1958,8: 26-31.
    [121]Hall FR, Hayhurst DR. Continuum damage mechanics modeling of high temperature deformation and failure in a pipe weldment. Proc R Soc Lond, 1991,A443: 383-403
    [122]Mustata R, Hayhurst RJ, Hayhurst DR, Vakili-Tahami F. CDM predictions of creep damage initiation and growth in ferritic steel weldments in a mediumbore branched pipe under constant pressure at 590℃using a four-material weld model. Arch Appl Mech, 2006,75: 475-495.
    [123]Vakili-Tahami F, Hayhurst DR, Wong MT. High-temperature creep rupture of low alloy ferritic steel butt-welded pipes subjected to combined internal pressure and end loadings. Phil Trans R Soc A, 2005,363: 2629-2661.
    [124]Hayhurst DR, Hayhurst RJ, Vakili-Tahami F. Continuum damage mechanics predictions of creep damage initiation and growth in ferritic steel weldments in a medium bore branched pipe under constant pressure at 590℃using a five-material weld model. Proc R Soc A, 2005,461: 2303-2326.
    [125]Perrin IJ, Hayhurst DR. A method for the transformation of creep constitutive equations. Int J Pressure Vessels Piping, 1996,68,299-309.
    [126]Hayhurst DR, Goodall IW, Hayhurst RJ, et al, Lifetime predictions for high-temperature low-alloy ferritic steel weldments.Strain Anal, 2005,40(7): 675-701.
    [127]Tu ST, Wu R, Sandstrom R. Design against creep failure for weldments in 0.5Cr0.5Mo0.25V pipe. Int J Pressure Vessels Piping ,1994,58: 335-344.
    [128]Becker AA, Hyde TH, Sun W, Andersson P. Benchmarks for finite element analysis of creep continuum damage mechanics. Comput Mater Sci, 2002,25: 34-41.
    [129]Jiang YP, Guo WL, Yue ZF,Wang J. On the study of the effects of notch shape on creep damage development under constant loading. Material Science Engineering A, 2006,437: 340-347.
    [130] Jiang YP, Guo WL, Yue ZF. On the study of the creep damage development in circumferential notch specimens. Comput Material Science, 2007,38: 653-659.
    [131] Cocks ACF, Ashby MF. Intergranular fracture during power-law creep under multiaxial stresses. Metal Sci, 1980,395-402.
    [132]Cocks AFC, Ashby MF. On creep fracture by void growth. Prog Mater Sci, 1982,27: 189-244.
    [133]Van der Giessen E, Tvergaard. Development of final creep failure in polycrystalline aggregates. Acta Metall Mater, 1994,42: 959-973.
    [134]Onck P, Van der Giessen E. Microstructurally-based modelling of intergranular creep fracture using grain elements. Mech Mater, 1997,15: 109-126.
    [135]Onck P, Van der Giessen E. Growth of an initially sharp crack by grain boundary cavitation. J Mech Phys Solids, 1999,47: 99-139.
    [136] Cane BJ. Interrelationship between creep deformation and creep rupture in 2.25CrMo steel. Metal Science,1979,13(5): 287-294.
    [137]Eggeler G, Romteke A, Coleman M, Chew B, Peter G, Burblies A, et al.Analysis of creep in a welded P91 pressure vessel. Int J Press Vessel Piping 1994,60: 237-257.
    [138]Chuman Y, Yamauchi Y, Hiroe T. Study on evaluation procedure of multiaxial creep strength of low alloy steel. Key Engng Mater, 2000,171-174: 305-312.
    [139]D. Li, K. Shinozaki and H. Kuroki: Material Science Technology, 2003, 19 (9): 1253-1260.
    [140]Y. Hasegawa, T. Muraki, M. Ohgami, Identification and formation mechanism of a deformation process determining microstructure of type IV creep damage of the advanced high Cr containing ferritic heat resistant steel , Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan,2006,92(10): 609-617.
    [141]Y. Hasegawa, T. Muraki, M. Ohgami, Creep deformation process determining microstructure of type IV creep damage of the advanced ferritic heat resistant steel with high Cr content, Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan,2006,92(10): 618-626.
    [142]F. Abe, M. Tabuchi, M. Kondo, S. Tsukamoto, Suppression of Type IV fracture and improvement of creep strength of 9Cr steel welded joints by boron addition ,Int. J. Pressure Vessels Piping ,2007,84(1-2): 44-52.
    [143]H. Hirata and K. Ogawa,Relationship between loss of creep rupture strength and microstructure in the heat affected zone of heat-resistant ferritic steel, Weld. Int., 2005, 19(2): 109-117.
    [144]H. Hirata and K. Ogawa, Effect of chromium content on loss of creep rupture strength in the heat affected zone of heat-resistant ferritic steel ,Weld. Int., 2005, 19 (2): 118-124.
    [145]J.D. Parker, J.D. James, Creep behaviour of miniature disc specimens of low alloy steel ,Dev. Progress. Technol. ASME,1994,279: 167-172.
    [146]F. Dobes, K. Milicka, Small Punch Testing in Creep Conditions,J. Test. Eval,2001,29(1): 31-35.
    [147]F. Dobes, K. Milicka, On the Monkman-grant relation for small punch test data ,Mater. Sci. Eng. A,2002, 336(1-2): 245-248.
    [148]R. Sturm, Y. Li, Small Punch test for weld heat affected zones, Materials at High Temperatures, 2006,26(3-4): 225-232.
    [149]S. Komazaki, T. Sugimoto, Y. Hasegawa, et al, Damage evaluation of a welded joint in a long-term service-exposed boiler by using a small punch creep test, ISIJ Int. 2007,47(8): 1228-1233.
    [150]Bumjoon Kim, Byeongsoo Lim, Local creep evaluation of P92 steel weldment by small punch creep test, Acta Mechanica Solida Sinica, 2008, 21(4): 312-313.
    [151]Shin-ichi Komazaki, Taichiro Kato, Yutaka Kohno et al, Creep property measurements of welded joint of reduced-activation ferritic steel by the small-punch creep test, Materials Science and Engineering A , 2009, 510-511: 229-233.
    [152]Harry Kraus.Creep Analysis.New York, USA, 1980.
    [153]Kachanov L M.Time of rupture under creep condition.Izv Akad Nauk. USSR.Otd. Tekhn Nauk. 1958, 8: 26-31.
    [154]Rabotnov Y N.Creep rupture in Applied Mechanics.Proc. ICAM-12, 1968, 342-349.
    [155]李灏,损伤力学基础,济南:山东科技出版社,1992.
    [156]刘彦,一种含局部化效应的蠕变损伤理论及其在蠕变裂纹扩展中的应用,博士学位论文,成都;西南交通大学,1990.
    [157]涂善东,高温结构完整性原理,北京:科学出版社, 2003.
    [158]Yu T, Yatomi M, Shi H-J. Numerical Investigation on the Creep Damage Induced by Void Growth in HAZ of Weldments, International Journal of Pressure Vessels and Piping,2009,4(10): 1026-1036.
    [159]L.Wanga,S.R,Daniewicz, M.F. Horstemeyer, et al, Three-dimensional finite element analysis using crystal plasticity for a parameter study of fatigue crack incubation in a 7075 aluminum alloy.International Journal of Fatigue,2009,31: 659-667.
    [160]Pétry C, Lindet G. Modeling creep behavior and failure of 9Cr-0.5Mo-1.8WVNb steel, International Journal of Pressure Vessels and Piping,2009,3(6),1016-1026.
    [161]Fang Guo-dong, Liang Jun, Wang Bao-lai.Progressive damage and nonlinear analysis of 3D four-directional braided composites under unidirectional tension. Composite Structures, 2009, 89: 126-133.
    [162] ABAQUS/Standard版本6.5产品综述,美国ABAQUS软件公司.
    [163]卢剑锋,庄茁,张帆,ABAQUS/Standard用户材料子程序实例—Johnson-Cook金属本构模型.ABAQUS软件2003年度用户年会论文集.
    [164]庄茁译,ABAQUS/Standard有限元软件入门指南,北京:清华大学出版社,1998.
    [165]李青,浅谈ABAQUS用户子程序,ABAQUS软件2002年度用户年会论文集.
    [166]殷有泉,非线性有限元基础,北京:北京大学出版社,2007.
    [167]蔡大用,白峰衫,高等数值分析,北京:清华大学出版社,1997.
    [168]Bathe K J. Finite element procedures in engineering analysis. Prentice-Hall, Inc, 1982.
    [169]王磊,李家宝,结构分析的有限差分法,北京:人民交通出版社,1982.
    [170]陈建钧,连续损伤力学有限元法在高温构件设计和焊接修复中的应用:[硕士学位论文],南京;南京工业大学,2003.
    [171]袁东锦,计算方法数值分析,南京:南京师范大学出版社,2007.
    [172]何光渝,高永利,Visual Fortran常用数值算法集,北京:科学出版社,2002.
    [173]Press, William H, Saul A.,et al, Numerical Recipes in Fortran 90, Vol. 2 .London, Cambridge University Press, 1996.
    [174]J.T. Boyle, J. Spence. Stress analysis for creep.England, Butterworth & Co. (Publishers) Ltd, 1983.
    [175]巩建鸣,高温下焊接接头结构完整性的研究——高温局部变形测量技术及损伤与断裂的分析:[博士学位论文],南京;南京化工大学,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700