用户名: 密码: 验证码:
490MPa级耐火钢组织及性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着建筑事业的发展,钢结构在高层建筑及大跨度建筑中广泛应用,但是钢结构建筑的耐火性能较差,一般使用耐火材料涂覆来保护钢材,这样不仅会对环境造成污染,还提高了建筑成本。耐火钢是一种具有优良耐火性能的高强度低合金结构钢,相对于普通钢,耐火钢在600℃高温下的屈服强度不低于其在室温下屈服强度的2/3,具有良好的高温耐火性,发展前景非常广阔。微观组织和合金元素是影响材料性能的主要因素,因此,研究耐火钢的组织与力学性能的关系对丰富耐火钢的耐火机理有着重要的意义。
     本文采用MTS810拉伸试验机、金相显微镜(OM)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等研究手段分析了正火温度对试验钢力学性能、显微组织的影响,600℃回火后试验钢组织转变情况以及合金元素在高温下对组织、性能的影响规律,并讨论了耐火钢的高温耐火机理。
     结果表明:(1)正火态试验耐火钢的组织特征是由等轴状先析铁素体、粒状贝氏体、粒状“组织”组成的混合组织。粒状贝氏体是由铁素体基体上分布着有序M-A岛构成,而粒状“组织”是由铁素体基体上分布着无序M-A岛构成。(2)随正火温度的升高,A组和B组耐火钢的抗拉强度和屈服强度均有所降低,延伸率升高,在800℃正火综合力学性能最好。随轧后冷却速度的提高,耐火钢组织中的粒状贝氏体和粒状“组织”增多,晶粒变细,耐火钢的屈服强度与抗拉强度有所提高。(3)正火态试验耐火钢经过600℃保温30min回火处理后,粒状贝氏体和粒状组织中的部分M-A岛会发生分解,而大部分的M-A岛在此条件下保持稳定,这种组织上的稳定性,是耐火钢在高温下保持较好力学性能的主要原因。(4)合金元素Mo在耐火钢中主要是以偏聚的形式存在,其作用是增加过冷奥氏体的稳定性,促进粒状贝氏体和粒状“组织”的形成,提高M-A岛在高温下的稳定性,保证耐火钢的耐火性能。(5)在耐火钢中可以添加微量B元素来代替Mo元素,并制定合理的控轧控冷工艺,可在耐火钢中实现降Mo含量的成分设计。
With the development of the construction industry, Steel structures are used widely in high-rise buildings and large-span buildings. However, fire-resistance performance of steel construction is poor, generally the fire-resistance coating is used of to protect steel, this not only increases construction costs, but also pollutes the environment. The fire-resistant (FR), which is a high strength low alloy steel with desirable fire-resistant property, and compared with ordinary steel, the yield strength at 600℃high temperature of FR steel can be maintained more than 2/3 of the yield strength at room temperature, it can effectively reduce the fire protection coating and have a broad prospect of application. Microstructure and alloy element are the main factor to the material properties, So it has a important significance for enriching fire-resistance mechanism of FR steel to study the relationship between organization and the mechanical properties of FR steel.
     In this paper, the influence of normalizing temperature and alloying elements on organization and performance were studied by using MTS810 tensile testing machine, OM, SEM, TEM, the fire-resistance mechanism of fire-resistant steel at high temperature was discussed.
     The results of this study show that:(1) The microstructure character of normalized tested FR steels is the mixture of pro-eutectoid ferrite, granular bainite and granular structure. Granular bainite is comprised of orderly M-A islands distribution in ferrite matrix, and Granular structure is comprised of disordered M-A islands distribution in ferrite matrix. (2) With the increase of normalizing temperature, tensile strength and yield strength of A and B series FR steels decrease, but elongation increases, mechanical properties under normalizing temperature is 800℃are the best. With the increase of cooling rate after rolled, granular bainite and granular structure increase, the grain became smaller, tensile strength and yield strength increase. (3) After tempering at 600℃, part of M-A islands in granular bainite and granular structure decompose, but most M-A islands can remain stable in this condition, the stability of organization is the main reason for FR steel to keep good mechanical properties in high temperature. (4) Mo elements mainly exist as segregation, which increase the stability of the overcooling austenite, promote the formation of bainite in FR steel and improve the stability of M-A islands in high temperature, so fire-resistance performance is guaranteed. (5) B element can be added to replace Mo element in FR steel, it can reduce the content of Mo element in FR steel to make a reasonable controlled rolling and controlled cooling process.
引文
[1]殷海荣.李阳.耐火钢耐火机理的研究[J] .钢铁研究,2008 (2) :59~61.
    [2]黄贞益,陈光,曹燕.建筑用耐火钢的开发研究[J].热加工工艺,2004,(4):9~12.
    [3] Sha W, Kirby B R, Kelly F S, The Behaviour of Structural Steels at Elevated Temperatures and the Design of Fire Resistant Steels[J]. Materials Transaction, 2001,42 :1913~1922.
    [4] Assefpour Dezfuly M, Hugaas B A, Brownrigg A, Fire resistant high-strength low-alloy steels[J]. Materials Science and Technology. 1990, 6:1210~1224.
    [5] K. OTANI, Nippon Steel Technical Report[R], 1992,(54):2
    [6] Sha W,Kelly F S,Browne P,et al.Development of structural steels with fire resistant microstructures[J].Materials Science and Technology,2002,(18):319~326.
    [7] Walp M S,Speer J G,Matlock D K.Fire-resistant steels can improve the resistance of buildings to the various consequences of fires[J].Advanced Materials& Processes,2004,(12):34~39.
    [8]吴保桥.吴结才.沈俊昶.等.建筑用耐火H型钢的开发[J] .轧钢,2004 ,21 (2) :13~15
    [9]宝钢重大工程材料供应服务中心项目部.宝钢建筑用钢产品在工程建设中的应用[ C].//2004年钢结构学术年会论文集.北京:中国钢结构协会,2004 :109~110.
    [10]王泽林.高层建筑用耐火钢的研制[J] .鞍钢技术,2004 (2) :23~26.
    [11]陈晓.刘继雄.董汉雄.大线能量焊接耐火耐候建筑用钢的研制和应用[J].中国有色金属学报,2004,14(1):224-228.
    [12] BS 476,Fire Tests on Building Materials and Structures,Part 20,methods for the Determination of the Fire Resistance of Elements of Construction.London:British Standards Institution[S].
    [13]钢铁研究总院.建筑用抗震耐火钢的研究[A].“863计划项目”工作会论文集[C].重庆, 2005年.
    [14] Sha W. Kelly F S. Guo Z X. Microstructure and Properties of Nippon Fire-Resistant Steels[J]. Journal of Materials Engineering and Performance,1999,(8): 606
    [15]Fushimi M.Keira K.Chikaraishi H. Development of Fire-resistant Steel Frame Building Structure[R]. Nippon Steel Technical Report, 1995.
    [16] Kubota S. Sakumoto Y. Development of the Fire-Protective System (Membrane System) Using Fire-Resistant Steel for Cooperative Houses[R]. Nippon Steel Technical Report, 1999.
    [17] Sakumoto Y.Saito H. Fire-safe design of modern steel buildings in Japan[J]. Journal of Constructional Steel Research, 1995,(33) : 101
    [18] Fire-Safe Design in Buildings Using Fire-Resistant Steel without Fire Protection[R]. Nippon Steel Technical Report, 1998.
    [19] Sha W, Kelly F S. Atom probe field ion microscopy study of commercial and experimental structural steels with fire resistant microstructures[J]. Materials Science and Technology,2004(20): 449.
    [20] Sakumoto Y. Saito H. Fire-safe design of modern steel buildings in Japan[J].Journalof Constructional Steel Research, 1995,(33):101~123.
    [21]钱健清.耐火钢的发展状况[J].建筑门窗与金属建材,2003(02):41~43
    [22]东涛.孟繁茂.傅俊岩.微合金化钢知识讲座[M].北京:北京理工大学出版社,2001
    [23]鞍山钢铁集团公司.耐火钢及其制造方法.中国发明专利[P],03111076,2006-02-08
    [15]Liu Guoxun. Stuart H. Zhang Hongtao and Li Chengji. eds. Proceedings of the 3rd International Conference on HSLA Steels[M], Beijing:China Science and TechnicalPress,1995.
    [25] Sha W. Kirby B R. Kelly F S. The Behaviour of Structural Steels at Elevated Temperatures and the Design of Fire Resistant Steels[J]. Materials Transaction, 2001, (42):1913~1922.
    [26] Rikio Chijiiwa,Hiroshi Tamehiro,Yuzuru Yoshida. Development and practical Application of Fire-Resistant Steel for Buildings[J]. Nippon Steel Technical Report,1993,(58):54
    [27] [英]F.布赖恩皮克林.材料科学与技术丛书(第七卷)[M].北京:科学出版社,1999.
    [28]美国金属协会.金属手册[M],北京:机械工业出版社,1990.
    [29] Gmemill M G. The Technology and Properties of Ferrous Alloys for High temperature Use[M]. University of California:Newnes,1996
    [30] Chang S K,Kwak J H. Effect of manganese on aging in low carbon sheetsteels[J]. ISIJInternational,1997,37(1): 79
    [31] Mizutani Y,Ishibashi K,Yoshii K,Watanabe Y,Chijiiwa R,Yoshida Y.590MPa Class Fire-Resistant Steel for Building Structural Use[J].Nippon Steel Technical Report,2004,90:45~50.
    [32] Yoo J Y. Choo W Y.Effects of processing variables on the mechanical properties of TMCP processed 0.3Cr-0.35Mo-Nb-V fire resistant steel[A]. International Symposium on Steel for Fabricated Structures[C],1999.
    [33]姜昌龙.金孝政.秋凤植.成章铉.裴东.关于低屈服比及高强度结构用耐火钢强度特性的研究[J].大韩金属材料学会志.2000,(11):38
    [34] Panigrahi B K. Microstructures and properties of low-alloy fire resistant steel[J].Bulletin of Materials Science,2006,(29):59~67.
    [35] Ding H,Li L,Xiao Y Z,et al. Development of a fire resistant high strength low alloy steel for construction[A].Materials Science Forum[C],2003,
    [36]罗文彬.朱辰.首钢高强建筑用耐火钢的研制[J].宽厚板,2005,11:1~5.
    [37]齐科武.铌微合金化耐火结构钢[J].中国建材科技,2008, (3) :57~59.
    [38]宪卫国.译.建筑用耐火钢的研制和实际应用[A].钢铁译文集[C],1996.
    [39]完卫国,吴结才.耐火钢的开发与应用综述[J] .建筑材料学报,2006,9 (2) :184~188.
    [40] Assefpour-Dezfuly M, Hugaas B A, Brownrigg A. Fire resistant high-strength low-alloy steels[J]. Materials Science and Technology, 1990, (6):1210~1224. [ 41 ] Lee W B.Hong S G .Carbide Precipitation and High-Temperature Strength of Hot-rolled High-Strength of Low-Alloy Steels Containing Nb and Mo[J]. Meal lergical and materials tranaction,2002,(33):1689~1698.
    [42] Ryuji Uemori, Rikio Chjiiwa, Hiroshi Tamehiro, AP-FIM Analysis of Ultrafine Carbonitridesin Fire-Resistant Steel for Building Construction[J], Nippon Steel Technical Report, 1996,23~69.
    [43]李龙.杨春.征丁桦等.控轧控冷对建筑耐火钢组织和性能的影响[J].材料与冶金学报,2003,(2):129~132.
    [44]段小雪.李龙.丁桦等.建筑用耐火钢控轧控冷实验研究[J].塑性工程学报,2003,10(5):93~95.
    [45]童明伟.方剑. W、Mo、Nb对超低碳耐火钢组织和持久性能的影响[J].特殊钢,2003,(3):16~17.
    [46] GB3375-82,焊接名词术语[S],
    [47]杨才福.张永权.建筑用耐火钢的发展[J].钢结构,1997,12(38):29~34 [ 48 ]张威振.徐志胜.耐火耐候钢的研究与应用[J] ,钢结构, 2004 ,19(73):53~55
    [49]张志勤等.建筑用耐火钢的开发与应用[J].鞍钢技术,1997,(9):27~32
    [50]康沫狂.关于贝氏体形态及其分类问题[J].西北工业大学学报(增刊), 1990,1: 84-91
    [51]李明.周涟庚.粒状贝氏体的回火组织与性能的研究[J].金属热处理,1989,(11):17~21.
    [52]时海芳.胡世菊.侯柏松.25SiMn2MoV钢粒状贝氏体回火过程研究[J].煤矿机械,2000,(l):28~30.
    [53]乔斌.粒状贝氏体的形成[J].淮海工学院学报(自然科学版),1998,(2): 13~16.
    [54]马鸣图.沙维.材料学科和工程研究进展(第一集)[M].北京:机械工业出版社, 2000.
    [55]雍岐龙.马鸣图.吴宝榕.微合金碳氮化物的沉淀析出[J].微合金,1989,(12):239~244.
    [56]俞德刚.谈育煦.钢的组织强度学[M].上海:上海科学技术出版社, 1983.
    [57]章守华.钢铁材料学[M].北京:冶金工业出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700