用户名: 密码: 验证码:
船用大型锻件余热热处理工艺方法研究及参数优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长轴类大型锻件一般用于传动轴,是机器设备的关键和核心部件,是制造重大装备的基础件,质量要求十分严格。大型锻件由于尺寸大、重量大,需要由大型钢锭直接锻压而成,锻压后锻件性能、组织不均匀非常严重。为达到工作性能要求,必须制定合理的热处理工艺,改善其组织性能,并减少加热时间以达到节约能源的目的。本论文的研究课题来源于广东省重大科技专项(2009A080304004)“船舶工业用大型锻件锻造减量化及余热能源利用技术的研究与产业应用”。
     本文以传热学理论为基础,以船用长轴类大锻件为研究对象,制定了余热热处理工艺规范,采用有限元数值模拟和试验研究相结合的方法,对锻件的余热热处理过程进行数值模拟,并通过优化算法优化了最终热处理工艺参数。本文研究内容和结论如下:
     (1)根据锻件材料的化学成分、热物性数据、等温转变曲线(TTT)和相变潜热等,建立了35CrMo材料库。通过对锻件内部温度的实测,采用有限差分法编程计算,获得锻件换热系数曲线。
     (2)通过物理模型试验验证了余热正火热处理工艺是可行的。试验结果表明,该工艺不仅保证了锻件中心部位的韧性、改善了表面耐磨性,而且缩短了加热时间。相对于常规正火工艺,余热正火减少了58%以上的加热时间。
     (3)采用DEFORM-3D有限元软件建立了余热热处理过程的有限元计算模型,通过试验对模型进行了验证,模拟结果与实测结果基本相符。数值模拟结果表明,淬火5min时,锻件圆角部位的等效应力最大,此时等效应力为401Mpa,锻件在淬火过程中不会出现塑性变形现象。调质处理后主要组织为回火索氏体,具有良好的综合力学性能。
     (4)提出了一种SVM神经网络与遗传算法相结合的长轴类大型锻件热处理工艺参数优化方法,以淬火温度、淬火保温时间、回火温度和回火保温时间等工艺参数为优化对象、加热时间和最大残余应力为优化目标,对长轴类大型锻件的最终热处理工艺进行了优化。首先进行正交试验,以试验数据为样本;通过神经网络建立工艺参数与目标之间的非线性映射模型;然后采用遗传算法对模型进行优化获取最优工艺参数。结果表明:相对于传统的调质工艺,优化工艺的加热时间减少了22%、最大残余应力下降了24%。
Long-axis heavy forgings are widely used for transmission shaft.As the basic parts of many heavy machines and equipments, the quality requirements of long-axis heavy forgings are very strict.Due to the large size and the heavy weight,the heavy forgings is forged directly by large ingots.Howevery, the forging performance and the organization is uneven seriously after being forged.To achieve the performance requirements, it is necessary to develop a reasonable process of heat treatment that improve the organization performance and save time and energy.The research subject are financially supported by the 2009 major scientific and technological projects in Guangdong province (2009A080304004)“Research on forging reduction of heavy forgings and technology of using waste heat and its application in shipping industry”.
     In this paper, based on the basic theory of heat transfer, the long-axis heavy forgings as the research object, and formulate the process specification of remained heat treatment, finite element method combited with experiment examination was used to simulate heat treatment process, then optimization algorithm was used to optima parameter of heat treatment process.The main research contents and conclusions of this paper are summarized as follows:
     (1)Based on chemical composition、thermophysical properties、TTT and latent heat, a library of 35CrMo has been developed.A mathematical model is established to calculate the temperature of the surface of forging from the temperature data of the center of forging.This algorithm of FDM (Finite Difference Method) is programmed and the curve of heat transfer coefficient is obtained.
     (2)The process of remained heat treatment is validated by experiment, the results show that this process is feasible.The forging made with the new process have improved surface wear-ability and inner structure of forging.Also, the new technique has advantages in shortening heat preservation, saving heating time more than 58%.
     (3)A FEM (Finite Element Method) model of remained heat treatment process is built based on the FEM software DEFORM-3D.The model is validated by experiments, the simulation results basically fit those measured in experiments.The results show that due to chilling effect of quenching, the temperature differences between surface and core of the forging are tremendous;During the process, the stress of the round areas of forging is maximum at 5min, which is 410Mpa, and the stress has no possibilities of plastic deformation.After quenching-tempering, the main organization of forging is temper-sorbite, with good mechanical properties.
     (4) A method combining SVM (Support Vector Machine) with GA (Genetic Algorithm) to optimize heat treatment process parameters of long-axis heavy forgings was put forward, taking quenching temperature、quenching holding time、tempering temperature and tempering holding time, and so on as optimizing parameters.Heating time and residual stress as optimizing objective, the final heat treatment process of long-axis heavy forgings is optimized.Firstly, through the orthogonal experiment of the technical factors in heat treatment,the mapping model of SVM was established based on data above experiment.Then, through optimizing the model by useness of GA, the optimum heat treatment process parameters have been given.The results show that compared to conventional process, this process has save heating time more than 22% and the residual stress more than 24%.
引文
[1]向可,赵学智,夏琴香等.长轴类大锻件锻前加热工艺的研究[J].热加工工艺,2011,40(3):78~81
    [2]郭会光,曲宗实.我国大锻件制造业的发展[J].大型铸锻件,2003,1:42~45
    [3]樊东黎.锻件的热处理[J].锻造与冲压,2005,(7):32~35
    [4]雷雪.低压转子加热过程模拟及工艺优化[D].上海:上海交通大学.2009
    [5]吴光治.关于我国热处理装备技术发展若干问题的思考[J].工业加热,2007,36(5):36~39
    [6]戚正风.锻造余热热处理[M].北京:机械工业出版社.1987
    [7]韩家学,王勇围.45和40Cr钢曲柄锻造余热调质工艺[J].金属热处理,2009,9(9):75~77
    [8]布新福.国外钢轨余热淬火工艺的发展[J].轧钢,1993,(3):59~62
    [9]赵民,刘越表等.重轨质量及发展战略研究[J].现代冶金,2001(2):39~51
    [10]潘一凡,赵茂程等.锻造余热淬火工艺及应用[J].南京林业大学学报,1997,12(4):85-89
    [11]薛立端.合金结构钢锻后淬火工艺的研究[J].应用技术,2006,6(6):58~60
    [12]李超,强朝晖.汽车轮毂轴管锻造余热淬火工艺研究[J].热加工工艺技术与装备,2007,(12):65~67
    [13]王荣滨.节能锻热淬火提高模具寿命[J].紧固件技术,2007,(4):12~14
    [14]秦雅冰,赵苏和.出口锻轴锻造余热热处理工艺研究及应用[J].包钢科技,2007,3:11~14
    [15]崔晓龙,万妮丽.大型锻件热处理过程的数值模拟研究[J].热处理,2005,20(4):12~16
    [16]王本一,石伟,刘庄.数值模拟技术在大型锻件生产中的应用[J].大型铸锻件,1999,(1):15~20
    [17]郭会光.着力提高我国大型锻造的现代化水平[J].大型铸锻件,2003,(2):1~2.
    [18] Guo.H.G.A Study of simulation for the Large Forging projects.ICME2009:36~40
    [19]李广睿.大型轧辊热处理工艺模拟及其实验研究[D].河北:燕山大学.2007
    [20]王大鹏.轴对称大锻件淬火过程温度场及组织场的数值模拟[D].大连:大连理工大学.2002
    [21]余小鲁.不锈钢锻后热处理工艺的试验研究与模拟[D].西安:西北工业大学.2003
    [22]张立文.数值模拟技术在金属材料固态加工中的应用[D].大连:大连理工大学.2004
    [23] Inoue T,Wang Zhigang.Coupling between stresst temperature and metallic structuresduring processes involving phase transformations[J].Materials Science and Technology,1985,1:845~850
    [24] Inoue T,Arimoto K.Deveiopment and implementation of CAE system“HEARTS”for heattreatment simulation based on melallo-thermo-mechanics[J] . Journal of Materials Engineering and Perfoimlance,1997,6(1):51~60
    [25] Denis S,Gautier E,Simon A et a1.Stress-phase-transformation interactions-basic principles、modeling and calculation of internal stresses[J] . Materials Science and Technology,1985,1:805~814
    [26] Denis S,Sj?str?m.S,Simon.A.Coupled temperature,stress,phase transformation calculation model numerical illustration of the internal stresses evolution during cooling of a eutectoid carbon steel cylinder[J].Metallurgical Transaction ,1987,18A:1203~1212
    [27] Sj?str?m. S.Interactions and constitutive models for calculating quench stresses insteel[J].Materials Science and Technology,1985,1:823~829
    [28] Jang J W,Park I W,Kim K H.FEM program development for predicting thermal deformation in heat treatment[J].Journal of Materials Processing Technology,2002:546~550
    [29] Reti T,Fried Z,Felde I.Computer simulation of steel quenching process using amulti-phase transformation model[J].Computational Materials Science,2001,22:261~278
    [30]姚善长,Ericsson T.淬火过程的计算机模拟[J].金属热处理,1987,8:25~32
    [31]袁发荣,伍尚礼.轴对称金属物体淬火过程中的瞬态温度场和残余应力场[J].机械工程学报,1986,22(3):96-103
    [32]刘庄,吴肇基,吴景之等.热处理过程的数值模拟[M],北京:科学出版社,1996.
    [33] Liu C C,Liu Z,Chen G X et a1.Effect of stress on transformation and predictionof residual stresses[J].Materials Science and Technology,1984,14(8):747~750
    [34] Li Y J,Pan J S et a1.Numerical simulation on thermal stress of large-scale bearing roller during heating process of final heat treatment[J].Journal of Shanghai Jiao tong University,2000,E5(1):347~350
    [35] Pan J S,Li Y J,Li D Q.The application of computer simulation in the heat-treatment process of a large-scale bearing roller[J].Journal of Materials Processing Technology,2002,122:241~248
    [36] Zhang L W,Hosson J T M D,Xia Y L.Calculation of residual stress field in laser transformation hardened MoCu nodular iron[J].Acta Metallurgica Sinica(English Letters),2000,13(2):776
    [37] Zhang L L,Wang R S,Hosson J T M D.Calculation of 3D transient temperature field during laser transformation hardened process[J].Acta Metallurgica Sinica(English Letters),2000,13(2):806
    [38]程赫明,王洪钢等.45钢淬火过程中热传导方程逆问题求解[J].金属学报,1997,33(5):467~472
    [39]程赫明,何天淳,黄协清等.高压气体淬火过程中热传导方程逆问题的求解[J].材料热处理学报,2001,22(4):81~84
    [40]陈乃录,高长银,单进等.动态淬火介质冷却特性及换热系数的研究[J].材料热处理学报,2001,22(9):41~44
    [41]刘迨.试论热处理冷却技术的某些问题.第六届全国热处理大会论文集.北京:兵器工业出版社,1995:33~38
    [42]刘进媛,李文洲.曲轴热处理中温度场和放热系数的有限元分析[J].北方交通大学学报,1994,18(1):77~80
    [43] T.Reti , M.Gerrely , P.Tardy . Mathematical Treatment of Non-isothermal Transformations[J].Materials Science and Technology,1987,(3):365~371
    [44] Chen Kanghua,Huang Lanp ing.Strengthening toughening of 7xxx series high strength aluminum alloys by heat treatment[J].The Chinese Journal of Nonferrous Metals,2003,(3):484~489
    [45] Artges C W.Changes in solid solution composition as function of artificial aging time for aluminum alloy-7075[J].Journal of Materials Science Letters,1994,(11):776~ 778
    [46]张际先,宓霞.神经网络及其在工程中的应用[M].北京:机械工业出版社,1996
    [47]桂现才.BP神经网络在MATLAB上的实现与应用[J].湛江师范学院学报,2004,25(3):79~83
    [48]乔立.神经网络与遗传算法在Mg/PTFE贫氧推进剂配方优化中的应用[D].江苏:南京理工大学,2010
    [49]李立新,汪凌云.BP网络模型在含硼微合金钢奥氏体晶粒尺寸及道次间软化程度预测中的应用[J].大型铸锻件,2003(1):10
    [50]许云波,刘相华,王国栋.热轧带钢组织-性能测试和控制模型及其应用前景[J].钢铁研究学报,2002,14(1):65
    [51]杨晓丽,张运陶.RBF神经网络及其在液化气生产数据预测中的应用[J].西华师范大型学报,2004,25(4):397~400
    [52]郝鑫.广义回归神经网络和遗传算法研究及其在化工过程建模中的应用[J].浙江大学,2007
    [53]王国昌,吕学菊.用广义回归神经网络和遗传算法分析产量递减[J].新疆石油地质,2006,(27):90~93
    [54] Sprecht D F.A gemeral regression neural network.IEEE Trans Neural Network,1991,(2):568~576
    [55]叶晨洲,李国正,陈念贻等.支持向量机算法用于C60溶解度的热力学分析[J].计算机与应用化学,2002,19(6):729~730
    [56]刘旭,陆文聪,陈念贻等.支持向量机算法在若干熔盐相图中间相预报中的应用[J].应用科学学报,2004,22(1):55~59
    [57]金胜利,李亚伟,李楠等.支持向量机算法优化制备赛隆-刚玉浇注料工艺参数[J].耐火材料,2005,39(2):126~129
    [58]宋贤民.基于SVM的污水处理过程软测量建模研究[D].江西:南昌大学,2007
    [59]李敏强.遗传算法的基本理论与应用[M].北京:科学出版社,2002
    [60]仁建平,宋仁国等.基于BP神经网络梯度下降算法的7003铝合金热处理工艺优化[J].宇航材料科学,2009,(4):6~9
    [61]舒服华,赵星魁.基于蚁群神经网络的耐热钢管热处理[J].金属热处理,2008,33(3):101-104
    [62]吴良,陈铮.基于支持向量机的材料热处理性能预测模型的研究[J].材料热处理学报,2007,28(6):152~155
    [63]蔡秋茹,汤嘉立等.基于支持向量机的复合材料力学性能预测[J].计算机测量与控制,2010,18(11):2478~2484
    [64]郭明恩,刘瑞锡.磷青铜合金水平连铸工艺参数的优化[J].铸造技术,2005,26(7):591~593
    [65]苏娟华,董企铭.基于人工神经网络的铜合金形变热处理工艺和性能[J].中国有色金属学报,2003,13(5):1077~1082
    [66]董敏.人工神经网络与材料工艺的优化[J].辽宁师专学报,2000,2(3):100~103
    [67] Pan Jiansheng.Researchand application prospectof coin.puter simulation on heat treatment process [J].Journal of Shanghai Jiaotong University,2000,E5(1):1~13
    [68] Meekisho L.Computer modeling-an important tool in materials processing.Journal of Shanghai Jiaotong University,2000,E5(1):26~34
    [69]解挺,伊延国.计算机模拟热处理过程的执行程序及结果[J].国外金属热处理,1997,1:45~48
    [70]龙华.U71Mn钢重轨轨头淬火温度场和应力场的数值模拟研究[D].湖北:武汉科技大学,2008
    [71]盖登宇,李鸿等.材料加工过程的建模与数值分析[M].西安:西北工业大学出版社,2009
    [72]杨世铭,陶文铨.传热学[M].北京:北京高等教育出版社,2006
    [73]王勖成.有限单元法[M].北京:清华大学出版社,2005
    [74]薛守义.有限单元法[M].北京:中国建材工业版社,2005
    [75]谭真,郭广文.工程合金热物性[M].北京:冶金工业出版社,1994
    [76]樊东黎,徐跃明等.热处理技术数据手册[M].北京:机械工业出版社,2006
    [77]陈达,水晓平,李鹏兴.大件热处理的温度场、显微组织及性能预测[J].机械工程学报,1990,26(6):8~13
    [78]张立文.数值模拟计算在金属材料固体加工中的应用[D].大连:大连理工大学,2004
    [79]王凯.螺栓在高温下的蠕变松弛分析[J].工艺装备,2011(5):71~72
    [80]吴通,Cr-Mo钢的焊接和焊后局部热处理力学行为及工艺优化的计算机模拟[D].上海:上海交通大学,2003
    [81]张敏.重轨端部淬火温度场与相变的计算机模拟[D].湖北:武汉科技大学,2010
    [82]李广睿.大型轧辊热处理工艺模拟及其实验研究[D].河北:燕山大型,2006
    [83]单会星.长轴类大锻件锻造加热工艺规范的研究[D].广东:华南理工大学,2011
    [84]谢建斌.钢淬火过程中相成分、表面换热系数及温度场的研究[D].云南:昆明理工大学,1999
    [85]朱慧光.冷却介质冷却性能测定方法的发展[J].金属热处理,1989,8:3~9
    [86]董绍璋,阎小林等.连铸小方坯一维传热数学模型中显式有限差分方程及其稳定性[J].河北矿业学院学报,1983:98~108
    [87]胡志东,鲍晓莉.淬火介质冷却过程中的数值计算[J].武汉理工大学学报,2002,8(4):142~145
    [88]霍育林.轴类大锻件锻造工艺方法及成型机理研究[D].广东:华南理工大学,2009
    [89]李康.钢件喷水冷却过程的有限元建模及温度场预测[D].山西:太原理工大学,2006
    [90]徐效谦.钢丝热处理工艺制定及实践.全国金属制品信息网第21届年会论文集.2007:39~57
    [91]程赫明,王洪钢等.45钢淬火过程中热传导方程逆问题求解[J].金属学报,1997,33(5):467~472
    [92]王晓春.汽车齿轮毛坯锻件各种正火工艺方式的探讨[J].西南民族大学学报,2007,33(6):1404~1406
    [93]张冬匀.基于正交试验法对锻件的正火工艺的探讨[J].现代机械,2008:61~65
    [94]孙兴邦.船用大锻件的热处理[M].北京:国防工业出版社,1987
    [95]夏立芳.金属热处理工艺学[M].哈尔滨:哈尔滨工业大学出版社,2007
    [96]黄永强,刘定坤.大型船轴的热处理[J].大型铸锻件,2001,(3):28~30
    [97]向艳旭.大型件的热处理工艺研究[J].才智,2009,(15):263
    [98]谢泽林.热处理节能在生产工艺中的应用[J].热加工,2009,5:43~44
    [99]耿学明,黎定旺.大型锻件的调质热处理实践[J].金属加工(热加工),2010,(5):40~45
    [100]康希纯.AQ251水溶性淬火剂的应用[J].热处理,2008,23(6):60~63
    [101]崔忠圻,覃耀春.金属学与热处理[M].北京:机械工业出版社,2008
    [102]康大韬.大型锻件材料及热处理[M].北京:机械工业出版社,1998
    [103]赵连城.金属热处理原理[M].哈尔滨:哈尔滨工业大学出版社,1987
    [104]刘庄等.热处理过程的数值模拟[M].北京:科学出版社,1996
    [105]陈昭运.计算机模拟技术在工件淬火应力分析中的应用[J].第九次全国热处理大会论文集,2007,9:297~299
    [106]熊剑.国外热处理新技术[M].北京:冶金工业出版社,1990
    [107]沈艳宁,袁寿其等.复合叶轮离心泵数值模拟正交试验设计方法[J].农业机械学报,2010,41(9):22~26
    [108]孙凌燕.杯形薄壁内齿轮旋压成形机理及工艺优化研究[D].广东:华南理工大学,2010
    [109] Tosun N.Determination of optimum parameters for multi-performance characteristics in drilling by using grey relational analysis[J] . International Journal of Advanced manufacturing Technology,2006,28(5):450~455
    [110] Chiang k.T.,Chang F. P..Application of grey-fuzzy logic on the optimal process design of all injection-molded part with a thin shell feature[J].International Communications in Heat and Mass,2006,33(1):94~101
    [111]刘思峰,郭天榜,党耀国.灰色系统理论及其应用[M].北京:科学出版社,2004
    [112]宋贤民.基于SVM的污水处理过程软测量建模研究[D].江西:南昌大学,2007
    [113] Jiawei Hart,Micheline Kambr.数据挖掘-概念与技术(影印版)[M],北京:高等教育出版社,2001
    [114]金胜利,李亚伟等.支持向量机算法优化制备塞隆-刚玉浇注料工艺参数[J].耐火材料,2005,39(2):126~129
    [115] J.Shawe,N.CriStiaIlini.模式识别的核方法[M].北京:机械工业出版社,2006
    [116] DavidE.G . Genetic algorithms in search , optimtzation and machine Learning [M].Msssachusettes:Addisonwesley Publishing Company,1989
    [117]雷英杰,张善文,李续武.MATLAB遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005
    [118]史峰,王小川等.MATLAB神经网络30个案例分析[M].北京航空大学出版社,2010.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700