用户名: 密码: 验证码:
裂纹扩展机理研究及管板开裂的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
断裂是工程材料的主要失效形式,一些严重的断裂问题在化工设备中经常发生,为了防止或减少断裂现象的发生,必须对裂纹扩展的机理进行研究,人们按照裂纹的变形将裂纹分为三种基本形式,但是在工程实际中,大多数裂纹是由基本裂纹形式组成的复合型裂纹,因此,还必须研究裂纹转型问题。本文从微观和宏观两个方面对裂纹起裂和扩展的机理进行研究,并结合工程实践对换热器中的管板开裂进行模拟分析。
     首先从微观上对Ⅰ型和Ⅱ型裂纹尖端的塑性区和无位错区形状和大小进行了模拟并分析了塑性区和无位错区对裂纹扩展的影响。结果表明,与宏观断裂力学算出的塑性区形状相比,本文给出的Ⅰ型塑性区向裂纹前方倾斜,无位错区的形状与塑性区相似,但是随着位错的发射,塑性区越来越大,无位错区越来越小;并以应变能密度因子理论为判据,得出当存在明显的无位错区时,塑性区使裂纹扩展的潜力下降,但扩展方向不变;而当塑性区充分发展、无位错区的作用减小或消失后,裂纹扩展的方向可能发生变化。Ⅱ型裂纹塑性区形状与应用线弹性裂纹前端应力场按von Mises屈服准则求得的Ⅱ型裂纹塑性区形状有所不同,本研究得出的Ⅱ型裂纹塑性区由三部分组成,且最大部分位于裂纹前方,裂尖周围无位错区形状与塑性区形状相似;从Ⅱ型裂纹裂尖发射的位错能够有效地屏蔽施加在裂纹上的外载荷,但发射出的位错偶对裂纹没有明显的屏蔽作用。随着Ⅱ型裂纹裂尖位错的发射或塑性区的发展,裂纹扩展变得越来越困难,而裂纹潜在的扩展方向不会改变。
     其次从宏观上对带侧斜裂纹的紧凑拉伸试件进行了疲劳裂纹扩展的实验研究和裂纹尖端应力强度因子的数值计算,研究了复合型裂纹的转型扩展问题。结果发现,随着裂纹扩展,侧斜裂纹表面逐渐转向与外载荷垂直的方向,意味着裂纹从Ⅰ+Ⅲ复合型逐渐向Ⅰ型裂纹转化,且侧斜角越大,裂纹转型越快;对于不同侧斜角试件,Ⅲ型应力强度因子是不同的,但是Ⅰ型应力强度因子变化不大。裂纹转型主要由Ⅲ型成分控制,其转型速率可以表示成Ⅲ型应力强度因子相对幅值的函数;而疲劳裂纹扩展速率主要由Ⅰ型成分控制。
     然后,对疲劳试件进行断面分析,研究复合型裂纹转型扩展过程中断口形貌的变化以及和裂纹组分之间的关系。结果发现,三种试件疲劳断口的疲劳源呈多源性,裂纹均萌生于紧凑拉伸试件线切割缺口处的微裂纹。与裂纹面不侧斜的标准试件相比,带侧斜角裂纹试件断面在疲劳源区形成了更为粗大的撕裂棱,不同撕裂棱之间的台阶形成了侧斜角试件的线切割斜面;转型过程中试件的断裂面较为粗糙,断口上存在较为粗大的撕裂棱和二次裂纹,而且在二次裂纹周围出现了分支裂纹,说明Ⅲ型成分的存在促进了二次裂纹和撕裂棱的形成。转型后试件的断裂面相对平坦,试件表面的撕裂棱和二次裂纹尺寸变细。
     最后对一管壳式换热器管板开裂原因进行了研究。建立了液压胀接接头的三维有限元模型,模拟了液压胀接过程并得到了管板中的胀接残余应力;建立了含裂纹管板有限元模型,研究了在液压胀接残余应力或横向压力作用下裂纹沿厚度或管桥方向发生穿透性扩展的可能性。结果发现,在胀接残余应力作用下,不管沿管板厚度还是管桥方向裂纹始终保持张开状态,而横向载荷作用下,在弯曲压应力作用区域内,沿管板厚度和管桥方向的裂纹处于闭合状态,因此,胀接残余应力可能是形成贯穿管板厚度裂纹的原因。
Fracture is a major failure form of engineering materals which could lead to serious incidents with lots of loses especially in the chemical industries. In order to avoid or reduce fracture, crack initiation and propagation mechanisms must be understood. Three basic crack modes have been defined according to crack deformation. But most cracks in engineering are mixed-mode combined by the three basic crack modes. Crack mode transformation is a complicated problem which has to be addressed academically. In this dissertation, studies on crack propagation mechanisms have been carried out from macroscopic and microscopic point of view and tubesheet cracking in a practical heat-exchanger has been simulated to find the possible causes for the cracking.
     Firstly, edge dislocation emissions from a ModeⅠor ModeⅡcrack tip along multiple inclined slip planes were simulated, and plastic zones as well as dislocation- free zones were obtained. It is found that the shape of the mode plastic zone is similar to that obtained by von Mises or Tresea yielding criterion but leaning forward from the crack tip. The shape of dislocation-free zone is similar to that of plastie zone. With dislocation emission, the plastic zone becomes larger and larger while the dislocation-free zone is getting smaller and smaller. Judged by the Strain energy density factor, the crack propagation potential decreases remarkably with dislocation emission. When a clear dislocation-free zone exists, the crack potential propagation direction will keep along the crack surface. However, when the plastic zone is fully developed or the dislocation-zone is vanished, the crack potential propagation direction may also be changed. The shape of plastic zone of ModeⅡis different from that based on von Mises. It is composed of three parts, and the most lies in front of the crack. There is a dislocation-free zone around the crack tip which has similar shape as the plastic zone. Dislocation emitting from the ModeⅡcrack are more effective in the shielding of the crack from the external loadings while dislocations coming from dislocation dipoles have no obvious shielding effeects. With dislocation emission or the development of plastic zone in front of the ModeⅡcrack tip, crack propagation becomes more difficult while the direction of the crack potential propagation may not be changed.
     Secondly, compact tension specimens with tilt cracks under monotonic fatigue loadings were tested to investigateⅠ+Ⅲmixed mode fatigue crack propagation in the material of #45 steel with the stress on the mode transformation and crack propagation rate. It is found that with the crack growth,Ⅰ+Ⅲmixed mode changes to modeⅠand the larger the tilt angle or the larger the component of modeⅢ. Crack mode transformation is governed by the ModeⅢcomponent and the transformation rate is a function of the relative magnitude of the ModeⅢstress intensity factor. Even in the process of the crack mode transformation, the fatigue crack propagation is controlled by the ModeⅠdeformation.
     Thirdly, Fracture surfaces of the fatigue test specimens were examined to investigate the fractography changes corresponding to the crack mode transformation. Results show that the fatigue cracks propagate with multi-sources initiated from micro-cracks on the line-cutting notch of the compact tension specimens. The tilted crack surface is rougher than that without tilting by presenting more tear ridges which actually contribute the tilt of the crack surface. Striations on the surface without tilting are more continuous while more secondary cracks are found on the tilted crack surfaces. With the crack mode transformation the fracture surfaces with different tilted cracks become more and more identical. So it can be reached that the Mode III component is responsible for the formation of the rough surface and secondary cracks.
     Finally, possible cracking causes for a tubesheet in a real heat exchanger have been analysed. A 3-D finite element model for a hydraulically expanded tube-to-tubesheet joint was established and the expansion process was simulated to obtain the residual stress in the tubesheet. Finite element model for a tubesheet with crack was also set up to investgate the possibility of crack propagation through thickness or tube-bridge. It is found that under the action of the residual stress induced by expansion, a crack along the tubesheet thickness or tube-bridge keeps open while it will close in the compressive region under the action of transversed pressure loading. So it seems that the residual expansion stress could be the driving force for the tubesheet cracking through the thickness.
引文
[1]《金属机械性能》编写组.金属机械性能[M].北京:机械工业出版社,1982
    [2]Shank A. Critical Survey of Brittle Fracture in Carbon Plate Steel Structure Other Than Ships [M]. New york:Welding Research Councile of the Engineering Foundation,1954
    [3]师昌绪.材料大词典[M].北京:化学工业出版社,1994
    [4]许金泉,丁浩江.现代固体力学理论及应用[M].杭州:浙江大学出版社,1997
    [5]肖纪美.金属的韧性与韧化[M].上海:上海科学技术出版社,1980:24-25
    [6]戴品强.工程材料断裂微观机理的研究与球铁优化组织设计[D].杭州:浙江大学,2002
    [7]丘波.位错从裂纹尖端发射的计算机模拟与实验研究[D].北京:北京化工大学,2005
    [8]Griffith A A.The phenomema of rupture and flow in solids [J]. Phil. Trans. Roy. Soc,1920, A221:163-197
    [9]Irwin G R. Fracture and Strength of Solids [J]. Fracturing of Metals,1948:147-166
    [10]Orowan E. Fracture and Strength of Solids [J]. Rep. On Progr. In Phy,1948,185(Ⅴ-Ⅻ)
    [11]Irwin G R. Analysis of stress and strains near the end of a crack traversing a plate [J]. Appl.Mech.,1957,24:361-364.
    [12]Tada H, Paris P, Irwin G R. The Stress Analysis of Crack Handbook [M].2nd ed. St. Louis:Paris Production Inc.,1973
    [13]杨卫.宏微观断裂力学[M].北京:国防工业出版社,1995:14-15
    [14]Dugdale D S. Yielding in steel sheets containing slits[J]. Mech. Phys.Solids,1960,8:100-108
    [15]Bilby B A, Cottrell A H, Swinden K H. The Spread of plastic yield from a notch [J]. Proc Roy. Soc.London, Ser.AS,1963,272:304-314
    [16]Wells A A. Application of fracture mechanics at and beyond general yielding [J]. British Welding Journal,1963,10:563-570
    [17]Rice J R. A Path independent integral and the approximate analysis of strain concentration by notches and cracks [J] Appl.Mech.,1968,35:379-386
    [18]余宗森,田中卓.金属物理[M].北京:冶金工业出版社,1982:93-147
    [19]20世纪理论和应用力学十大进展[J].力学进展,2001,31(3):322-326
    [20]哈宽富.金属力学性质微观机理[M].北京:科学出版社,1991:680-682
    [21]马骏.基于无位错区理论的疲劳裂纹扩展微观机制模型[D].哈尔滨:哈尔滨工业大学,2002
    [22]Rice J R, Thomson. Ductile versus brittle behavior of crystals [J]. Phil.Mag.,1974,29:73-80
    [23]Thomson R. Brittle fracture in a ductile material with application to hydrogen embrittlement [J]. Mater. Sci.,1978,13:128-136
    [24]Weertman J. A unified view for Griffith-Irwin-Orowan Cracks [J]. Fracture Mechanics Acta Matell,1978,26:1731-1739
    [25]Ohr S M, Narayan J. Electron microscope observation of shear cracks in stainless steel single crystals [J]. Phil. Mag.A.,1980,41:81
    [26]Ohr S M. Antishielding dislocation at crack tip [J]. Scripta Metallurgica,1987,21:1681-1684
    [27]Chen Q ZH, Chu W Y. The in-situ observation of initiation and bluntness in ductile fracture [J] Scripta Metallurgica Materialia,1994,30(10):1355-1360
    [28]Li J C M. Scripta Met [J].1986(20):1477
    [29]Zhao R H, Dai SH H, Li J C M. Dynamic emission of dislocation from a cracktip-a computer simulation [J]. Int. J. Raet.,1985,29(3)
    [30]Qian C F, Li J C M. Edge dislocation emitted along multiple inclined slip planes from mode I crack. Ⅱ.Simultaneous emission [J]. Mechanics of Materials,1996,24(1):11-17
    [31]邓泽贤.Ⅰ型裂纹的连续位错模型[J].华中理工大学学报,1997,25(8):109-112
    [32]詹志兰.Ⅰ型裂纹尖端无位错区近场进行微观断裂模拟[J].中南民族学院学报,1998,17(3):31-33
    [33]钱才富,姜忠军,陈平等.裂纹尖端塑性区和无位错区的微观模拟[J].金属学报,2004,2(2):159-161
    [34]李灏,陈树坚.断裂理论基础[M].成都:四川人民出版社,1983:37,91-109
    [35]吴望周.化工设备断裂失效分析基础[M].南京:东南大学出版社,1991:60-61
    [36]Erdogan F, sih G C. On crack extension in plates under plane loading and transverse shear [J]. Trans. ASME., Journal of Basic Engineering,1963,85:519-527.
    [37]Nuismer R J. An energy release rate criterion for mixed mode fracture [J]. Int. J. Fract. Mech.,1975, 11(2):245-250
    [38]Sih G C. Strain energy density factor applied to mixed mode crack problem [J]. Int. J. Fracture, 1974,10:305-321.
    [39]Sih G C. Energy-density concept in fracture mechanics [J]. Engineering Fracture Mechanics, 1973,5:1037-1040
    [40]Sih G C, Barthelemy B M. Mixed Mode Fatigue Crack Growth Predictions [J]. Engineering Fracture Mechanics,1980,13:439-451
    [41]赵诒枢.复合型裂纹扩展的应变能准则[J].固体力学学报,1987(1):65-70
    [42]赵艳华,徐世娘.Ⅰ—Ⅱ复合型裂纹脆性断裂的最小J2准则[J].工程力学,2002,19(4):94-98
    [43]蒋玉川.弹塑性断裂力学之J*积分与复合型裂纹扩展断裂准则的研究[D].成都:四川大学2004
    [44]Smith R A, Cooper J F. A finite element model for the shape development of irregular Planar cracks [J]. Int.J.Pres.VesnadPiping,1989,36 (4):315-326
    [45]Sumi Y, Yang C. Morphological aspects of fatigue crack propagation [J]. Part1. Computational Procedure. Int. J. Fracture,1996,82:205-220
    [46]Sumi Y, Wang Z N. A finite element simulation method for a system of growing cracks in a heterogeneous material [J]. Mechanics of Materials,1998,28:197-206
    [47]Ingraffea A R, Blandford G, Ligget J A. Automatic modeling of mixed-mode fatigue and quaci-static crack propagation using the boundary element method[in].14th Nath Symp on Fracture[C]. ASTM. STP 791,1987:1407-1426
    [48]Portela A, Aliabadi M H, Rooke D P. Dual boundary element inerea mental analysis of crack propagation [J]. Int. J.Comput Struct.,1993,46:237-247
    [49]Reimers P. Simulation of mixed mode fatigue crack growth [J]. Comp&Struct,1991, 40(2):339-346
    [50]张芳.典型钢种高温疲劳裂纹扩展规律的试验研究与计算机模拟[D].杭州:浙江工业大学,2004
    [51]王永伟.结构疲劳裂纹扩展的数值模拟[D].大连:大连理工大学,2005
    [52]Belytschko T, Gu L, Lu Y Y. Fracture and crack growth by element-free Galerkin methods [J]. Model Simul Mater Sci Enging,1994,2:519-534.
    [53]袁振,李子然,吴长春.无网格法模拟复合性疲劳裂纹扩展[J],工程力学,2002,19(1),25-28
    [54]Iida, Kobayashi. Crack-Propagation Rate in 7075-T6 Plates under Cyclic Tensile and Transverse Shear Loadings [J]. Journal of Basic Engineering,1969:764-769
    [55]Tong J, Yates J R, Brown M W. The Formation and propagation of mode Ⅰ branch cracks in mixed mode fatigue failure [J]. Engineering Fracture Mechanics,1997,56(2):213-231
    [56]王明娥,钱才富.复合型加载下裂纹疲劳扩展的两种典型[J],南京化工大学学报1997,19(1),18-22
    [57]董世明,周君,汪洋等.复合型加载条件下PMMA断裂行为的实验研究机械强度[J].2006,28(4):556-561
    [58]Plank R, Kuhn G. Fatigue crack propagation under non-proportional mixed mode loading [J]. Engineering Fracture Mechanics,1999,62:203-229
    [59]Shi H J, Niu L Sh, Mesmacque G. Branched crack growth behavior of mixed-mode fatigue for an austenitic 304L steel [J]. International Journal of Fatigue 2000,22:457-465
    [60]马世骤,胡涨.CTS试件中复合型疲劳裂纹扩展[J].力学学报,2006,38(5):698-703
    [61]张亚,强洪夫,杨月诚.国产HTPB复合固体推进剂Ⅰ-Ⅱ型裂纹断裂性能实验研究[J].含能材料,2007,15(4):359-361
    [62]Veronique LAZARUS, Jean-Baptiste LEBLOND.Crack paths under mixed mode (Ⅰ+Ⅲ) or (Ⅰ+Ⅱ+Ⅲ) loadings [J]. C.R. Acad. Sci. Paris,1998,326(11)171-177
    [63]田常海,陈浩然,洪英.复合型裂纹的裂纹面扭转角[J].应用力学学报,1999,16(4):89-93
    [64]钱士强等,35CrMo钢回火组织(Ⅰ+Ⅲ)复合型疲劳裂纹的扩展特性研究[C].
    [65]Kim In-Tae. Weld root crack propagation under mixed mode Ⅰ and Ⅲ cyclic loading [J]. Engineering Fracture Mechanics,2005,72:523-534
    [66]Paris P C, Erdogna F. A critical analysis of crack propagation laws [J]. Journal of Basic Engineering,1963,85(5):28-34
    [67]Paris P C, Gomez M P, Andesron W P. A rational analysttic theory fatigue[J].The Trend in Engineering:1961,13:15-19
    [68]Fomran R G, Kemaye V E, Engle R M. Numerical analysis of crack propagation in cyclic-loaded structures [J]. Journal of Basic Engineering,1967,89:459
    [69]Zheng X L, Hirt M A, Fatigue Crack Propagation in Steels [J]. Engineering Fracture Mechanism,1983,18(5):965-973
    [70]Clark G Engineering Fracture Mechanism,1971,2(2):287-299.
    [71]Suzuki H, Mcevily A J. Microstructual effects on fatigue crack growth in lower carbon steels [J]. Metallurigal transactions,1979,10A(4):75-81.
    [72]Zheng X L, Yan J H, Zhao K.Crack growth rate and cracking velocity in fatigue for a class of ceramics [J]. Theoretical and Applied Fracture Mechanics,1999,32:65-73
    [73]Smith F C, Smith R A. Engineering Fracture Mechanics,1983,18(4):861-869
    [74]Bathias C, Mecanique et mecaniques de la fissuation par fatigue, des materiaux etdes structures. Les Presses DeL'Univesrit DeMonteal,1981,163-200.
    [75]傅祥炯.结构疲劳与断裂[M].西安:西北工业大学出版社,1995
    [76]朱平,沙江波,邓增杰.复合加载下疲劳裂纹扩展速率研究[J].固体力学学报,1994,15(3):272-275
    [77]Yates J R, Mohammed R A. The determination of fatigue crack propagation rates under mixed mode (Ⅰ+Ⅲ) loading[J]. Int.J.Fatigue 1996,18(3):197-203
    [78]田常海,邹定强,孙树华.复合型裂纹扩展试验[J].北京科技大学学报,2001,23(增刊):128-130
    [79]田常海,复合型裂纹扩展的主应力因子模型及Ⅰ-Ⅲ复合型裂纹扩展[J].应用力学学报,2004,21(1),84-88
    [80]Pavlou D G, Labeas G N, Vlachakis N V, etal. Fatigue crack propagation trajectories under mixed-mode cyclic loading [J]. Engineering Structures 2003,25(7):869-875
    [81]Jeong D Y. Mixed mode fatigue crack growth in test coupons made from 2024-T3 aluminum [J]. Theoretical and Applied Fracture Mechanics,2004,42(1):35-42
    [82]Zhang X B, Ma S, Recho N, etal. Bifurcation and propagation of a mixed-mode crack in a ductile material [J]. Engineering Fracture Mechanics 2006,73(13):1925-1939
    [83]Stanislav Seitl, Zdenek, Knesl. Two parameter fracture mechanics:Fatigue crack behavior under mixed mode conditions [J]. Engineering Fracture Mechanics,2008,75(3-4):857-865
    [84]Xu Yangjian, Yuan Huang. On damage accumulations in the cyclic cohesive zone model for XFEM analysis of mixed-mode fatigue crack growth [J]. Computational MaterialsScience,2009,46(3):579-585
    [85]段成红.管子与管板连接接头的强度和密封性能研究[D].北京:北京化工大学,2007
    [86]薛松龄.蒸汽发生器中传热管和管板胀接过程的数值模拟[D]哈尔滨:哈尔滨工程大学,2007
    [87]孙祥升.换热器管子与管板接头连接方法的试验研究[J].石油化工设备,1996,25(6):38-40
    [88]陶中昌.管壳式换热器管板与传热管的连接[J].压力容器,2002,19(4):17-19
    [89]聂清德.化工设备设计[C].北京:化学工业出版社,1991:25-26
    [90]Jawad M H, Clarkin E J, Schuessler R E. Evaluation of tube-to-tubesheet junctions [J]. Trans. of ASME, J. of Pressure Vessel Technology,1987,109 (2):19-26
    [91]Scott D A, Wolgemuth G A, Aikin J A. Hydraulically expanded tube-to-tubesheet joints [J]. Trans.of ASME, J. of Pressure Vessel Technology,1984,106 (2):104-109
    [92]金庆大.换热器管板和管子橡胶胀管技术及其应用[J].化工设备设计,1990,27(3):44-50
    [93]曲孟盛.厚壁管与管板的爆炸胀接[J].石油化工设备,1987,16(2):43-47
    [94]Yekoll S. Hydroexpanding:The Current State of the Art [A]. In:Paper No.82. JPGC-Pwr-1, Presented at Joint Power Generation Conference[C].Denver, Colo,1982
    [95]Williams DK, Prediction of Residual Stress Field in mechanically expanded 0.750 Diameter Steam Generator Tube Plugs:Part1:2-D Solution Residual Stresses in Design Fabrication Assessment and Repair [J]. PVP ASME, NewYork,1996,327
    [96]Williams DK. Prediction of Residual Stress Field in mechanically rolled and Hydraulically expanded Steam Generator Tube Plugs [D]. Columbia:department of Mechanical Engineering University of south Columbia,1997
    [97]李文军.管壳式换热器的胀接工艺[J].压力容器,2001,18(3):58-59
    [98]王守革,李国继,王晓强.液压胀管技术的应用[J].压力容器.2003,20(2):24-27
    [99]于洪杰.管板孔开槽的液压胀接接头三维弹塑性有限元分析[D].北京:北京化工大学,2001
    [100]段红卫.换热器液压胀接接头强度的研究[D].北京:北京化工大学,2004
    [101]GB151-1999.管壳式换热器[S].2000
    [102]葛菊花.浮头式换热器失效分析及安全对策[D].兰州:兰州理工大学,2008
    [103]宋晓磊,王斌,郑晓娜.管壳式换热器管—管板的连接及失效形式[J].科技情报开发与经济,2007,17(24):286-287
    [104]Soler, A I, Hong, X. Analysis of Tube-Tubesheet Joint Loading Including Thermal Loading [J]. ASME Journal of Applied Mechanics,1984,51(6):339-344.
    [105]Kalnins A, Updike D P, Caldwell S M. Contact Pressure in Rolled Tube-Tubesheet Joints[C]. Transaction of the 10th International Conference on Structural Mechanics in Reactor Technology,1989,1:195-200.
    [106]Weinstock S, Reinis K, Soler A. Tube-to-Tubesheet Joint Interfacing Pressure:Analysis and Experiments [J]. ASME Journal of Pressure Vessel Technology,1987,109 (5):193-199.
    [107]Allam M, Bazergui A. Axial Strength of Tube-to-Tubesheet Joints:Finite Element and Experimental Evaluations [J]. ASME Journal of Pressure Vessel Technology,2002, 124(2):22-31
    [108]Kleinoder W, Otremba F, Analysis and repair of cracking in partition plate of RHR heat exchanger at Brunsbuttel nuclear power station [J]. Nuclear Engineering and Design,1997,174 (9):293-299
    [109]Shalaby H M. Failure investigation of Muntz tubesheet and Ti tubes of surface condenser [J]. Engineering Failure Analysis,2006,13:780-788
    [110]Jose Luis Otegui, Pablo Gabriel Fazzini. Failure analysis of tube-tubesheet welds in cracked gas
    heat exchangers, Engneering failure analysis,2004,11(9):903-913
    [111]Cizelj L, Mavko B. Propagation of stress corrosion cracks in steam generator tubes [J] Int. J. Pressure Vessel and Piping,1995,63(1):35-43
    [112]Flesch B, Vidal P, Chabrerie J, Brunet J P. Operating stresses and stress corrosion cracking in steam generator transition zones (900-MWe PWR) [J]. International Journal of Pressure Vessels and Piping,1993,56(2):213-228
    [113]Middlebrooks W B, Harrod D L, Gold R E. Residual stresses associated with the hydraulic expansion of steam generator tubing into tubesheets [J]. Nuclear Engineering and Design, 1993,143(2-3):159-169
    [114]袁黎明.油浆蒸汽发生器管板开裂原因分析及防治措施[J].石油化工设备技术,2005,26(2):12-15
    [115]刘玉英,杜栓,宋天民等.油浆蒸汽发生器管板开裂的原因及防治[J].炼油技术与工程,2005,35(11):31-34
    [116]张明广.油浆蒸汽发生器管板裂纹成因分析[J].化工设计,2002,12(5):36-38
    [117]于明,宋天民,张国福.重催油浆蒸气发生器管板开裂原因及防治[J].辽宁石油化工大学学报,2005,25(9):39-42
    [118]丁建华.油浆蒸汽发生器管板开裂原因与控制[J].技术与应用,2006,8:72-75
    [119]姜海一,贾国栋,孙亮等.再沸器疲劳失效分析[J].理化检验-物理分册,2007,43(5):253-256
    [120]Ohr S M. An electron microscope study of crack tip deformation and its impact on the dislocation theory of fracture [J]. Mater.Sci.Eng.,1985,72(1):1-35
    [121]Chiao Y H, Clarke D R. Direct observation of dislocation emission from crack tips in silieon at high temperature[J]. Acta Metallurgica,1989,37(l):203-219
    [122]Zielinski W, Lu M J, Gerberieh. Crack tip dislocation emission arrangements for equilibrium-I.In situ TEM observations of Fe-2wt%Si [J]. Acta Metallurgica et Materialia,1992, 40(11),2861-2871
    [123]Fu, Long Q Y, Zhang T Y, Lung C W, Cleavage crack-tip deformation in single crystalzine [J]. J.Phys.D,1989,991(22)
    [124]Foecke T, Gerberieh W W. Birefringence observations of dislocation emission at crack tips in NaCL single crystals [J]. Scripta Metallurgica Materialia,1990,24(3):553-558
    [125]Chang S J, Ohr S M. Dislocation-free zone model of fracture, J.Appl.phys,1981,7174(52)
    [126]Dai SH H, Li J C M. Dislocation-free zone at the crack tip [J]. Scripta Metallurgica,1982, 16(2):183-188
    [127]Majumdar B S, Burns S J. A Griffth crack shielded by a dislocation pile-up [J]. Int. J. Ract.,1983,21:229
    [128]Qian C F, Li J C M. The multifarious plastic zones in front of a crack[J], Scripta Materialia,1998,39:509
    [129]何庆芝,邮正能.工程断裂力学(M).北京:北京航天航空大学出版社,1993:59
    [130]钱才富,姜忠军,陈平等.裂纹尖端塑性区和无位错区的微观模拟[J],金属学报,2004,40(2):159-162
    [131]Chen Q ZH, Chu W Y,.Hsiao C.M. In situ TEM observation of nuclcation and bluntness of nanocracks in thin crystals of 310 stainless steel [J]. Aeta Metall. Mater.1995,43:4371
    [132]Chen Q ZH, Gao K W, Zhang Y. etal. Nuclcation, blunting or Propagation of a nanocracking dislocation-free zone of thin crystals, Fatigue Fract. Mater. Struct.,1998,21:981
    [133]Qiao L J, Mao X, Chen Q ZH. Nanometer-scale cracking initiation and Propagation behavior of Fe3Al-based inter-metallic alloy [J]. Metall.Mater.Trans.1995,1461 A,(26)
    [134]Zhang Y, Wang Y B, Chu W Y. The in situ TEM observation of micro crack nucleation in titanium aluminide [J], Scr. Metal. Mater.,1994,30:541
    [135]Zhu T, Yang W, Gao T.Quasi-cleavage processes driven by dislocation pileups [J]. Aeta Mater., 1996,44(8):3049-3058
    [136]Qian C F, Qiao L J, Chu W Y, Stress distribution and effective stress intensity factor of a blunt crack after dislocation emission [J]. Science in China (SeriesE),2000,43:421
    [137]Lakshmanan V, Li J C M. Edge dislocations emitted along inclined planes from a mode Ⅰ crack [J]. Mater.Sci.Eng.A,1988,104:95-104
    [138]哈宽富.断裂物理基础(M).北京:科学出版社,2000:150
    [139]Sih G C. Some basic problems in fracture mechanics and new concepts[J].Engineering Fracture Mechanics,1973,5(2):365-377
    [140]余伟炜,高炳军,陈洪军.Ansys在机械和化工装备中的应用(M).北京:中国水利水电出版社,2006
    [141]王助成,邵敏.有限单元法基本原理和数值方法(第二版)(M).北京:清华大学出版社,2003
    [142]黄志新.卧螺离心机螺旋输送器结构、强度及其转鼓内的流场研究[D].北京:北京化工大学,2007
    [143]Paris P C, Sih G C. Stress analysis of cracks. Fracture Toughness and Testing and its Applications, American Society for Testing and Materials, Philadelphia, STP 381,1965:30-83
    [144]Cao J J, Yang G J, Parker J A,etal. Crack modeling in FE analysis of circular tubular joints [J]. Engineering Fracture Mechanics,1998,61(5-6):537-553
    [145]Ingraffea A R, Manu C. Stress intensity factor computation in three dimensions with quarter-point elements [J]. International Journal for Numerical Methods in Engineering,1980, 15(10):1427-1445
    [146]ANSYS user's manual, Version 7.1, Swanson Analysis Systems, Inc.,2003
    [147]伍晓赞.涡轮转子接触应力分析及应力强度因子计算[D].长沙:中南大学
    [148]冶金工业部钢铁研究院.合金钢断口分析金相图谱[M]..北京:科学出版社,1979
    [149]马丰源,王伟辉.不锈钢SUS630疲劳断口分析[J].中国造船,2007,48(1)::25-28
    [150]赵子华,张峥等.金属疲劳断口定量反推研究综述[J].机械强度,2008,30(3):508-514
    [151]曹昱,刘锦文Cu-Ni-Zn-Mn弹性合金的疲劳与断口分析[J].湖南有色金属,1999,15(5):29-32
    [152]刘文耀.光电图像处理[M].北京:电子工业出版社,2002
    [153]朱敏.扫描电子显微镜简介[EB/OL]. http://www.17baba.com/infor/ show_document_detail.asp?id=15575.2007,10,8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700