用户名: 密码: 验证码:
铝硅酸盐聚合物聚合机理及含漂珠复合材料组织与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以天然偏高岭土、硅酸钾溶液、漂珠等为原材料制备了铝硅酸盐聚合物和漂珠/铝硅酸盐聚合物复合材料。采用X射线衍射、傅里叶变换红外光谱、固体核磁共振、扫描电镜、高分辨透射电镜等分析手段,研究了高岭土向偏高岭土转变过程及偏高岭土形成机制;探讨了影响偏高岭土化学活性的因素及以化学合成的偏高岭土为原料的铝硅酸盐聚合物的聚合机制;系统研究了铝硅酸盐聚合物材料的制备工艺、偏高岭土的化学活性对铝硅酸盐聚合物组织和性能的影响及漂珠/铝硅酸盐聚合物复合材料的组织、结构和性能。
     研究结果表明,在高岭土的热转变过程中,高岭土的脱羟基是发生结构转变的前提条件,但是脱羟基和结构转变是两个独立的过程。当高岭土失去羟基后,结构重组使Al–O和Si–O结构单元发生变化,从而形成无序状态的偏高岭土。偏高岭土的化学活性采用四配位AlO_4含量来衡量,四配位AlO4含量越大则化学活性越大。随着煅烧温度的提高(600~900°C)铝硅酸盐聚合物的化学活性逐渐增大;随着保温时间的延长(1~8h),其化学活性先增大后降低。当煅烧温度为900°C,保温时间为4h时,偏高岭土获得最大化学活性。
     铝硅酸盐聚合物的反应–生成机理:当偏高岭土颗粒与碱性的硅酸盐溶液混合后,首先由颗粒表面开始溶解,即偏高岭土中的结构单元Q4(1Al)和四、五和六配位的Al原子结构单元溶解,使Si–O–Si键和Si–O–Al键水解断裂,形成[Al(OH)_4]~–、[AlO(OH)_3]~(2–)、[Al(OH)_4(OH_2)]~–、[Al(OH)_5]~(2–)、[Al(OH)_4(OH_2)_2]~–和[Al(OH)_5(OH_2)]~(2–)和[SiO(OH)_3]~–为主的单体以及少量的[SiO_2(OH)_2]~(2–)单体。随着反应的进行,单体相互之间发生缩聚反应,脱去水分子,最终生成一种Si以Q4(3Al)和Q4(2Al)结构单元形式存在、Al全部以四配位原子结构单元形式存在的网络状混合结构组成的铝硅酸盐聚合物。
     随着养护温度的升高(25~90°C)和养护时间的延长(4~28d),铝硅酸盐聚合物的性能先增大后降低。当养护温度为80°C,养护时间为19d时,铝硅酸盐聚合物的体积密度最大、开孔孔隙率最低抗压强度最大,分别为1.45g·cm–3、8.5%和124.8MPa。采用具有不同化学活性的偏高岭土可制备具有不同性能的铝硅酸盐聚合物材料。分别以800MK和900MK为原料所制备铝硅酸盐聚合物的体积密度分别为1.43g·cm–3和2.29g·cm–3,抗弯强度分别为8.7MPa和32.1MPa,抗压强度分别为73.0MPa和111.0MPa,导热系数分别为0.23W·m~(–1)·K~(–1)和1.10W·m~(–1)·K~(–1)。
     添加漂珠后,其复合材料的体积密度和导热系数均大幅度降低。当添加40vol.%漂珠后,其漂珠/铝硅酸盐聚合物复合材料的抗压强度为36.5MPa、体积密度为0.82g·cm~(–3)和导热系数为0.173W·m~(–1)·K~(–1),其综合性能优于目前使用的漂珠砖的抗压强度7.84MPa、体积密度0.80g·cm~(–3_和导热系数1.59W?m~(–1)?K~(–1)。
In this paper, metakaolin, potassium silicate and fly ash cenosphere, etc, were used to fabricate geopolymer and cenosphere/ aluminosilicate geopolymers composite. Transformation mechanism from kaolin to metakaolin and factors which have great effect on the chemical activity of metakaolin were systematically investigatedanalyzed by XRD, SEM, NMR and HRTEM et al. The geopolymerization mechanism was studied using the synthesized metakaolin. Effects of manufacture parameters and chemical activity of metakaolin on the structure and properties of the resulted aluminosilicate geopolymer were investigated. Based on the above studies, fly ash cenosphere/ aluminosilicate geopolymers composites were successfully prepared and structure, microstructure and properties were systematically researched.
     The result revealed that dehydroxylation of kaolin is the precondition of the structural rearrangements, while dehydroxylation and structural rearrangements are two separate processes. After the dehydroxylation of kaolin, the structural rearrangements of Al–O structural site occured, resulting in the amorphous metakaolin. The chemical activity of metakaolin was measured by the content of four tetrahedral Al, and the more four tetrahedral Al content, the greater chemical activity of the metakaolin. With the increasing of calcined temperature (600~900°C) and calcined time (1~8h), the chemical activity of metakaolin increased and the highest chemical activity were obtained when calcined temperature and time are 900°C and 4h, respectively.
     The geopolymerization mechanism of aluminosilicate geopolymers based on synthetic metakaolin are: after mixing metakaolin particles with alkali silicate solution, dissolving of metakaolin started from its surface, i.e., Q4(1Al) sites and four, five and six coordinates of Al–O sites dissolved, together with the Si–O–Si bond and Si–O–Al bound hydrolysis, resulting in the [Al(OH)_4]~–, [AlO(OH)_3]~(2–), [Al(OH)_4(OH_2)]~–, [Al(OH)_5]~(2–), [Al(OH)_4(OH_2)_2]~–, [Al(OH)_5(OH_2)]~(2–), [SiO(OH)_3]~– and a small amount of [SiO_2(OH)_2]~(2–) monomers. With reaction, the Si species condense with Al species to form aluminosilicate with network structure where Si is in the form of Q4(3Al) and Q4(2Al) and Al in four coordinate.
     With increasing the curing temperatures (25~90°C) and time (4~28d), when curing temperature and time are 80°C and 19d, respectively, open porosity is the lowest, bulk intensity and compressive strength of aluminosilicate geopolymers reach the highest values, which are 18.5%, 1.45g·cm~(–3) and 124.8MPa, respectively. Properties of aluminosilicate geopolymers based on metakaolin with various chemical activities were also different. Using metakaolin caclined under 800°C and 900°C separately, compressive strengths, flexural strengths, bulk intensities and thermal conductivities of the resulted geopolymers were 73.0MPa and 111.0MPa, 8.7MPa and 32.1MPa, 1.43g·cm~(–3) and 2.29g·cm~(–3), 0.23W·m~(–1)·K~(–1) and 1.10W·m~(–1)·K~(–1), respectively.
     After the addition fly ash cenosphere, bulk density and coefficient of thermal conductivity of the composite significant decline. With 40vol.% fly ash cenosphere, the compressive strength, bulk density and thermal conductivity of the composite are 36.5MPa, 0.82g·cm~(–3), 0.173W·m~(–1)·K~(–1), respectively, which are much better than the common cenosphere-brick material of 7.84MPa, 0.80g?cm~(–3) and1.59W·m~(–1)·K~(–1), respectively.
引文
[1] Davidovits J. 30 Years of Successes and Failures in Geopolymer Applications.Market Trends and Potential Breakthroughs[C]. Geopolymer Conference, 2002, 10(28-29): 1-16.
    [2] Davidovits J. Geopolymers and Geopolymeric Materials[J]. Journal of Thermal Analysis and Calorimetry, 1989, 35(2): 429-441.
    [3] Kriven W M, Gordon M, Jonathon B L. Geopolymers: Nanoparticulate, Nanoporous Ceramics Made under Ambient Conditions[J]. Microscopy and Microanalysis, 2004, 10: 404-405.
    [4] Temuujin J, Minjigmaa A, Rickard W, et al. Preparation of metakaolin based geopolymer coatings on metal substrates as thermal barriers[J]. Applied Clay Science, 2009, 46: 265-270.
    [5] Lyon R E, Balaguru P N, Fodrew A, et al. Fire-Resistant Aluminosilicate Composites[J]. Fire and Materials, 1997, 21: 67-73.
    [6] Horváth E, Frost R L, Makóé, et al. Thermal Treatment of Mechanochemically activated Kaolinite[J]. Thermochimica Acta, 2003, 404: 227-234.
    [7] Guneyisi E, Gesoglu M, Mermerdas K. Improving Strength, Drying Shrinkage and Pore Structure of Concrete Using Metakaolin[J]. Materials and Structures, 2008, 41: 937-949.
    [8] Rahier H, Wullaert B, van Mele B. Influence of the Degree of Dehydroxylation of Kaolinite on the Properties of Aluminosilicate Glasses[J]. Thermal Analysis and Calorimetry, 2000, 62: 417-427.
    [9] Brooks J J, Johari M A M. Effect of Metakaolin on Creep and Shrinkage of Concrete[J]. Cement Concrete Composites, 2001, 23: 495-502.
    [10] Wang M R, Jia D C, He P G, et al. Influence of Calcination Temperature of Kaolin on the Structure and Properties of Final Geopolymer[J]. Materials Letters, 2010, 64: 2551-2554.
    [11]王鸿灵,李海红,冯治中,等.不同活性高岭土矿物聚合反应的研究[J].材料科学与工程学报, 2004, 22(4): 580-583.
    [12]王雪静,周继红,黄浪,等.不同产地高岭土的组成和结构研究[J].中国非金属矿工业导刊, 200, 1: 27-29.
    [13]肖仪武,白志民.煅烧高岭土的火山灰活性[J].矿冶, 2001, 10(3): 47-51.
    [14]苏达根,钟明峰,张志杰.高岭石结构及其改性对变高岭石火山灰活性的影响[J].地质科技情报, 2003, 22(4): 52-54.
    [15]文寨军,范磊,隋同波,等.偏高岭土的活化及性能研究[J].建材技术与应用, 2002, 5: 1-6.
    [16] He C, Makovicky E, Osbaeck B. Thermal Stability and Pozzolanic Activity of Calcined Kaolin[J]. Applied Clay Science, 1994, 9: 165-187.
    [17] Kakali G, Perraki T, Tsivillis S, et al. Thermal Treatment of Kaolin: the Effect of Mineralogy on the Pozzolanic Activity[J]. Applied Clay Science, 2001, 20: 73-80.
    [18] Sayanam R A, Kalsotra A K, Mehta S K, et al. Studies on Thermal Transformations and Pozzolanic Activities of Clay From Jammu Region (India)[J]. Thermal Analysis and Calorimetry, 1989, 35: 99-106.
    [19] Shvarzman A, Kovler K, Grader G S. The Effect of Dehydroxylation Amorphization Degree on Pozzolanic Activity of Kaolinite[J]. Cement and Concrete Research, 2003, 33: 405-416.
    [20]白志民,肖仪武.低温煅烧高岭土火山灰活性对水泥石结构的影响[J].硅酸盐学报, 2003, 31(7): 715-720.
    [21]王智宇.偏高岭土的制备及其在混凝土中的应用[J].建材技术与应用, 2006, 5: 6-8.
    [22]陈益兰.偏高岭土替代硅灰配制高性能混凝土[J].硅酸盐学报, 2004, 32(4): 524-529.
    [23] Granizo M L, Alonso S, Blanco-Varela M T, et al. Alkaline Activation of Metakaolin: Effect of Calcium Hydroxide in the Products of Reaction[J]. Journal of the American Ceramic Society, 2002, 85(1): 225-31.
    [24] Buchwald A, Hilbig H, Kaps Ch. Alkali-activated Metakaolin-slag Blends-performanceand Structure in Dependence of their Composition[J]. Journal of Materials Science, 2007, 42:3024-3032.
    [25] Alonso S, Palomo A. Alkaline Activation of Metakaolin and Calcium Hydroxide Mixtures: Influence of Temperature, Activator Concentration and Solids Ratio[J]. Materials Letters, 2001, 47: 55-62.
    [26] Palomo A, Blanco-Varela M T, Granizo M L, et al. Chemical Stability of Cementitious Materials based on Metakaolin[J]. Cement and ConcreteResearch, 1999, 29: 997-1004.
    [27] Perera D S, Hanna J V, Davis J, et al. Relative Strengths of Phosphoric Acid-reacted and Alkali-reacted Metakaolin Materials[J]. Journal of Materials Science, 2008, 43:6562-6566.
    [28] de Gurierrez M R, Torres J, Vizcayno C, et al. Influence of the Calcination Temperature of Kaolin on the Mechanical Properties of Mortars and Concretes Containing Metakaolin[J]. Clay Minerals, 2008, 43: 177-183.
    [29]王雪静,张甲敏,李晓波,等.高岭土和煅烧高岭土的微观结构研究[J].中国非金属矿工业导刊, 2007, (5): 18-20.
    [30] Brindley G W, Comer J J. The Structure and Morphology of a Kaolin Clay From Les Eyzies (France)[J]. Clays and Clay Minerals, 1956, 4: 61-66.
    [31]曹德光,苏达根,杨占印,等.偏高岭石的微观结构与键合反应能力[J].矿物学报, 2004, 24(4): 366-371.
    [32] Ghorbel A, Fourati M, Bouaziz J. Microstructural Evolution and Phase Transformation of Different Sintered Kaolins Powder Compacts[J]. Materials Chemistry and Physics, 2008, 112: 876-885.
    [33] Vizcayno C, de Gutiérrez R M, Castello R, et al. Pozzolan Obtained by Mechanochemical and Thermal Treatments of Kaolin[J]. Applied Clay Science, 2010, 49: 405-413.
    [34]刘长龄,刘钦甫,陈济舟,等.变高岭石的结构研究[J].硅酸盐学报, 2001, 29(1): 63-67.
    [35]聂轶苗. SiO2-Al2O3-Na2O(K2O)-H2O体系矿物聚合材料制备及反应机理研究[D].北京:中国地质大学博士学位论文, 2006: 56-59.
    [36] Duxson P, Provis J L, Lukey G C, et al. 29Si NMR Study of Structural Ordering in Aluminosilicate Geopolymer Gels[J]. Langmuir, 2005, 21(7): 3028-3036.
    [37] Barbosaa V F F, MacKenzieb K J D, Thaumaturgoa C. Synthesis and Characterisation of Materials Based on Inorganic Polymers of Alumina and Silica: Sodium Polysialate Polymers[J]. International Journal of Inorganic Materials, 2000, 2: 309-317.
    [38] Lecomte I, Liegeois M, Rulmont A, et al. Synthesis and Characterization of New Inorganic Polymeric Composites Based on Kaolin or White Clay and on Ground-Granulated Blast Furnace Slag[J]. Journal of Materials Research,2003, 18(11): 2571-2579.
    [39] Singh P S, Bastow T, Trigg M. Structural Studies of Geopolymers by 29Si and 27Al MAS-NMR[J]. Journal of Materials Science, 2005, 40(15): 3951-3961.
    [40] Cristóbal A G S, CastellóR, Luengo M A M, et al. Acid Activation of Mechanically and Thermally Modified Kaolins[J]. Materials Research Bulletin, 2009, 44: 2103-2111.
    [41] Oriol M, Pera J. Pozzolanic Activity of Metakaolin under Microwave Treatment[J]. Cement and Concrete Research, 1995, 25: 265-270.
    [42] Cheriaf M, Cavalcante Rocha J, Péra J. Pozzolanic Properties of Pulverized Coal Combustion Bottom Ash[J]. Cement and Concrete Research, 1999, 29: 1387-1391.
    [43] Akolekar D, Chaffee A, Howe R F. The Transformation of Kaolin to Low-silica X Zeolite[J]. Zeolites, 1997, 19: 359-365.
    [44] Suitch P R. Mechanism for the Dehydroxylation of Kaolinite, Dickite, and Nacrite from Room Temperature to 455°C[J]. Journal of the American Ceramic Society, 1986, 69: 61-65.
    [45] Meinhold R H, Mac Kenzie K J D, Brown I W M. Thermal Reactions of Kaolinite Studied by Solid State 27Al and 29Si NMR[J]. Journal of Materials Science Letters, 1985, 4: 163-166.
    [46] Mitra G B, Bhattacherjee S. X-ray Diffraction Studies on The Transformation of Kaolinite into Metakaolin. II. Study of Layer Shift[J]. Acta Crystallographica B, 1970, 26: 2124-2128.
    [47] Shvarzman A, Kovler K, Schamban I, et al. Influence of Chemical and Phase Composition of Mineral Admixtures on their Pozzolanic Activity[J]. Advances in Cement Research, 2002, 14: 35-41.
    [48]郭文瑛,吴国林,文梓芸,等.偏高岭土活性评价方法的研究[J].武汉理工大学学报, 2006, 28(3): 76-79.
    [49]郑水林,李杨,许霞.煅烧时间对煅烧高岭土物化性能影响的研究[J].非金属矿, 2002, 25(2): 11-12.
    [50]诸华军,姚晓,华苏东,等.煅烧制度对偏高岭土胶凝活性的影响[J].非金属矿, 2007, 30(3): 6-8.
    [51]宋克复.无机高分子化合物(文选)[M].上海科学技术出版社, 1963, 3-4.
    [52] Lee W K W, van Deventer J S J. The Effect of Ionic Contaminants on the Early-Age Properties of Alkali-Activated Fly Ash-Based Cements[J]. Cement and Concrete Research, 2002, 32: 577-584.
    [53] Oudadesse H, Derrien A C, Lefloch M, et al. MAS-NMR Studies of Geopolymers Heat-treated for Applications in Biomaterials Field[J]. Journal of Materials Science, 2007, 42: 3092-3098.
    [54] Sindhunata, van Deventer J S J, Lukey G C, et al. Effect of Curing Temperature and Silicate Concentration on Fly-Ash-Based Geopolymerization[J]. Industrial and Engineering Chemistry Research, 2006, 45(10): 3559-3568.
    [55] Phair J W, Smith J D, van Deventer J S J. Characteristics of Aluminosilicate Hydrogels Related to Commercial“Geopolymers”[J]. Materials Lettets, 2003, 57: 4356-4367.
    [56] Comrie D C, Kriven W M. Composite Cold Ceramic Geopolymer in a Refractory Application[J]. Ceramic Transactions, 2003, 27-30: 211-225.
    [57] Davitovits J. Geopolymers: Inorganic Polymeric New Materials[J]. Journal of Thermal Analysis and Calorimetry, 1991, 37: 1633-1656.
    [58] Hardjito D, Wallah S E, Sumajouw D M J, et al. In: George Hoff Symposium, ACI, Las Vegas USA 2003.
    [59] van Jaarsveld J G S, van Deventer J S J, Lorenzen L. The Potential Use of Geopolymeric Materials to Immobolise Toxic Metals: Part I. Theory and Applications[J]. Minerals Engineering, 1997, 10: 659-669.
    [60] Palomo A, Glasser F P. Chemically-bonded Cementitious Materials Based on Metakaolin[J].Brich Ceramic. Transactions and Journal, 1992, 91(4): 107-112.
    [61] Davitovits J, Davitovits M, Davitovits N. (1994) US Patent, No. 5, 342, 595.
    [62] Divya K, Rubina C. Mechanism of Geopolymerization and Factors Influencing its Development: a Review[J]. Journal of Materials Science, 2007, 42:729-746.
    [63]聂轶苗,马鸿文,杨静,等.矿物聚合材料固化过程中的聚合反应机理研究[J].现代地质, 2006, 20: 340-346.
    [64]聂轶苗. SiO2-Al2O3-Na2O(K2O)-H2O体系矿物聚合材料制备及反应机理研究[D].北京:中国地质大学博士学位论文, 2006: 56-59.
    [65]杨南如.碱胶凝材料形成的物理化学基础(Ⅰ)[J].硅酸盐学报, 1996, 24: 209-215.
    [66]杨南如.碱胶凝材料形成的物理化学基础(Ⅱ)[J].硅酸盐学报, 1996, 24: 459-463.
    [67] Schott J, Oelkers E H. Dissolution and Crystallization Rates of Silicate Minerals as a Function of Chemical Affinity[J]. Pure and Applied Chemistry, 1995, 67: 903-910.
    [68] North M R, Swaddle T W. Kinetics of Silicate Exchange in Alkaline Aluminosilicate Solutions[J]. Inorganic Chemistry, 2000, 39: 2661-2665.
    [69] Weng L, Sagoe-Crentsil K. Dissolution Processes, Hydrolysis and Condensation Reactions During Geopolymer Synthesis: Part II. High Si/Al Ratio Systems[J]. Journals of Materials Science, 2007, 42: 3007-3014.
    [70] Weng L, Sagoe-Crentsil K. Dissolution Processes, Hydrolysis and Condensation Reactions During Geopolymer Synthesis: Part I. Low Si/Al Ratio Systems[J]. Journals of Materials Science, 2007, 42: 2997-3006.
    [71] Davidovits J. geopolymers: Inorganic Polymeric New Materials[J]. Journal of Thermal Analysis, 1991, 37: 1633-1656.
    [72] Gordon M, Bell J, Kriven W M. Comparison of Naturally and Synthetically Derived Potassiumbased Geopolymers[J]. Ceramic Transactions, 2005, 165: 95-106.
    [73]郑广俭,崔学民,张伟鹏,等.溶胶-凝胶法制备具有碱激发活性的无定形Al2O3-2SiO2粉体[J].稀有金属材料与工程, 2007, 36(suppl.1): 137-139.
    [74] Zheng G J, Cui X M, Zhang W P. Preparation of Geopolymers Precursors by Sol-gel Method and their Characterization[J]. Journals of Materials Science, 2009, 44: 3991-3996.
    [75] Brew D R M, MacKenzie K J D. Geopolymer Synthesis Using Silica Fume and Sodium Aluminate[J]. Journal of Materials Science, 2007, 42(11): 3990-3993.
    [76] Davidovits J. Geopolymers: Inorganic Polymeric New Materials[J]. Journal of Materials Education, 1994, 16: 91-139.
    [77] Davidovits J. Geopolymer Chemistry Applications[M]. www.geopolymer.org. 26-27.
    [78] Palomo A, Glasser F P. Chemically-Bonded Cementitious Materials Basedon Metakaolin[J]. Ceramic Transactions, 1992, 91: 107-112.
    [79] van Jaarsveld J G S, Van Deventer J S J, Schwartzman A. The Potential Use of Geopolymeric Materials to Immobilise Toxic Metals: Part II. Material and Leaching Characteristics[J]. Minerals Engineering, 1999, 12(1): 75-91.
    [80] Palomo A, Grutzeck M W, Blanco M T. Alkali-activated Fly Ashes-A Cement for the Future[J]. Cement and Concrete Research, 1999, 29(8): 1323-1329.
    [81] Roy D M. Alkali-activated Cements Opportunities and Challenges[J]. Cement and Concreate Research, 1999, 29(2): 249-254.
    [82] Xu H, van Deventer J S J. The Geopolymerisation of Alumino-silicate Minerals[J]. International Journal of Mineral Processing, 2000, 59(3): 247-266.
    [83] Granizo M L, Blanco-Varela M T, Palomo A. Influence of the Starting Kaolin on Alkali-Activated Materials Based on Metakaolin. Study of the Reaction Parameters by Isothermal Conduction Calorimetry[J]. Journal of Materials Science, 2000, 35: 6309-6315.
    [84] Xu H, van Deventer J S J, Lukey G C. Effect of Alkali Metals on the Preferential Geopolymerization of Stilbite/Kaolinite Mixtures[J]. Industrial & Engineering Chemistry Research, 2001, 40(17): 3749-3756.
    [85]聂轶苗. SiO2-Al2O3-Na2O(K2O)-H2O体系矿物聚合材料制备及反应机理研究[D].北京:中国地质大学博士学位论文, 2006: 45-47.
    [86] Andini S, Cioffi R, Colangelo F. Coal Fly Ash As Raw Material for the Manufacture of Geopolymer-Based Products[J]. Waste Management, 2008, 28: 416-423.
    [87] Russel J D. Infrared spectroscopy of Inorganic Compounds, Laboratory Methods in Infrared Spectroscopy[M]. New York: Wiley, 1987: 20.
    [88]潘峰.铝硅酸盐聚合物、玻璃和熔体结构的Raman光谱研究[D].中国地质大学博士学位论文, 2006: 10.
    [89] Percival H J, Duncan J F, Foster P K. Interpretation of the Kaolinite-Mullite Reaction Sequence from Infrared Absorption Spectra[J]. Journal of the Amirican Ceramic Society, 1974, 57: 57-61.
    [90] Rahier H, Wastiels J, Biesemans M. Reaction Mechanism, Kinetics and High Temperature Transformations of Geopolymers[J]. Journal of MaterialsScience, 2007, 42: 2982-2996.
    [91] Wang H L, Li H H, Yan F Y. Synthesis and Mechanical Properties of Metakaolinite-based Geopolymer[J]. Colloids and Surfaces A, 2005, 268: 1-6.
    [92] Rovnaník P. Effect of Curing Temperature on the Development of Hard Structure of Metakaolin-based Geopolymers[J]. Construction and Building Materials, 2010, 24: 1176-1183.
    [93] Rahier H, Denayer, J F, van Mele B. Low-temperature Synthesized Aluminosilicate Glasses Part IV Modulated DSC Study on the Effect of Particle Size of Metakaolinite on the Production of Inorganic Polymer Glasses[J]. Journal of Materials Science, 2003, 38: 3131-3136.
    [94] Duxson P, Lukey G C, Separovic F, et al. Effect of Alkali Cations on Aluminum Incorporation in Geopolymeric Gels[J]. Industrial Engineering Chemistry Research, 2005, 44(4): 832-839.
    [95] Barbosa V F F, MacKenzie K J D. Synthesis and Thermal Behaviour of Potassium Sialate Geopolymers[J]. Materials Letters, 2003, 57: 1477-1482.
    [96] van Jaarsveld J G S, van Deventer J S J. Effect of the Alkali Metal Activator on the Properties of Fly Ash-Based Geopolymers[J]. Industrial and Engineering Chemistry Research, 1999, 38 (10): 3932-3941.
    [97] Xu H, van Deventer J S J. The effect of Alkali Metals on the Formation of Geopolymeric Gels from Alkali-feldspars[J]. Colloids and Surfaces A, 2003, 216(1-3): 27-44.
    [98] Martinelli A E, Melo D M A, Marinho E P, et al. Synthesis, Rheological Behavior and Mechanical Characterization of Structural Fast-Setting Geopolymers[J]. Materials Science Forum, 2005, 498-499: 488-493.
    [99] Duxson P, Mallicoat S W, Lukey G C, et al. The Effect of Alkali and Si/Al ratio on the Development of Mechanical Properties of Metakaolin-based Geopolymers[J]. Colloids and Surfaces A, 2007, 292: 8-20.
    [100] Duxson P, Lukey G C, van Deventer J S J. The Thermal Evolution of Metakaolin Geopolymers: Part 2-Phase Stability and Structural Development[J]. Journal of Non-Crystalline Solids, 2007, 353(22-23): 2186-2200.
    [101] J.G.S. van Jaarsveld, J.S.J. van Deventer, The Effect of Metal Contaminantson the Formation and Properties of Waste Based Geopolymers[J]. Cement and Concrete Research, 1999, 29: 1189-1200.
    [102] Duxson P, Provis J L, Lukey G C. 39K NMR of Free Potassium in Geopolymers[J]. Industrial and Engineering Chemistry Research, 2006, 45: 9208-9210.
    [103] Chindaprasirt P, Chareerat T, Sirivivatnanon V. Workability and Strength of Coarse High Calcium Fly Ash Geopolymer[J]. Cement & Concrete Composites, 2007, 29(3): 224-229.
    [104] Phair J W, Van Deventer J S J. Effect of Silicate Activator PH on the Leaching and Material Characteristics of Waste-based Inorganic Polymers[J]. Mineralr Engineering, 2001, 14(3): 289-304.
    [105] Vallepu R, Nakamura Y, Komatsu R, et al. Preparation of Forsterite by The Geopolymer Technique-gel Compositions as a Function of PH and Crystalline Phases[J]. Journal of Sol-gel Science and Technology, 2005, 35: 107-114.
    [106] ProvisJ L, van Deventer J S J. Geopolymerisation Kinetics. 1. In situ energy-dispersive X-ray diffractometry[J]. Chemical Engineering Science, 2007, 62(9): 2309-2317.
    [107] Sun W, Zhang Y, Lin W, et al. In situ Monitoring of the Hydration Process of K-PS Geopolymer Cement with ESEM[J]. Cement and Concrete Research, 2004, 34(6): 935-940.
    [108] Puertas F, Martinez-Ramirez S, Alonso S, et al. Alkali-activated Fly Ash/slag Cements: Strength Behaviour and Hydration Products[J]. Cement and Concrete Research, 2000, 30: 1625-1632.
    [109] Atkins M, Glasser F P, Jack J J. Zeolite P in Cements: its Potential for Immobilizing Toxic and Radioactive Waste Species[J]. Waste Manage, 1995, 15: 127-135.
    [110] Perera D S, Uchida O, Vance E R, et al. Influenc of Curing Schedule on the Integrity of Geopolymers[J]. Journal of Materials Science, 2007, 42: 3099-3106.
    [111] van Jaarsveld J G S, van Deventer J S J, Lukey G C. The Effect of Composition and Temperature on the Properties of Fly Ash-and Kaolinite-based Geopolymers[J]. Chemical Engineering Journal, 2002, 89:63-75.
    [112] Kirschner A, Harmuth H. Investigation of Geopolymer Binders with Respect to their Application for Building Materials[J]. Ceramics-Silikaty, 2004, 48(3): 117-120.
    [113] de Silva P, Sagoe-Crenstil K, Sirivivatnanon V. Kinetics of Geopolymerization: Role of Al2O3 and SiO2[J]. Cement and Concrete Research, 2007, 37(4): 512-518.
    [114] Hardjito D, Wallah S E, Sumajouw D M J, et al. On the Development of Fly Ash-based Geopolymer Concrete[J]. ACI Materials Journal, 2004, 101(6): 467-472.
    [115] Swanepoel J C, Syrtdom C A. Utilisation of Fly Ash in a Geopolymeric Material[J]. Applied Geochemistry, 2002, 17: 1143-1148.
    [116] Martinez-Ramirez S, Palomo A. Microstructure Studies on Portland Cement Pastes Obtained in Highly Alkaline Environments[J]. Cement and Concrete Research, 2001, 31: 1581-1585.
    [117] Palomo A, Lopez de la Fuente J I. Alkali-activated Cementitous Materials: Alternative Matrices for the Immobilisation of Hazardous Wastes: Part I. Stabilisation of Boron[J]. Cement and Concrete Research, 2003, 33: 281-288.
    [118] Puertas F, Martinez-Ramirez S, Alonso S, et al. Alkali-activated Fly Ash/slag Cements: Strength Behaviour and Hydration Products[J]. Cement and Concrete Research, 2000, 30: 1625-1632.
    [119] Feng D, Mikuni A, Hirano Y, et al. Preparation of Geopolymeric Materials from Fly Ash Filler by Steam Curing with Special Reference to Binder Products[J]. Journal of the Ceramic Society of Japan, 2005, 113(1313): 82-86.
    [120] Teixeira-Pinto A, Fernandes P, Jalali S. Geopolymer international conference, Melbourne Australia, CDROM, 2002.
    [121] Li Z J, Zhang Y S, Zhou X M. Short Fiber Reinforced Geopolymer Composites Manufactured by Extrusion[J]. Journal of Materials in Civil Engineering, 2005, 17: 624-631.
    [122] Davidovits J, Comrie D C, Paterson J H. Geopolymeric Concretes for Environmental Protection[J]. British Ceramics Transactions, 1990, 89(6):195-202.
    [123] Lin T S, Jia D C, Wang M R. et al. Effects of Fibre Content on Mechanical Properties and Fracture Behavior of Short Carbon Fiber Reinforced Geopolymer Matrix Composites[J]. Bulletin of Materials Science, 2009, 32(1): 77-81.
    [124] Lin T S, Jia D C, Wang M R, et al. Effects of Fiber Length on Mechanical Properties and Fracture Behavior of Short Carbon Fiber Reinforced Geopolymer Matrix Composites[J]. Materials Science and Enginnering A, 2008, 497: 181-185.
    [125] He P G, Wang M R, Jia D C, et al. Improvement of High-temperature Mechanical Properties of Heat Treated Cf/geopolymer Composites by sol-SiO2 Impregnation[J]. Journal of the European Ceramic Society, 2010, 30 (15), 3053-3061.
    [126] He P G, Wang M R, Jia D C, et al. Effect of Cesium–substitution on the Thermal Evolution and Ceramics Formation of Potassium–based Geopolymer[J]. Ceramics International, 2010, 36(8): 2395-2400.
    [127] He P G, Wang M R, Jia D C, et al. Thermal Evolution and Crystallization Kinetics of Potassium-based Geopolymer[J]. Ceramics International, 2011, 37(1): 59-63.
    [128] Davidovits J, Davidovics M. Geopolymer: Ultra-high Temperature Tooling Material for the Manufacture of Advanced Composites[J]. SAMPE, 1991, 2(36): 1939-1949.
    [129] Sumajouw D M J, Hardjito D, Wallah S E, et al. Fly Ash-based Geopolymer Concrete: Study of Slender Reinforced Columns[J]. Journal of Materials Science, 2007, 42: 3124-3130.
    [130] Malhotra V M, Mehta P K. High-Performance, High-Volume Fly Ash Concrete: Materials, Mixture Proportioning, Properties, Construction Practice and Case Histories. Gordon and Breach, USA, 2002.
    [131] Malhotra V M, Mehta P K. Pozzolanic and Cementitious Materials[M]. Gordon and Breach, USA, 1996.
    [132] Fernendez-Jimenez A, Palomo A, Criado M. Microstructure Development of Alkali-Activated Fly Ash Cement: A Descriptive Model[J]. Cement Concreate Research, 2005, 35(6): 1204-1209.
    [133] Bakharev T. Geopolymeric Materials Prepared Using Class Fly Ash and Elevated Temperature Curing[J]. Cement and Concrete Research, 2005, 35(6): 1224-1232.
    [134] van Jaarsveld J G S, van Deventer J S J, Lukey G C. The Characterisation of Source Materials in Fly Ash-based Geopolymers[J]. Materials Letters, 2003, 57: 1272-1280.
    [135] Alvarez-Ayuso E, Querol X, Plana F, et al. Environmental, Physical and Structural Characterisation of Geopolymer Matrixes Synthesised from Coal (co-)Combustion Fly Ashes[J]. Journal of Hazardous Materials, 2008, 154: 175-183.
    [136] Perera D S, Nicholson C L, Blackford M G, et al. Geopolymers Made Using New Zealand Flyash[J]. Jounal of the Ceramic Society of Japan, 2004, 112(5): 108-111.
    [137] Phair J W, van Deventer J S J. Characterization of Fly-Ash-Based Geopolymeric Binders Activated with Sodium Aluminate[J]. Industrial and Engineering Chemistry Research, 2002, 41: 4242-4251.
    [138] Panias D, Giannopoulou I P, Perraki T. Effect of Synthesis Parameters on the Mechanical Properties of Fly Ash-based Geopolymers[J]. Colloids and Surfaces A, 2007, 301: 246-254.
    [139] Chen-Tanw N W, van Riessen A, LY C V, et al. Determining the Reactivity of a Fly Ash for Production of Geopolymer[J]. Journal of the American Ceramic Society, 2009, 9(4): 881-887.
    [140]李云凯,王勇,高勇,等.粉煤灰空心微珠性能的测试研究[J].硅酸盐学报, 30(5): 664-667.
    [141]徐风广.漂珠的物性研究及与原始粉煤灰的比较[J].煤炭科学技, 2002, 30(9): 49-52.
    [142]代红艳.粉煤灰保温隔热材料的研究[J].太原大学学, 2007, 8(1): 126-128.
    [143]翟冠杰,符爱云,董岩.粉煤灰漂珠纳米结构及绝热研究[J].德州学院学报, 2003, 19(2): 46-48.
    [144]徐风广.粉煤灰中漂珠的物性研究与应用[J].中国矿业, 2002, 11(6): 43-45.
    [145]翟冠杰,姜建壮.粉煤灰漂珠的纳米结构及其传热机理研究[J].新型建筑材料, 2003, 8: 38-40.
    [146]宝鸡有色金属研究所.粉末冶金多孔材料[M].北京:冶金工业出版社, 1979.
    [147] ASTM E 1461-07. Standard Test Method for Thermal Diffusivity by the Flash Method[S]. ASTM International, 2007.
    [148] ASTM E228-06. Standard Test Methoud for Linear Thermal Expansion of Solid Materials with a Push-Rod Dilatometer[S]. ASTM International, 2006.
    [149] Smykatz-Kloss W, Heide K, Klinke W. Application of Thermal Methods in the Geosciences in Handbook of Thermal Analysis and Calorimetry, vol. 2, Elsevier, 2003.
    [150] Zibouche F, Kerdjoudj H, d'Espinose de Lacaillerie J B, et al. Geopolymers from Algerian Metakaolin. Influence of Secondary Minerals[J]. Applied Clay Science, 2009, 43: 453-458.
    [151] Sonuparlak B, Sarikaya M, Aksay I A. Spinel Phase Formation during the 980°C Exothermic Reaction in the Kaolinite-to-mullite Reaction Series[J]. Journal of the American Ceramic Society, 1987, 70: 837-842.
    [152] Frost R L, Johansson U. Combination Bands in the Infrared Spectroscopy of Kaolins-a Drift Spectroscopic Study[J]. Clays and Clay Minerals, 1998, 46(4): 466-477.
    [153] Ghorbel A, Fourati M, Bouaziz J. Novel Synthesis and Characterization of Nanosizedγ-Al2O3 from Kaolin[J]. Applied Clay Science, 2010, 47: 438-443.
    [154] Brindley G W, Kao C C, Harrisson J L, et al. Relation between structural disorder and other characteristics of kaolinites and dickites[J]. Clays and Clay Minerals, 1986, 34: 239-249.
    [155] Fialips C I, Navrotsky A, Petit S. Crystal Properties and Energetics of Synthetic Kaolinite[J]. American Mineralogist, 2001, 86: 304-311.
    [156] Frost R L. Fourier Transform Raman Spectroscopy of Kaolinite, Dickite and Halloysite[J]. Clay Minerals, 1995, 43(2): 191-195.
    [157] Frost R L, Vassallo A M. The Dehydroxylation of the Kaolinite Clay Minerals Using Infrared Emission Spectroscopy[J]. Clays and Clay Minerals, 1996, 44(5): 635-651.
    [158] Johansson U, Frost R L, Forsling W, et al. Raman Spectroscopy of theKaolinite Hydroxyls at 77K[J]. Applied Spectroscopy, 1998, 52(10): 1277-1282.
    [159] Fyfe C A, Feng Y, Grondey H, et al. One- and Two-dimensional High-resolution solid-State NMR Studies of Zeolite Lattice Structures[J]. Chemical Reviews, 1991, 91: 1525-1543.
    [160] Klinowski J. Solid-state NMR Studies of Molecular Sieve Catalysts[J]. Chemical Reviews, 1991, 91: 1459-1479.
    [161]沈兴.差热、热重分析与非等温固相反应动力学[M].北京:冶金工业出版社, 1995: 41-49.
    [162] Chandrasekhar S. Influence of Metakaolinization Temperature on the Formation of Zeolite 4A from Kaolin[J]. Clay Minerals, 1996, 31: 253-261.
    [163] Sonuparlak B, Sarikaya M, Aksay I A. Spinel Phase Formation during the 980°C Exothermic Reaction in the Kaolinite-to-mullite Reaction Series[J]. Journal of the American Ceramic Society, 1987, 70: 837-842.
    [164] Ghorbel A, Fourati M, Bouaziz J. Microstructural Evolution and Phase Transformation of Different Sintered Kaolins Powder Compacts[J]. Materials Chemistry and Physics, 2008, 112: 876-885.
    [165] Bich C, Ambroise J, Pera J. Influence of Degree of Dehydroxylation on the Pozzolanic Activity of Metakaolin[J]. Applied Clay Science, 2009, 44(3-4): 194-200.
    [166] Chandrasekhar S, Ramaswamy S. Influence of Mineral Impurities on the Properties of Kaolin and its Thermally Treated Products[J]. Applied Clay Science, 2002, 21: 133-142.
    [167] Heide K, Foldvari M. High Temperature Mass Spectrometric Gas-release Studies of Kaolinite Al2[Si2O5(OH)4] Decomposition[J]. Thermochimica Acta, 2006, 446: 106-112.
    [168] Hindar J, Holm J L, Lindemann J, et al. Investigation of Some Kaolines by Simultaneous DTA/TG and Thermosonimetry[J]. Thermal Analysis, 1980, 80: 313-318.
    [169] Belena I. Low-cost Geopolymeric Materials Based on Industrial Wasters[D], Phd.thesis, AIDICO, Univesity of Valencia, 2005.
    [170] Engelhardt G. High-Resolution Solid-State NMR of Silicates and Zeolites[M]. New Delhi: Phototypeset at Thomson Press (India) Limited,1987: 147-150.
    [171] Magi M, Lippmaa E, Samoson A. Solid-state High-Resolution Silicon-29 Chemical Shifts in Silicates[J]. Joural of Physical Chemistry, 1984, 88: 1518-1522.
    [172] Rahier H, van Mele B. Low-temperature Synthesized Aluminosilicate Glasses Part I Low-temperature Reaction Stoichiometry and Structure of a Model Compound[J]. Journal of Material Sciences, 1996, 31: 71-79.
    [173]翁履谦, Sagoe-Crentsil K,宋申华,等.地质聚合物合成中铝硅酸盐组分的作用机制[J].硅酸盐学报, 2005, 33: 276-280.
    [174] Livage J, Sanchez C, Henry M, et al. The Chemistry of the Sol-gel Process[J]. Solid State Ionics, 1989, 32(3): 633-638.
    [175] Henry M, Jolivet J, Livage J. Aqueous Chemistry of Metal-cations-hydrolysis, Condensation and Complexation[J]. Structure and Bonding, 1992, 77: 153-206.
    [176] Livage J, Henry M, Sanchez C. Sol-gel Chemistry of Transition Metal Oxides[J]. Progress in Solid State Chemistry, 1988, 18: 259-341.
    [177] Brinker C, Scherer G. Sol-gel Science-the Physics and Chemistry of Sol-Gel Processing[M]. USA: Academic Press Inc, 1990: 22-60.
    [178] Klinowsli J. Nuclear Magnetic Resonance Studies of Zeolites[J]. Progress in NMR spectroscopy, 1984, 16: 237-309.
    [179] Davidovits J. Structural Characterization of Gepolymeric Materials with X-Ray Diffractometry and MAS-NMR Spectroscopy[C]. Gepolymer“88”Proceedings: 1988, 149-166.
    [180] Duxson P, Lukey G L, van Deventer J S J. Physical Evolution of Na-Geopolymer Derived from Metakaolin up to 1000°C[J]. Journal of Materials Science, 2007, 42: 3044-3054.
    [181] Duxson P, Provis J L, Lukey G C, et al. Understanding the Relationship between Geopolymer Composition, Microstructure and Mechanical Properties[J]. Colloid Surface A, 2005, 269: 47-58.
    [182] Rees C A, Provis J L, Lukey G C, et al. Attenuated Total Reflectance Fourier Transform Infrared Analysis of Fly Ash Geopolymer Gel Aging[J]. Langmuir, 2007, 23: 8170-8179.
    [183] Schmucker M, MacKenzie K J D. Microstructure of Sodium PolysialateSiloxo Geopolymer[J]. Ceramics International, 2005, 31: 433-437.
    [184] Bell J L, Driemeyer P E, Kriven W M. Formation of Ceramics from Metakaolin-based Geopolymers. Part II:K-Based Geopolymer[J]. Jouranl of the American Ceramic Society, 2009, 92: 607-615.
    [185] Nan C W, Liu G, Lin Y H, et al. Interface Effect on Thermal Conductivity of Carbon Nanotube Composites[J]. Applied Physics Letters, 2004, 85: 3549-3551.
    [186] Nan C W, Birringer R. Effective Thermal Conductivity of Particulate Composites with Interfacial Thermal Resistance[J]. International Journal of Heat and Mass Transfer, 2000, 43: 653-663.
    [187]江东亮,李龙土,欧阳世翕,等.无机非金属材料手册(下)[G].北京:化学工业出版社, 2007: 410-412.
    [188] Duxson P, Lukey G C, van Deventer J S J. Thermal Conductivity of Metakaolin Geopolymers Used as a First Approximation for Determining Gel Interconnectivity[J]. Industrial Engineering Chemistry Research, 2006, 45: 7781-7788.
    [189] Woodside W. Calculation of the Thermal Conductivity of Porous Media[J]. Canadian Jouranl of Physics, 1958, 36: 815-823.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700