用户名: 密码: 验证码:
40Cr、50车轴钢超高周疲劳性能研究及疲劳断裂机理探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代工业机械设备中,许多零部件在低应力超长寿命条件下工作,服役期内需要承受循环载荷的作用达到10~9~10~(10)循环周次。目前通用的疲劳强度设计规范和寿命预测模型一般都建立在10~7(或10~8)循环周次以下的疲劳试验数据基础上。为提高超长寿命条件下工作的零部件强度设计的可靠性和精确性,保障结构运行的安全,有关材料在10~7循环周次以上的疲劳性能和疲劳破坏行为的研究已引起工程界的高度重视。
     用现有的常规疲劳试验方法完成10~7~10~(10)超高周次范围内疲劳试验要耗费大量的时间和费用,为此,本文对一种加速疲劳试验技术(超声疲劳试验技术)进行了开发研究,在对称拉压超声疲劳试验装置基础上,开发研制了非对称拉压超声疲劳试验装置和三点弯曲超声疲劳试验装置,分析了影响超声疲劳试验过程和试验精度的因素,这些研究成果对超声疲劳试验技术的推广应用和试验的标准化、规范化工作具有指导意义。在超声疲劳试验技术研究和开发的基础上,本文采用超声疲劳试验方法,结合扫描电镜断口微观分析,对40Cr钢和50车轴钢光滑试样和缺口试样在超高周疲劳范围内的疲劳性能和疲劳断裂机制进行了研究,获得了以下研究成果:
     对40Cr钢和50车轴钢光滑试样和缺口试样在10~5~10~(10)循环周次范围内的S-N曲线测定结果显示,调质热处理的40Cr钢在10~5~10~(10)循环周次范围内的S-N曲线呈现“连续下降型”特征,在10~7循环周次附近不存在传统概念上的水平平台,在超过10~7循环周次后,试样仍然发生疲劳断裂。正火热处理的50车轴钢在10~5~10~(10)循环周次范围内的S-N曲线呈现“阶梯下降型”特征,S-N曲线在10~6~10~8周次范围内出现一段水平平台,超过10~8循环周次,S-N曲线第二次下降,表明在平台对应的应力幅以下超高周疲劳范围内,50钢试样仍然会发生疲劳断裂。试样断口显微分析显示,在10~7周次以下的疲劳断裂,疲劳裂纹在试样表面萌生;而在10~7以上超高周范围内的疲劳断裂,疲劳裂纹主要在试样内部或次表面材料夹杂处萌生。表明40Cr钢和50车轴钢的疲劳断裂存在疲劳裂纹表面萌生和疲劳裂纹内部萌生两种机制,分别对应不同的S-N曲线,通过两种机制对应的S-N曲线在试验研究范围内的位置关系可以描述材料的S-N曲线的形状特征,本文将这种描述方法称为“双曲线模型”。
     对缺口试样疲劳性能的研究结果显示,在10~5~10~(10)循环周次范围内,
    
    第日页
    西南交通大学博士研究生学位论文
    缺口应力集中对40Cr钢和50钢疲劳性能的影响呈现“阶段性特征”,疲
    劳缺口系数随疲劳循环周次的变化在107循环周次附近存在一个临界循环
    周次Nc(或临界范围),对应一个最大的疲劳缺口系数;当疲劳循环断裂
    周次玛    疲劳缺口系数随循环周次的增加呈下降趋势。分析表明缺口应力集中对疲
    劳性能的影响呈现出的这种“阶段性特征”与两种疲劳裂纹萌生机制的转
    换有关。
     通过对超声疲劳试验结果与常规旋转弯曲疲劳试验结果的比较分析显
    示,超声疲劳载荷频率对40Cr钢和50钢的疲劳性能存在影响,超声高频
    载荷使材料疲劳性能提高。分析结果显示,可以用一个加载频率修正系数
    来修正超声高频疲劳试验结果与常规疲劳试验结果之间的差异,且加载频
    率修正系数可通过不同应变速率下的材料断裂强度的比值来近似确定。
     综合试验研究结果,本文认为疲劳裂纹内部萌生过程是裂纹形核和核
    心长大成宏观概念上的可扩展裂纹的过程。其中疲劳裂纹内部萌生的核心
    是材料中的第二相粒子、夹杂物或微空洞,称为微裂纹;而微裂纹的长大
    是材料中间歇原子或空位等点缺陷在微裂纹尖端富集沉淀的过程,微裂纹
    的长大速率受到点缺陷富集扩散速率和疲劳载荷的双重影响。本文将这种
    描述疲劳裂纹内部萌生过程的微观模型称为“点缺陷沉淀”机理。并根据
    该微观机理建立了疲劳裂纹内部萌生寿命的表达式,分析了影响疲劳裂纹
    内部萌生寿命的因素,提出了提高疲劳裂纹内部萌生寿命的途径。
    关键词:40Cr钢,50车轴钢,超声疲劳试验,S一N曲线,缺口应力集中,
     疲劳性能,疲劳断裂,疲劳裂纹萌生,裂纹萌生微观机理,载荷
     频率的影响
The concept of a fatigue limit has been the basis of design against fatigue failure since the late 19th century and is still in use today. Ferrite steels, in particular, were considered to possess a well-defined fatigue limit corresponding to threshold stress amplitude below which fatigue life was believed to be infinite. However, in conventional fatigue testing, the range of numbers of cycles investigated is usually limited to about 107 or, at best, 108 cycles, since performing experiments in the very high cycle regime is extremely time consuming and expensive. Hence, the assertion that fatigue life would be infinite at stress amplitudes below the classical fatigue limit was actually an unproved assumption. With technical development in modern industry, in many applications, the lifetime of the mechanical components have to endure up to 108 cycles of loading without failure. A number of recent studies, extending into the ultra-high-cycle fatigue (UHCF) or gigacycle fatigue range, showed clearly for different steels and other metallic materials that, even at stress amplitudes below the classical fatigue limit, fatigue life was finite. Moreover, it was reported that, whereas fatigue failure in the conventional high-cycle fatigue (HCF) range (<106-107 cycles) occurred at the surface, fatigue failures in the UHCF range generally originated from internal defects. As a result, the endurance limit determined by the conventional fatigue tests cannot provide the safety design data of the mechanical structures. Thus the fatigue property of metallic materials in the UHCF range tends to be an important subject in the mechanical design to ensure the long term safety of the mechanical structures.Since performing experiments of the ultra-high-cycle regime in the range of 108~1010 cycles using a conventional fatigue testing method is very time consuming and expensive, in this paper, a kind of acceleration fatigue test technique, called the ultrasonic fatigue testing, was developed and studied. In the study, based on the symmetrical pull-push ultrasonic fatigue testing machines, the methods of unsymmetrical pull-push ultrasonic fatigue load and the three points bending ultrasonic fatigue load are been developed, and the factor influencing testing process and accuracy is analyzed. These studies will give direction to the method of the ultrasonic fatigue testing.In this study, fatigue behavior of the 40Cr and 50 axles steels including smooth
    
    and notched specimens was studied with the ultrasonic fatigue testing technique, with a loading frequency of 20kHz. The fracture surface of specimens was examined by scanning electron microscopy (SEM).Experimental results showed that the S-N curve of 40Cr steel quenched at 850 and tempered at 560, displays the characteristic of "continually decreasing type" up to 1010 cycles and exhibit no traditional horizontal plateau beyond 106 cycles. And the S-N curve of 50 axles steel displays the characteristic of "the multi-stage type", and two decreasing curve and separated by a horizontal step in the region of 106~10 cycles. Over 107 cycles and up to 1010 cycles, fatigue failure in 40Cr and 50 steels do occurs.The observation of the fracture surface showed that fatigue cracks initiate from surface of specimen for short lives (<107 cycles) at high stress levels, and from internal inclusion for very long lives at low stress levels. This indicates that crack initiates mechanism of 40Cr steel and 50 axles steel are of two kinds, and each mechanism corresponds to the respective S-N curves. The S-N curve can be described by the relative position of these two curves and is called "double S-N curve model", in this paper.Study of fatigue behavior on the notched specimen of 40Cr steel and 50 axles steel showed that the influence of notch stress concentration on fatigue properties exhibits characteristic of "different stage", and near 107 cycles, exist a critical cycle Nc (or a critical range of cycle) to correspond to maximum fatigue-notch factor or maximum fatigue-notch sensitivity factor. As number of cycles to f
引文
[1] 徐灏.疲劳强度[M].高等教育出版社,1990.
    [2] Suresh,S.材料的疲劳[M].王中光译.北京:国防工业出版社.1993.
    [3] Basquin, O.H. The exponential law of endurance tests. Proceedings of the American Society for Testing and Materials[J]. 1910.10: 625-630.
    [4] Coffin, L.F. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Transactions of the American Society of Mechanical Engineers. 1954. 76: 931-950.
    [5] Manson, S.S. Behavior of materials under conditions of thermal stress. National Advisory Commission on Aeronautics[M]: Report 1170. Cleveland Lewis Flight Propulsion Laboratory, 1954
    [6] Peterson, R.E. Notch sensitivity[M]. In Metal Fatigue (eds. G. Sines and J.L. Waisman), New York: McGrew-Hill. 1959, 293-306.
    [7] Irwin, G..R. Analysis of stresses and strains near the end of a crack traversing a plate[J]. Journal of Applied Mechanics. 1957.24: 361-364.
    [8] Paris, P.C. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963.85: 528-534.
    [9] Suresh,S.材料的疲劳[M].王中光译.北京:国防工业出版社.1993.
    [10] Wood, W.A. Formation of fatigue cracks[J]. Philosophical Magazine. 1958. 3:692-699.
    [11] Forsyth, EJ.E. A two stage process of fatigue crack growth[M]. In Crack Propagation: Proceedings of Canfield Symposium, London: Her Majesty's Stationery Office. 1962, 76-94.
    [12] Forsyth, RJ.E. & Ryder, D.A. Fatigue Fracture[J]. Aircraft Engineering, 1960. 32:96-99.
    [13] Laird, C. The influence of metallurgical structure on the mechanisms of fatigue crack propagation[M]. In Fatigue Crack Propagation, Special Technical Publication 415, Philadelphia: The American Society for Testing and Materials. 1967. 131-168.
    [14] 田中 真一(日),日、欧高速铁路车辆的结构与材料[J].国外铁道车辆.1997.4:6.
    [15] Naito, T. and Asami, K. Fatigue Behavior of Carburized Steel with Internal Oxides and Nonmartensitic Microstructure near the Surface[J]. Metallurgical Transactions. 1984.15A: 1431-1436.
    [16] Emura, H. and Asami, K. Fatigue Strength Characteristics of High Strength Steel[J]. Transactions of the Japan Society of Mechanical Engineers. 1989. A55: 45-50.
    [17] Wang, Q.Y. et al. Gigacycle fatigue of ferrous alloys[J]. Fatigue Fract. Engng. Mater. Struct. 1999.22: 667-672.
    [18] Wang, Q.Y. et al. High-cycle fatigue crack initiation and propagation behaviour of high-strength spring steel wires[J]. Fatigue Fract. Engng. Mater. Struct. 1999. 22: 673-677.
    [1
    
    [19] Murakami, Y. et al. Super-long life tension-compression fatigue properties of quenched and tempered 0.46% carbon steel[J]. Int. J. Fatigue, 1998. 16: 661-667.
    [20] Murakami, Yet al. Factors influencing the superlong fatigue failure in steels[J]. Fatigue Fract. Engng. Mater. Struct., 1999.22:581-590.
    [21] Kanazawa, K. Fatigue fracture of low alloy steel at ultra-high-cycle region under elevated temperature condition[J]. Journal of the Society of Materials Science, Japan, 1997. 46: 1396-1401.
    [22] Nishijiama, S. and Kanazawa, K. Stepwise S-N curve and fish-eye failure in gigacycle regime[J]. Fatigue Fract. Engng. Mater. Struct., 1999.22: 601-607.
    [23] Shiozawa, K. S-N curve characteristics and subsurface crack initiation behaviour in ultra-long life fatigue of a high carbon-chromium bearing steel[J]. Fatigue Fract. Engng. Mater. Struct. 2001.24: 781-790.
    [24] Shiozawa, K. and Lu, L. Very high-cycle fatigue behaviour of shot-peened high-carbon-chromium bearing steel[J]. Fatigue Fract. Engng. Mater. Struct. 2002.25: 813-822.
    [25] Bathias, C. There is no infinite fatigue life in metallic materials[J]. Fatigue Fract. Engng. Mater. Struct., 1999. 22: 559-565.
    [26] Carstensen, J.V. et al. Very high cycle regime fatigue of thin walled tubes made from austenitic stainless steel[J]. Fatigue Fract. Engng. Mater. Struct., 2002.25: 837-844.
    [27] Mughrabi, N. On 'multi-stage' fatigue life diagrams and the relevant life-controlling mechanisms in ultrahigh-cycle fatigue[J]. Fatigue Fract. Engng. Mater. Struct., 2002.25: 755-764.
    [28] Manes, L. et al. Gigacyclic fatigue in engineering steels[M]. Proceeding of the International Conference On Fatigue in the Very High Cycle Regime. Vienna, Austria. 2-4,July, 2001. 173.
    [29] Murakami, Y. Mechanism of fatigue failure in ultralong life regime[M]. Proceeding of the International Conference On Fatigue in the Very High Cycle Regime. Vienna, Austria. 2-4,July, 2001.11.
    [30] Tanaka, K. Fatigue crack propagation behavior derived from S-N data in very high cycle regime[M]. Proceeding of the International Conference On Fatigue in the Very High Cycle Regime. Vienna, Austria. 2-4,July, 2001.61.
    [31] Roth, L. D. Ultrasonic fatigue testing[M], in Metals Handbook, ninth edition, Volume 8: Mechanical testing, American Society for Metals, Ohio, USA, 1995.240-258.
    [32] 倪金刚 & Bathias,C.超声振动载荷下合金的疲劳寿命性能研究[J].航空学报,1994.15:1386-1389.
    [33] 陶华.球墨铸铁GS52的超声疲劳寿命研究[J].机械科学与技术,1998.17:294-295
    
    [34] 王清远.超高强度钢十亿周疲劳研究[J].机械强度,2002.24(1):81-83.
    [35] 薛红前,陶华,王弘.超声振动载荷下LY12合金的超高周疲劳性能研究[J].西北工业大学学报,2004.22(1):108-111.
    [36] Manson, W. P. Piezoelectric crystals and their application in ultrasonic[M], New York, Van Nostrand, 1950.161.
    [37] Stanzl-Tschegg, S. E., Ultrasonic fatigue[M]. Fatigue '96, Proceeding of the Sixth International Fatigue Congress, 1996.1887-1898.
    [38] Maria, P. et al. Influence of loading frequency on the fatigue properties in the very high cycle regime[M]. Pro. of the Inter. Conf. on Fatigue in the Very High Cycle Regime, Vienna Austria, 2001.73-80.
    [39] Puskar, A. Fatigue properties of steels at low and high loading frequencies. Ultrasonic Fatigue[M], Pro. of the First Inter. Conf. on Fatigue and Corrosion Fatigue Up to Ultrasonic Frequencies. USA. 1982. 223-228.
    [40] Willertz, L. E. Ultrasonic fatigue[J], International Materials Reviews, 1980.2: 65-77.
    [41] Girard F. and Vital, G. Rev. Metall., 1959. 56: 25.
    [42] Kikukawa, M. Ohji, K. and Ogura, K. J. Basic Eng. (Trans. ASME, D), 1965. 87: 857.
    [43] Neppiras, E. A. Techniques and equipment for fatigue testing at very high frequencies[M], Proc. ASTM 59, Philadelphia, 1959. 691-710.
    [44] Mitsche, R. et al. Hochfrequenzkinematographie in der metallforschung[M], Wissenschaftlicher film, 1973,14: 3-10.
    [45] Saanouni, K. Précsion de l'amorcage des fissures en fatigue visco-plastique et élastodynamique. Thèse 3~(ème) cycle, Université de Technologie de Compiègne, 1982.
    [46] Kong, X. A. Theoretical and numerical study on vibratory fatigue, Thèse de doctorat, Université de Technologie de Compiègne, 1987.
    [47] Wu, T. and Bathias, C. Application of fracture mechanics concepts in ultrasonic fatigue[J]. Engineering Fracture Mechanics, 1994.47(5), 683-690.
    [48] Ni,J. Etude du Comportement Mécanique et des Mécanismes d'Endommagement des Alliages en Fatigue Vibratoire. Thèse de doctorat, CNAM, Paris, 1991.
    [49] 倪金刚,张学仁,聂景旭,超声疲劳振动体的有限元计算及动态模态分析,中国科学(E辑),1996.26(2):97-102,
    [50] Schoeck, G. Z. Metallkde., 1982.9: 576-578,
    [51] Mayer, H. R., Stanzl-Tschegg, S. E. And Tan, D. M. FEM modeling of stress intensity factors for fatigue crack growth at ultrasonic frequencies[J]. Engineering Fracture Mechanics, 1993.45(4): 487-495.
    [52] Wu, T. Modélisation de la Fissuration en Fatigue Vibratoire à Haute Température, Application aux Alliages à Base de Nickel. Thèse de doctorat, ECP, Paris, 1992.
    
    [53] Tao, H. Développement de la Fatigue Vibratoire, Application aux Alliages de Titane et d'Aluminium aux Température Cryogéniques. Thèse de doctorat, CNAM, Paris, 1996.
    [54] Bathias, C., Alami, K. E. and Wu T, Y., Influence of mean stress on Ti6AI4V fatigue crack growth at very high frequency[J]. Engineering Fracture Mechanics, 1996.39(2): 136-140.
    [55] Idrissi K. Etude du Comportement et de l' Endommagement d' Alliages pour Turbomachines en Fatigue Vibratoire Combinée, Application au TA6V. Thèse de doctorat, ECP, Paris, 1994.
    [56] Stanzl, S., M. Czegley, H. R. Mayer and E. K. Tschegg,Fatigue crack growth under combined mode Ⅰ and mode Ⅱloading[M], Fracture Mechanics: Perspectives and Directions, ASTM STP 1020, Philadelphia. 1999. 479-496.
    [57] Stanzl-Tschegg, S. E., H. R. Mayer and E. K. Tschegg, The influences of air humidity on near-threshold fatigue crack growth of 2024-T3 aluminum alloy[J]. Mat. Sci. And Eng., 1991.147: 45-54,
    [58] Wang, Q.Y. and Bathias, C. A system set-up for high-cycle fatigue at 20kHz under three-point bending, Report 95-5, Contract HONDA, CNAM/ITMA, 1996.
    [59] Stanzl-Tschegg, S. E., H. R. Mayer and E. K. Tschegg, High-frequency method for torsion fatigue testing[J]. Ultrasonics, 1993.31(4): 275-280,
    [60] Stanzl, S. E., Hollanek, W. And Tschegg, E. K. Fatigue and fracture under variable-amplitude loading at ultrasonic frequency[M], Advances in Fracture Research (Eds. S. R. Valluri, D. M. R., Taplin, T. Rama Rao, J. F. Knott, R. Dubey), 1984. 5: 3645-3651,
    [61] Wu, T. Y., Ni, J. G. and Bathias, C., An automatic ultrasonic fatigue testing system for studying low crack growth at room and high temperatures[J], ASTM STP, 1995.1231: 589-607.
    [62] Ebara, R and Y. Yamada, Ultrasonic corrosion fatigue testing of 13Cr stainless steel and Ti-6Al-4V Alloys[M]. Ultrasonic Technology (K. Toda, ed.), MY Research, Tokyo, 1987. 329-342.
    [63] Stanzl-Tschegg, S.E., H.R.Mayer and E.K.Tschegg, The influence of air humidity on near-threshold fatigue crack growth properties of 2024-T3 aluminium alloy, Mat. Sci. and Eng., 1991. A147: 45-54,
    [64] Tao, H. and C. Bathias, Experimental study on fretting-fatigue at very high frequency[M], Revue de Métallurgie-CIT/Science et Génie des Matériaux, 1996. 687-695.
    [65] Sun, Z. D. and C. Bathias, Réalisation d'essai du fretting fatigue vibratoire à 20KHz, Contrat CREAS-Rapport 98-1, ITMA-CNAM, 1998.
    [66] 倪金刚,超声疲劳试验技术的应用[J].航空动力学报,1995.10:245-248.
    [67] 方同,薛璞.振动理论及应用[M].西安:西北工业大学出版社. 1998,217-220.
    [6
    
    [68] 林吉忠,等.车轴钢力学及疲劳性能的研究[J].中国铁道科学,1986.7:9-25.
    [69] 林吉忠,等.中碳钢缺口端部疲劳裂纹萌生的临界应力[J].金属学报,1987.23(4):A339-340.
    [70] 宋子濂,史建平.车轴断裂失效分析图谱[M].中国铁道出版社,1995.199-299.
    [71] Luká, R Specific features of high-cycle and ultra-high-cycle fatigue[M]. Proceedings of the International Conference on Fatigue in the Very High Cycle Regime.2001, Vienna, Austria. 2001. 11.
    [72] 徐灏.疲劳强度[M].高等教育出版社,1990.481.
    [73] Bush, A. Fatigue strength calculation[M]. Switzerland, UA: Trans Tech SA, 1988. 74.
    [74] 铁道部车辆局:160km/h提速车辆故障汇编,2003.
    [75] Mughrabi, H. On "multi-stage" fatigue life diagrams and the relevant life-controlling mechanisms[M]. Pro. of the Inter. Conf. on Fatigue in the Very High Cycle Regime, Vienna Austria, 2001.35-49.
    [76] 崔约贤,王长利。金属断口分析[M].哈尔滨:哈尔滨工业大学出版社,1998.136-138.
    [77] 50车轴钢疲劳性能研究报告:内部资料.
    [78] 工程材料实用手册编委会.工程材料实用手册[M],北京:中国标准出版社.1988.265-277.
    [79] Peter P.G. and Todd, S.G. Effect of strain rate on flow properties[M], in Metals Handbook, ninth edition, Volume 8: Mechanical testing, American Society for Metals, Ohio, USA, 1995.38-46.
    [80] Suresh,S.材料的疲劳[M].王中光详.北京:国工业出版社.1993,131.
    [81] Masaaki, I and Kozo, K. Carbon content effect on high-strain-rate tensile properties for carbon steels[J]. International journal of impact engineering, 2000.24: 117-131.
    [82] 马鸣图,聂晓霖.几种球铁应变疲劳特性的研究(Ⅰ)[J].汽车技术,1995.2:38-50.
    [83] 杨浩泉,王德俊.45~#钢在高周疲劳循环下的循环软化问题的研究[J].包头钢铁学院学报,1995.14:48-52.
    [84] 李怀明,杨让.回火索氏体钢轨钢循环应变行为与位错结构关系的研究[J].钢铁研究学报,1995.7:47-52.
    [85] 褚武扬,等.断裂与环境断裂[M].北京:科学出版社,2000.136.
    [86] Oriani, R.A. Ann. Rev. Mater. Sci.[M], 1978, 8: 327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700