用户名: 密码: 验证码:
汽车用异型截面管件液压成形设备及工艺参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管件液压成形工艺因具有减轻重量、节约材料、降低能耗、简化生产流程、降低生产成本、表面质量高、机械性能好等优点,近年来已在欧洲、北美、日本、韩国等国家的汽车、航天、航空、国防、化工、医疗等领域中得到了广泛的应用。但过高的初期设备投资和苛刻的工艺条件使得这项被称为“贵族工艺”的技术在我国的发展步履维艰。因此,加强低成本的液压成形设备特别是大吨位大工作台面液压成形设备的研究,完善与之配套的材料制备、工艺设计准则制订等相关工作,对促进该项技术在资源相对贫乏的我国实现产业化具有重要的意义。本文的主要内容如下:
     结合国内的制造水平和加工能力,简要分析了柱梁式和板框式机架的优缺点,并对大吨位管件液压成形设备所采用的预应力钢丝缠绕机架进行了可行性论证,继而给出了克服预应力钢丝缠绕机架抗侧推能力较差的解决方案。在此基础上,先后完成了设备合模机构的优化设计、超高压动密封结构和液压系统的设计、以及控制系统的设计、建模与仿真等工作。
     利用金属塑性成形理论,通过解析的方式揭示了管坯外径、管坯初始厚度、管坯与模具之间的初始接触长度、以及摩擦条件等参数对成形结果的影响规律。在此基础上,建立了汽车仪表板梁液压成形的有限元模型,通过仿真分析,研究了直接成形和分步成形、内压加载路径与轴向补料位移的匹配关系、摩擦条件、补料量等不同工艺方案和主要工艺参数对成形结果的影响规律,提出了该类零件液压成形工艺方案设计和工艺参数制订的准则。针对副车架等大型结构件成形工序多、成形困难、以及上道工序对下道工序的影响较大等问题,文中建立了副车架预弯曲、预冲压和液压成形全过程的有限元模型,通过数值方法研究了预弯曲、预冲压对液压成形的影响规律,给出了该类零件的数值仿真精确建模、工艺方案设计和工艺参数制订的原则。
     针对传统寻优方法的不足,文中提出了一种新的优化方法,即将基于精英保留非劣排序遗传算法(NSGA-Ⅱ)的多目标优化求解器与基于动态显式算法的有限元软件LS-DYNA集成起来进行工艺参数的寻优方法。在简要介绍NSGA-Ⅱ算法原理及流程之后,建立了加载路径和补料量的多目标优化模型,并进行了优化运算。与传统寻优方法所获得的结果相比,多目标优化所获得的结果更为理想,取得了较好的效果。
     在数值模拟及优化的基础上,以仪表板梁为例,通过试验对液压成形过程中的金属变形机理展开研究,分析加载路径、补料量、摩擦条件等工艺参数对成形结果的影响规律,并将试验结果与数值模拟结果进行对比分析,不仅证明通过仿真方法进行工艺方案设计和工艺参数制订是可行的,还给出了仪表板梁工艺方案设计和工艺参数制订的准则。
As a near-net shape metal forming technology, tube hydroforming, compared withconventional manufacturing via stamping and welding, has many advantages, such aslightening weight, improving material utilization ratio, stinting energy, reducing operation,potentially economizing tooling costs, improving surface quality, enhancing mechanicalproperties, and so on. In Europe, North America, Japan, and South Korea, it has beenwidely used in the fields of automobile, aeronautics, astronautics, national defence,chemical engineering, medical apparatus, etc. Tube hydroforming is labeled as ablue-blooded process, because it requires high cost of equipment investment and rigorousprocess, which lead it to move forward difficultly in our country. Therefore, the researchon low-cost hydroforming equipments, especially large-tonnage andlarge-operating-platform hydroforming equipments should be strengthened. Correlativematerial preparation and process design guidelines should also be completedsimultaneously. All these works are strategically meaningful for achievingindustrializations of tube hydroforming in our country, where natural resources are poor.The main work and creative harvests in this paper is listed blow:
     Based on the manufacturing level and working ability of equipment at home, theadvantages and disadvantages of frameworks with beam column and also with sheet frameare introduced briefly, and the feasibility for tube hydroforming equipment to adoptprestress wire-winded framework is confirmed. The solution to improve the resistance ofprestress wire-winded framework to side thrust is also brought forward. Subsequently, theclamping structure of hydroforming machine is optimized, and ultra high pressure sealstructure and hydraulic system is carefully designed. In addition, design, modeling andsimulation of the control system are carded out.
     Hydroforrning process is heavily influenced by process parameters such as initialoutside diameter and thickness of tube, initial contact length between tube and dies, andfriction conditions. Hence, it is essential to analyze the effect laws. Based on metal plasticdeformation theories, analytical equations are built and the laws are obtained. The equationon relationship between stress and strain under plastic state is built using Levy-Mises'syield criterion. By taking expansion region as instance, variations of stress, strain and tubedimension under different internal hydraulic pressures and axial loads are discussed.Aiming at the problems coming from geometrical nonlinearity, material nonlinearity and boundary condition nonlinearity in tube hydroforming process, nonlinear geometricalequation and constitutive equation of elastoplastic material are derived, and contactalgorithm and friction model used in numerical simulation are also introduced briefly, andsubsequently the dynamic explicit approach used for hydroforming process analysis andthe static implicit FEA used for spring back analysis are analyzed. Instrument panel beamand sub frame are taken as the case to perform the numerical simulation analysis ofhydroforming process. Effect laws of process planning and parameters, such as one-stepforming and multi-step forming, loading paths (internal hydraulic pressure via time andaxial feeding displacement via time), friction conditions, feeding amount, and materialproperties etc., on forming results are also investigated.
     In order to overcome the disadvantages of conventional optimization methods, thispaper presents a new optimization method to seek optimal hydroforming processparameters, which integrates dynamic explicit FEM into multiple-objective optimizationsolver based on elitist nondomiuated Sorting genetic algorithm (NSGA-Ⅱ). Using themethod, the feeding amount and loading paths of instrument panel beam hydroformingprocess is optimized. The optimization results obtained by this method are better than theresults obtained by the trial-and-error approach from experience or experimental studies. Inaddition, some pareto results are obtained by running simulation program at a time, andwhich offer a wider choice for process parameter design and designer's decision-making.
     To validate the accuracy of simulation and optimization results, a series ofexperiments about instrument panel beam are performed. From the experimental results,some laws are obtained, that hydroforming process is influenced by process parameterssuch as loading paths, axial feeding amount, and friction conditions. The results fromexperiments are compared with the results from the FEA simulation and optimization.Finally, design guidelines of process parameter are given.
引文
[1] Koc M. Development and design guidelines for part, tooling and process in the tube hydroforming technology [D]. Dissertation, The Ohio State University,1999
    [2] 苑世剑,郎利辉,王仲仁.内高压成形技术研究与应用进展[J].哈尔滨工业大学学报,2000(5):60~63
    [3] 苑世剑.内高压成形技术现状与发展趋势[J].金属成形工艺,2003,21(4):32~34
    [4] Dohmann F, Hartl C. Tube Hydroforming: Research and Practical Application [J]. Journal of Materials Processing Technology, 1997(71): 174~186
    [5] Ahmetogiu M., Sutter K., Li J., Altan T. Tube Hydroforming: Current Research, Applications and Need for Training [J]. Journal of Materials Processing Technology, 2000(98): 224~231
    [6] Koc M, Altan T. An overall review of the tube hydroforming [J]. Journal of Materials Processing Technology,2001,108(3):384~393
    [7] Ahmetoglu M, Altan T. Tube hydroforming: state of the art and future trends [J]. Journal of Materials Processing Technology, 2000(98): 25~33
    [8] Lundqvist J. Numerical Simulation of Tube Hydroforming: Adaptive Loading Paths [D]. Dissertation, Lulea University of Technology, 2002
    [9] Jirathearanat, S. Advanced methods for finite element simulation for part and process design in tube hydroforming [D]. Dissertation, Ohio State University, 2004
    [10] 李洪洋.内高压成形的应力应变分析与台阶轴内高压成形的研究[D].博士论文,哈尔滨工业大学,2002
    [11] Hydroforming foundation. SME
    [12] 苑世剑.内高压成形技术现状与发展趋势[J].金属成形工艺,2003,21(3):1~3
    [13] Davis E. A. Yield and fracture of medium-carbon steel under combined stress [J]. Journal of Applied Mechanics(March 1945):A-13-A-24
    [14] Faupel, J. H. Yield and bursting characteristics of heavy-walled cylinders. Transactions of the ASME[J](July 1956):1031~1064
    [15] Crossland B, Jorgensen S. M, Bones J.A. the strength of thick-walled cylinders. Journal of engineering for industry[J](May 1959):95~114
    [16] Mellor, P. B. The ultimate strength of thin-walled shells and circular diaphragms subjected to hydrostatic pressure [J]. International Journal of Mechanical Science, 1960(1):216~228
    [17] Weil N. A. Tensile instability of thin-walled cylinders of finite length [J]. International Journal of Mechanical Science, 1963 (5) :487~506
    [18] Keeler S P, Backofen W A. Plastic instability and fracture in sheets stretched over rigid punches [J]. Trans ASM, 1965
    [19] Fuche F.J. Hydrostatic pressure-its role in metal forming. Mechanical Engineering[J] (April 1966):34~40
    [20] Al-Qureshi, H.A., Mellor, P.B., Garber, S. Application of polyurethaneto the bulging and piercing of thin-walled tubes, in: Proceedings of the Ninth International MTDR Conference, Birmingham, UK, September 1968, pp. 319~338.
    [21] Al-Qureshi, H.A. Comparison between the bulging of thin-walledtubes using rubber forming technique and hydraulic forming process,Sheet Metal Ind. (July 1970) 607~612
    [22] Woo D.M. Tube-bulging under internal pressure and axial force [J]. Journal of Engineering Materials and Technology, 1973,73-Mat-V:219-223
    
    [23] Limb M.E, Chakrabarty J, Garber S, et al. Hydraulic forming of tubes, 1976, 53(11):418~4224
    [24] Woo D.M and Lua, A.C. Plastic deformation of anisotropic tubes in hydraulic bulging [J], 100(4):421-425
    [25] Manabe, K., Nishimura, H., Influence of material properties in forming of tubes [J]. Bander Bleche Rohre 9(1983).
    [26] Manabe, K., Mori, S., et al. Bulge forming of thin-walled tubes by micro-computer controlled hydraulic press [J]. Adv. Technol. Plasticity 1 (1984) 279-284.
    [27] Fuchizawa, S. Influence of strain hardening exponent on the deformation of thin-walled tube of finite length subjected to hydrostatic external pressure, in: Proceedings of the First International Conference on Technology of Plasticity, Advanced Technology of Plasticity, No. 1, 1984, pp. 297-302.
    [28] Fuchizawa, S. Influence of plastic anisotropy on deformation of thin-walled tubes in bulging forming, in: Proceedings of the Second International Conference on Technology of Plasticity, Advanced Technology of Plasticity, No. 2,1987, pp. 727-732.
    [29] Fuchizawa, S. Narazaki, M. Bulge deformation of thin copper tube with cylindrical die—Part I[J]. J. JSTP 30 (336) (1989) 116-125.
    [30] Fuchizawa, S., Narazaki, M. Bulge deformation of thin copper tube with cylindrical die—Part II [J]. J. JSTP 30 (339) (1989) 520-525.
    [31] Hashimi, M.S.J. Forming of tubular components from straight tubing using combined axial load and internal pressure: theory and experiment, in: Proceedings of the International Conference on Development on Drawing of Metals, Metals Society, London, 1983, pp. 146-155.
    [32] Hashimi, M.S.J., Crampton, R. Hydraulic bulge forming of axisymmetric and asymmetric components: comparison of experimental results and theoretical predictions, in: Proceedings of the International MTDR Conference, 1985, pp. 541-549.
    [33] Ueda, T. Differential gear casings for automobile is liquid bulge forming process - Part 1[J]. Sheet Metal Ind. D Metal Forming 60 (3) (1983) 181-184.
    [34] Ueda, T. Differential gear casings for automobile is liquid bulge forming process - Part 2[J]. Sheet Metal Ind. D Metal Forming 60 (4)(1983) 220-222.
    [35] Fuchizawa, S. Deformation of metal tubes under hydrostatic bulge forming with closed die [J]. Adv. Technol. Plasticity 3 (1990) 1543-1548.
    [36] Fuchizawa, S., Narazaki, M., Yuki, H. Bulge test for determining stress±strain characteristics of thin tubes [J]. Adv. Technol. Plasticity (1993) 488-493.
    [37] Fuchizawa S, Naraazaki M, Shirayori A. Bulge forming of aluminum alloy tubes by internal pressure and axial compression. In; 5~(th) ICTP Columbus, Ohio, USA, 1996: 497-500
    [38] Graf A, Hosford W. Calculations of forming limit diagrams for changing strain paths [J]. Metallurgical Transactions A 24A(11):2497~2501
    [39] Thiruvarudchelvan S, Lua A.C. Bulge Forming of tubes with axial compressive force proportional to the hydraulic pressure[J]. Journal of Materials Shaping Technology, 1991,9(3):133~142
    [40] Thiruvarudchelvan S. A theory for the bulging of aluminum tubes using a urethane rod [J]. Journal of Materials Processing Technology 41(1993):311-330
    [41] Thiruvarudchelvan S. A theory for initial yield conditions in tube bulging with a urethane rod[J]. Journal of Materials Processing Technology 42(1994):61~74
    [42] Sheng S, Tonghai W. Research into the bulge forming of a tube under axial-radial compound forces and its application [J]. Journal of Materials Processing Technology, 1995, 51(1-4):346~357
    [43] Tirosh J, Neuberger A, Shirizly A. On tube expansion by internal fluid pressure with additional compressive stress [J]. International Journal of Mechanical Sciences, 1996, 38(8-9):839~851
    [44] Liu, S.D., Meuleman, D. Analytical and experimental examination of tubular hydroforming limits. SAE Technical Paper No. 980449,1998
    [45] Tirosh,J., Yosifon, S., Ben-David, D., et al. Hydro-rim deep-drawing process of hardening and rate-sensitive materials[J]. International Journal of Mechanical Sciences, 2000,42(6):1049~1067
    [46] Sokolowski T, Gerkek K, Ahmetoglu M, et al. Evaluation of Material Characteristics in Tube Hydroforming: Hydraulic Bulge Testing of Tubes [J]. Journal of Matrials Processing Technology, 2000,98(1):34~40
    [47] Prasoody S, Majlessi, S.A, Subhash G, et al. Process control for tube hydroforming of aluminum extrusions. International Conference in tube hydroforming technology, Troy, MI, USA, 2000, 13-14 June 2000
    [48] Manabe, K., Amino, M. Effects of process parameters and material properties on deformation process in tube hydroforming [J], J. Mater.Process. Technol. 123 (2002) 285-291
    [49] Nefussi. G., Combescure. A. Coupled bucklingand plastic instability for tube hydroforming[J]. International Journal of Mechanical Sciences 44 (2002) 899-914
    [50] Shirayori, A., Fuchizawa, S., et al. Deformation behavior of tubes with thickness deviation in circumferential direction during hydraulic free bulging [J]. J. Mater. Process. Technol.6722 (2003) 1-6.
    [51] Kim, J., Kim,S.W, et al. A prediction of bursting failure in tube hydroforming process based on plastic instability [J]. Int J Adv Manuf Technology, 2005
    [52] Jansson, M., Nilsson, L., Simonsson, K. On constitutive modeling of aluminum alloys for tube hydroforming applications [J]. International Journal of Plasticity 21 (2005) 1041-1058
    [53] Keigler, M., Bauer, H., et al. Enhancing the formability of aluminium components via temperature controlled hydroforming [J]. Journal of Materials Processing Technology 167 (2005) 363-370
    [54] Ahmed M. Hashmi, M.S.J. finite element simulation of bulge forming of an elbow of box section from circular tube [J]. Journal of Materials Processing Technology, 1999, 92-93:410-418
    [55] Liu J. Tube hydroforming process development with the aid of computer simulation. International Manufacturing Conference 2000,200105-52-1026,Chicago, IL, USA,6~12 Sept. 2000
    [56] Yang, J.B., Jeon, B.H., Oh, S.I. The tube bending technology of a hydroforming process for an automotive part [J]. Journal of Materials Processing Technology, 2001,111:175—181
    [57] Lee M.Y, Sohn S.M, Kang C.Y, et al. Study on the hydrofoming process for automobile radiator support members [J]. Journal of Materials Processing Technology, 2002, 130-131:115-120
    [58] Hwang Y.M, Altan T. FE simulations of the crushing of circular tubes into triangular cross-sections [J]. Journal of Materials Processing Technology, 2002,125-126:833-838
    [59] Hwang Y.M, Altan T. Finite element analysis of tube hydroforming process in a rectangular die [J]. Finite elements in Analysis and Design, 2003, 39(11):1071~1082
    [60] Kristoffer Trana. Finite element simulation of the tube hydroforming process-bending, performing and hydroforming [J]. Journal of Materials Processing Technology, 2002,127:401—408
    [61] Asnafi N, Nilsson T, Lassl G. Tubular hydroforming of automotive side members with extruded aluminum profiles [J]. Journal of Materials Processing Technology 2003,142(1):93~101
    [62] Koc, M., Aueulan, Y., Altan, T. On the characteristics of tubular materials for hydroforming design rules [J]. Int. J. Mach. Tools Manuf. 41 (2001) 761-772.
    [63] Koc, M. Investigation of the effect of loading path and variation in material properties on robustness of the tube hydroforming process [J]. J. Mater. Process. Technol. 133 (3) (2003) 276-281.
    [64] Chu, E., Xu., Y. Hydroforming of aluminum extrusion tubes for automotive applications. Part Ⅰ: buckling, wrinkling and bursting analyses of aluminum tubes [J]. International Journal of Mechanical Sciences 46 (2004) 263~283
    [65] Imaninejad, M., Subhash, G., Loukus, A. Experimental and numerical investigation of free-bulge formation during hydroforming of aluminum extrusions [J]. Journal of Materials Processing Technology 147 (2004) 247~254
    [66] Hwang, Y. M., Chen, W. C. Analysis of tube hydroforming in a square cross-sectional die[J]. International Journal of Plasticity 21 (2005) 1815~1833
    [67] Park, K. Apparatus for forming serpentine hollow bodies. US Patent 731,124, 1903
    [68] Foster, E. L. Process of calibrating and justifying parts of wind musical instruments. US Patent 1,210,629, 1917
    [69] Davies, C. H. Method of making artificial limbs. US Patent 1, 884,589, 1932
    [70] J. E. Grey, A.P. Devereaux, W.N. Parker, Apparatus for making wrought metal T's. US Patent 2,203,868 (1939).
    [71] Kearns, J. E. Hollow propeller blade with bulbed core. US Patent, 2,652,121, 1950
    [72] Garvin, M. M. Method for making cam shafts. US Patent 2,892,254, 1959
    [73] Ogura, Takashi. Liquid bulge forming. Metatlworking production, April 1968
    [74] Fuchs, F. J. Method of shaping and forming articles from tublar stock.. US Patent 3,487,668, 1970
    [75] Cudini, I. G. Method of forming box-section frame members. US Patent 4,567,743,1986
    [76] Cudini, I. G. Method of forming box-section frame members. US Patent 4,744,237,1988
    [77] Cudini, I. G. Method of forming box-section frame members. US Patent 4,829,803,1989
    [78] Roper, R. E., Webb, G. A., Tyger, D.W. Apparatus and method for forming and hydropiercing a tubular frame member. US Patent 5,353,618, 1994
    [79] Roper, R. E., Webb, G. A., Tyger, D. W. Apparatus and method for forming and hydropiercing a tubular frame member. US Patent 5,481,892, 1996
    [80] Roper, R. E., Webb, G. A., Tyger, D. W. Apparatus and method for forming and hydropiercing a tubular frame member. US Patent 5,890,387, 1999
    [81] Chi-Mou Ni, Bruggemann, C. J. Method for forming a vehicle space frame. US Patent 5,720,092, 1998
    [82] Schmeckel, D,, Hielscher, C., Prier, M, Developments and Perspectives of Internal High-pressure Forming of Hollow sections [J]. Advanced Technology of Plasticity, Vol1 Ⅱ Proceedings of the 6th ICTP, Sept119~24, 1999: 1171~1182
    [83] 何祝斌,滕步刚,苑士剑,王仲仁管材轴压液力成形中的摩擦与密封[J].锻压技术,2001(3):38~40
    [84] Costello, M.T., Riff, I.I. Study of hydroforming lubricants with overbased sulfonates and friction modifiers [J]. Tribology Letters, 2005(20),:2001~2008
    [85] Prier, M., Shmoeckel, D. Triobology of internal high pressure forming,in: Proceedings of International Conference on Hydroforming,Stuttgart, October 1999.
    
    [86] Dhmann, F. Tribology in internal high pressure forming[J]. Blech Rohre Profile (1997) 36-39.
    [87] Vollertsen, F., Plancak, M. On possibilities for the determination of the coefficient of friction in hydroforming of tubes [J]. J. Mater.Process. Technol. 125/126 (2002) 412-420.
    [88] Ngaile, G., Jaeger, S., Altan, T. Lubrication in tube hydroforming (THF) Part I. Lubrication mechanisms and development of model tests to evaluate lubricants and die coatings in the transition and expansion zones Journal of Materials Processing Technology 146 (2004) 108-115
    [89] Ngaile, G., Jaeger, S., Altan, T. Lubrication in tube hydroforming (THF) Part II. Performance evaluation of lubricants using LDH test and pear-shaped tube expansion test [J]. Journal of Materials Processing Technology 146 (2004) 116-123
    
    [90] 赵海鸥编著. LS-DYNA 动力分析指南[M]. 北京: 兵器工业出版社, 2003.9
    [91] Mac Donald B.J, Hashmi M.S. J. Finite element simulation of bulge forming of a cross-joint from a tubular blank [J]. Journal of Materials Processing Technology, 2000,103(3):333~342
    [92] Gao Lin, Suwat Jiratheatanat, Taylan Altan. FEM analysis of Y-shapes with feeding driven tube hydroforming process [J]. J.Materials Processing Technology, 129(2002):261-267
    [93] Kwan C.T, Lin F.C. Investigation of T-shape tube hydrorforming with finite element method [J]. International Journal of Advanced Manufacturing Technology,2003,21(6):420~425
    [94] Jirathearanat, S., Christoph, H., Taylan, A. Hydroforming of Y-shapes—product and process design using FEA simulation and experiments [J]. Journal of Materials Processing Technology, 2004,126(1): 124~129
    [95] Ray, P., Mac Donald, B.J. Experimental study and finite element analysis of simple X- and T-branch tube hydroforming processes [J]. International Journal of Mechanical Sciences 47 (2005) 1498-1518
    [96] Mac Donald B.J, Hashmi M.S.J. Three-dimensional finite element simulation of bulge forming using a solid bulging medium [J]. Finite Elements in Analysis and Design, 2001,37(2):107~116
    [97] Ahmed M, Hashmi, M.S.J. Comparison of free and restrained bulge forming by finite element method simulation [J]. Journal of Materials Processing Technology 63(1-3):65I~654
    [98] Ray P., Mac Donald B.J. Determination of the optimal load path for tube hydroforming processes using a fuzzy load control algorithm and finite element analysis[J]. Finite Elements in Analysis and Design,2004,41(2):173~192
    [99] Carleer, B., van, G., et al. Analysis of the effect of material properties on the hydroforming process of tubes [J]. Journal of Materials Processing Technology 104 (2000) 158-166
    [100] Koc, M., Aueulan, Y., Altan, T. On the characteristics of tubular materials for hydroforming design rules [J]. Int. J. Mach. Tools Manuf. 41 (2001) 761-772.
    [101] Kim J, Kang S.J, Kang B.S. Computational approach to analysis and design of hydroforming process for an automobile lower arm [J]. Computers & Structures,2002,80(14-15):1295~1304
    [102] Kim J, Kang Y.H, Choi H.H, et al. Comparison of implicit and explicit finite-element methods for the hydroforming process of an automobile lower arm [J]. International Journal of Advanced Manufacturing Technology, 2002, 20(6):407~413
    [103] Kim J, Kang Y.H, Choi H.H, Beom S.K. A comparative study of implicit and explicit FEM for the wrinkling prediction in the hydroforming process [J]. International Journal of Advanced Manufacturing Technology,2003,22:547-552
    [104]Strano M, Altan T. An inverse energy approach to determine the flow stress of tubular materials for hydroforming applications [J]. Journal of Materials Processing Technology, 2004, 146(1): 92~ 96
    [105] Koc M, Altan T. Prediction of forming limits and parameters in the tube hydroforming process [J]. International Journal of Machine Tools Manufacture, 2002, 42(1):123~138
    [106]Boudeau N, Lejeune A, Gelin J.C. Influence of material and process parameters on the development of necking and bursting in flange and tube hydroforming[J]. Journal of Materials Processing Technology 125-126:849-855
    [107] Hsu Q.C. Theoretical and experimental study on the hydroforming of bifurcation tube [J]. Journal of Materials Processing Technology, 2003,142(2):367~373
    [108]Imaninejad Mehdi, Subhash Ghatu, Loukus Adam. Influence of end-conditions during tube hydroforming of aluminum extrusions [J]. International Journal of Mechanical Sciences, 2004, 46(8): 1195~1212
    [109] Aue-U-Lan, Y., Ngaile, G., Altan, T. Optimizing tube hydroforming using process simulation and experimental verification[J]. Journal of Materials Processing Technology, 2004, 146(1) :137~143
    [110]Kulkarnia, A., et al. An experimental and numerical study of necking initiation in aluminum alloy tubes during hydroforming[J] International Journal of Mechanical Sciences 46 (2004) 1727-1746
    [111]Altan, T., Koc, M., et al. Formability and design issues in tube hydroforming, in: Proceedings of the International Conference on Hydroforming, Stuttgart, Germany, 11-12 October 1999
    [112] Koc, M., Allen, T., Altan, T. The use of FEA and DOE to establish design guidelines for simple hydroforming parts [J]. Int. J. Mach. Tools Manuf. 40 (2000) 2249-2266.
    [113] Lei, L.P., Kim, J., Kang, B.S. Analysis and design of hydroforming process for automobile rear axle housing by FEM[J]. International Journal of Machine Tools & Manufacture 40 (2000) 1691-1708
    [114] Lei, L.P., Kim, D.H., et al. Analysis and design of hydroforming processes by therigid-plastic finite element method [J]. Journal of Materials Processing Technology 114 (2001) 201-206
    [115]Hirt, G., Junk, S. Calibration pressure required for hydroforming: comparison of analytical and numerical calculation methods, in: Proceedings of the Ninth International Conference on Sheet Metal, Leuven, Belgium, 2001, pp. 563-570.
    [116]Kridli G.T, Bao L, Mallick P.K, et al. Investigation of thickness variation and corner filling in tube hydroforming[J]. Journal of Materials Processing Technology, 2003,133(3):287~296
    [117]Nguyen, B.N., Davies, R.W., Grant, G.J. A numerical process control method for circular tube hydroforming prediction [J]. International Journal of Plasticity 20 (2004) 1111-1137
    [118]Manabe K, Amino M, Nakamura S. FE analysis on local thinning and fracture phenomenon in hydroforming of tabular components [A]. Proceedings of the 6th International Conference on Technology Plasticity [C]. German: Springer-Verlag, 1999, 1229-1234.
    [119] Lei L.P, Kim J, Kang B.S. Bursting failure prediction in tube hydroforming processes by using rigid-plastic FEM combined with ductile fracture criterion [J]. International Journal of MechanicalSciences, 2002,44(7):1411-1428
    [120] Kim J, Kang Y.H, Choi H.H, Beom S.K. A prediction of bursting failure in tube hydroforming processes based on ductile fracture criterion [J]. International Journal of Advanced Manufacturing Technology,2003, 22:357-362
    [121]Hama, T., Asakawa, M., Makinouchi, A. Investigation of factors of breakage occurring on a hydroformed automotive part, in: Advances in Concurrent Engineering, Cranfield, UK, 2002, pp. 189-199.
    [122]Hama, T., Asakawa, M., Makinouchi. A. Investigation of factors which cause breakage during the hydroforming of an automotive part [J], Journal of Materials Processing Technology 150 (2004) 10-17
    [123]Altan, T., Jirathearanat, S., et al. Adaptive FEM process simulation for hydroforming tubes, in: Proceedings of the International Conference on Hydroforming, Stuttgart, November 2001, pp. 363-384.
    [124] Yang, J.B., Jeon, B.H., Oh, S.I. Design sensitivity and optimization of the hydroforming process [J]. Journal of materials processing technology 113(2001)666-672
    [125] Kim, J., Kang, B.S. Implementation of backward tracing scheme of the FEM for design of initial tubular blank in hydroforming [J]. J. Mater. Process. Technol. 125-126 (2002) 839-848.
    [126] Gao, L., Motsch, S., Strano, M. Classification and analysis of tube hydroforming processes with respect to adaptive FEM simulations [J]. J. Mater. Process. Technol. 129 (2002) 261-267.
    [127] Lin, F. C.; Kwan, C. T. Application of abductive network and FEM to predict an acceptable product on T-shape tube hydroforming process [J]. Computers and Structures, 2004, 82(15-16): 1189~1200
    [128] Johnson, K. I., Nguyen, B. N., Davies, R.W., Grant, G.J.A numerical process control method for circular tube hydroforming prediction [J]. International Journal of Plasticity 20 (2004) 1111~1137
    [129] Aydemir A., de Vree J. H. P., Brekelmans W.A.M., et al. An adaptive simulation approach designed for tube hydroforming processes[J]. Journal of Materials Processing Technology, 2005, 159:303~310
    [130] Aydemir, A., et al. An adaptive simulation approach designed for tube hydroforming processes [J]. Journal of Materials Processing Technology 159 (2005) 303~310
    [131] 赵静宜.轿车副车架液压成形预弯工艺数值模拟分析[D].硕士论文,吉林大学,2004.5
    [132] 苏岚,王先进等.T型管液压成形过程的有限元分析[J].北京科技大学学报,2002,Vol.24(5):537~540
    [133] 戴昆,何祝斌,王仲仁.管材内压力液力成形的稳定性分析[J].塑性工程学报,2000,7(4):49~51
    [134] 吴洪飞,王仲仁,苑世剑.柱壳液力成形弹性稳定性分析[J].金属成形工艺,2001,19(2):1~3
    [135] 吴洪飞,苑世剑,王仲仁.内高压成形塑性屈曲分析[J].锻压技术,2001(5):29~31
    [136] 朗利辉,苑世剑,王仲仁等.内高压液力成形缺陷产生及其失效分析[J].塑性工程学报,2001,8(4):30~34
    [137] 郎利辉,苑世剑,王仲仁等.防锈铝变径管内高压成形过程数值模拟(J].中国有色金属学报,2001.11,11(2):211~216
    [138] Lang, L. H., et al. A study on numerical simulation of hydroforming of aluminum alloy tube [J]. Journal of Materials Processing Technology 146 (2004) 377-388
    [139] 张庆,周磊,赵长财等.复合管胀形成形极限研究[J].中国机械工程,2002,13(17):1455~1457
    [140] 王小松,苑世剑,王小松.内高压成形起皱行为的研究[J].金属学报,2003,39(12):1276~1280
    [141] 苑世剑,田宪伟等.不锈钢方形截面空心构件内高压成形研究[J].锻压技术,2004(2):41~44
    [142] 刘钢,王小松,苑世剑等.轿车转向节臂零件内高压成形工艺研究[J].锻压技术,2004(3):45~48
    [143] 刘钢,苑世剑,王小松等.加载路径对内高压成形件壁厚分布影响分析[J].材料科学与工艺,2005,13(2):162~165
    [144] 王学生,王如竹,李培宁.复合管液压成形装置及残余接触压力预测[J].中国机械工程,2004,15(8):662~666
    [145] 李洪洋,苑世剑,王小松等.轴向补料量对内高压成形三台阶轴影响的实验研究[J].清华大学学报(自然科学版),2005,45(5):597~600
    [146] 李洪洋,苑世剑,王小松等.内高压成形三台阶轴过程中内压值影响的有限元分析[J].塑性工程学报,2005,12(2):38~41
    [147] 李洪洋,苑世剑,王小松等.初始内高压成形阶梯轴影响的实验研究[J].材料科学与工艺,2005,13(2):143~145
    [148] 雷丽萍,方刚,曾攀等.汽车副车架液压胀形预成形工艺设计的数值模拟[J].塑性工程学报,2002,9(2):76~78
    [149] 苑世剑.我国内高压成形技术现状与进展[J].锻压技术,2004(3):1~6
    [150] Nader Asnafi. Analytical modeling of tube hydroforming[J]. Thin-walled structures, 1999(34): 295~330
    [151] 吴南星,余冬玲.大吨位钢丝缠绕液压压砖机机架的设计[J].中国陶瓷工业,2006,9(3):28~23
    [152] 韦峰山,杨志伟,余锐平.国内开发大型陶瓷液压压砖机采用钢丝缠绕机架的优点分析[J].佛山陶瓷,2001(51):20~21
    [153] 俞新陆主编.液压机现代设计理论[M].北京:机械工业出版社,1987.10
    [154] 王兆祥,颜永年,俞新陆.钢丝缠绕预应力机架抗侧推能力的研究[J].重型机械,1990,172(6):19~22
    [155] 刘世军,雷天觉等.1GPa新型密封结构的理论分析[J].清华大学学报,2000,40(8):21~24
    [156] 薛胜雄,黄汪平等.300MPa超高压往复密封的试验研究[J].中国安全科学学报,1995,5(5):55~58
    [157] 成大先主编.机械设计手册.单行本.润滑与密封[M].北京:化学工业出版社,2004.1
    [158] 祝效华,余志祥等编著.Ansys高级工程有限元分析范例精选[M].北京:电子工业出版社,2004.10
    [159] 成大先主编.机械设计手册.单行本.液压传动[M].北京:化学工业出版社,2004.1
    [160] 成大先主编.机械设计手册.单行本.液压控制[M].北京:化学工业出版社,2004.1
    [161] 章宏甲,黄谊,王积伟主编.液压与气压传动[M].北京:机械工业出版社,2000.5
    [162] 罗士军,张子达,胡敬波.工程车辆线控转向电液比例控制系统数字校正[J].机床与液压,2005(8):137~138
    [163] 王栋梁,李洪人.阀控液压伺服系统的键图分析[J].济南大学学报(自然科学版),2002,16(4):355~358
    [164] 路甬祥,胡大纮编著.电液比例控制技术[M].北京:机械工业出版社,1988.11
    [165] 诸静编著.模糊控制理论与系统原理[M].北京:机械工业出版社,2005.8
    [166] 刘金琨著.先进PID控制MATLAB仿真[M].第二版.北京:电子工业出版社,2004.9
    [167] 刘明兰,孙立红,钟绍华等.基于自调整因子Fuzzy规则的专家控制器[J].武汉汽车工业大学 学报,1997(4):76~79
    [168] 刘曙光,魏俊民,竺志超编著.模糊控制技术[M].北京:中国纺织出版社,2001.6
    [169] 彭颖红主编.金属塑性成形仿真技术[M].上海交通大学出版社,1999
    [170] 俞汉清,陈金德编.金属塑性成形原理[M].北京:机械工业出版社,1999
    [171] 白金泽编著.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005
    [172] Ted Belytschko,Wing Kam Liu,Brian Moran著.庄茁译.连续体和结构的非线性有限元[M].北京:清华大学出版社,2002
    [173] 王勖成编著.有限元法[M].北京:清华大学出版社,2003
    [174] 刘正兴,孙雁,王国庆编著.计算固体力学[M].上海交通大学出版社,2000
    [175] ANSYS/LS-DYNA算法基础和使用方法.ANSYS/LS-DYNA中国技术支持中心,1999
    [176] 张庭芳,黄菊花等.板料拉深成形数值模拟摩擦模型及参数化实现研究[J].锻压技术,2005(5):15~17
    [177] Lee B H, Keum Y T, Wagoner R H. Modeling of the friction caused by lubrication and surface roughness in sheet metal forming [J]. Journal of Materials Processing Technology,2002(130-131): 60~63
    [178] 郭乙木,陶伟明,庄茁编著.线性与非线性有限元及其应用[M].北京:机械工业出版社,2003.10
    [179] Gantner P., Bauer H., etc. FEA-Simulation of benging process with LS-DYNA. 8th international LS-DYNA users' conference.
    [180] Darlington R. A., Hughes D., Rees M. Design considerations for the pre-bending of tubes for the production of hydroformed components. DRAFT PAPER, EURO-PAM '99'
    [181] Fourment, L. Vieilledent, D., et al. Direct Differentiation and Adjoint State Methods for Shape Optimization of Non-steady Forming Process[J]. Simulation of Materials Processing: Theory, Methods and Applications, 2001, pp. 133-138
    [182] J. Kusiak,. A Technique of Tool-shape Optimization in Large Scale Problems of Metal Forming [J]. J. Mater. Proc. Technol 1996(57), pp.79-84
    [183] J. S. Chung and S. M. Hwang,. Application of a Genetic Algorithm to the Optimal Design of the Die Shape in Extrusion [J]. J. Mater. Proc. Teehnol. 1997(72), pp. 69-77
    [184] H. H. Jo, S. K. Lee, D. C. Ko, and B. M. Kim, .A Study on the Optimal Tool Shape Design in a Hot Forming Process [J]J. Mater. Proc. Technol. 2001(111), pp. 127-131
    [185] 崔逊学.基于多目标优化的进化算法研究[D].博士学位论文,中国科学技术大学,2001.10
    [186] 关志华,寇纪松,李敏强.一种改进的非支配排序遗传算法INSGA[J].天津大学学报,2002,35(4):430~434
    [187] Deb K. Evolutionary Algorithms for Multi-Criterion Optimization in Engineering Design. In: Kaisa M, et al, eds. Evolutionary Algorithms in Engineering and Computer Science, Chapter 8, John Wiley&Sons, Ltd, Chichester, UK, 1999, 135—161
    [188] 林锉云,董加礼编著.多目标优化的方法与理论[M].1992.8
    [189] 李立君,尹泽勇,乔渭阳.基于多目标遗传算法的航空发动机总体性能优化设计[J].航空动力学报,2006,21(1):13~18
    [190] 张文修,梁怡编著.遗产算法的数学基础[M].陕西:西安交通大学出版社,2000.5
    [191] Srinivas N, Deb K. Multi-object optimization using non-dominatd sorting in genetic algorithms [J]. Evolutionary computation, 1994, 2(3): 221~248
    [192] 张勇德.智能多目标优化方法及其应用研究[D].博士学位论文,中国科学院沈阳自动化研究所,2005.1
    [193] 阎志伟,田菁,李汉铃.基于改进的NSGA-Ⅱ算法的区域覆盖卫星星座优化[J].空间科学学报,2004,24(1):43~50
    [194] Kalyanmoy Deb. An efficient constrain handling method for genetic algorithms [J]. Comput. Methods Appli. Mech. Engrg. 2000(186): 311~338
    [195] Goldberg D E. Genetic algorithms in search, optimization and machine leafing [M]. Addison-Wesley, 1989
    [196] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal and T. Meyarivan. A Fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on evolutionary compution, 2002, 6(2): 182~197

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700