用户名: 密码: 验证码:
异形截面空心结构件内高压成形工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
管材内高压成形作为一种制造空心轻体构件的先进制造技术,近年来发展迅速,目前已成为塑性加工领域中一个热点研究方向。但内高压成形还是一门相对年轻的技术,其成形机理十分复杂,目前国际上尚无太多的理论知识和经验可以借鉴,而国内的研究起步较晚,与国外的差距较大。内高压成形技术的迅速发展得益于其在汽车制造业中的广泛应用,而汽车零部件多为复杂空心构件,截面及轴线形状各异,因此开展异形截面构件内高压成形技术的研究,具有重要理论及工程实际意义。本文采用理论分析、数值模拟和试验研究相结合的方法,对带轴向进给直管胀形类及不带轴向进给的预弯管胀形两大类管材内高压成形工艺进行深入分析,探索内高压成形内在规律及工艺控制策略。
     基于金属塑性理论,通过理论解析的方式揭示了两类胀形工艺中管坯自由胀形区应力应变特点及其工艺控制方法。建立了典型直管胀形类零件一非对称三通管有限元模型,通过数值模拟揭示了管坯材料流动、应力应变及壁厚分布特点,分析了左右轴向进给量、最大内压、加载路径形式、摩擦系数及背压等主要工艺参数对成形结果的影响规律,并给出了这类零件内高压成形的工艺设计准则及工艺控制策略。随后,对典型预弯管胀形类异形截面构件—汽车前梁内高压成形过程进行了有限元分析,针对复杂异形截面构件成形工序多、预弯及预成形工序对下道工序影响大等工艺特点,建立了前梁预弯—胀形多道次成形有限元模型,对其成形全过程进行了分析,研究了预弯工序对内高压成形结果的影响,并揭示了其内高压成形过程中管坯材料流动、应力应变及壁厚分布特点及管坯尺寸、内压加载路径形式等主要工艺参数对成形结果的影响规律。针对异形截面构件内高压成形特点,提出一种带预应力的内压加载路径形式,以较低的内压载荷成形小截面圆角并获得了均匀的壁厚分布,最终给出了这类零件内高压成形的工艺控制策略。
     管材内高压成形是一个多重非线性过程,应变路径复杂,生产中常出现起皱、缩颈破裂、屈曲等缺陷。由于易受应变路径影响,传统的基于应变的成形极限图(Forming Limit Diagram,FLD)在预测内高压成形等复杂应变路径下成形极限时误差较大。为此,本文提出将独立于应变路径的成形应力极限图(Forming Limit Stress Diagram,FLSD)引入管材内高压成形研究中,以极限应力作为分析管材成形过程中破裂缺陷产生的判据。文中通过力学性能试验及成形极限试验建立了LF21的FLD并通过塑性应力应变关系及Hill'79屈服准则转换得到LF21的FLSD,分别对三通管及变截面结构件内高压成形过程进行数值模拟,在模拟结果分析中引入FLSD作为破裂极限判据,结果表明FLSD预测结果与传统FLD预测结果相比更接近于理论计算及试验结果,取得了较好的效果,证明FLSD作为管材内高压成形极限判据是准确可行的。
     内高压成形是一个非常复杂的动态过程,内部压力和轴向进给量之间的关系很难用显函数形式表达,目前研究中广泛使用的传统数值模拟及多目标优化方法本质上仍是一种试错寻优法,需要大量仿真工作,耗费人力物力,并且由于路径中控制点的数量限制,传统优化方法并不能实现对加载路径的全程控制,往往只是对极限值的优化。针对这一现状,本文提出一种结合模糊控制与自适应模拟的实时反馈优化方法,建立缺陷控制规则,通过模糊控制器在有限元模拟过程中实时侦测缺陷的发展趋势并反馈至模拟程序以调整工艺参数,避免起皱及破裂缺陷的发生,最终获得优化的成形加载路径。通过对三通管及汽车前梁零件的研究表明:优化加载路径后零件成形质量有了明显改善。模糊控制实现了预期的控制目标。
     最后,在数值模拟及工艺参数优化基础上,设计内高压成形试验装置及模具工装,进行典型异形截面构件一汽车前粱工艺试验,通过物理试验分析了内压加载路径形式、摩擦条件等主要工艺参数对成形结果的影响规律,并对比验证模拟结果。结果显示,模拟结果与试验实测结果吻合度较好,两者最大相对误差不超过10%,从而验证了所建立有限元分析模型及模拟结果的准确性。
Tube hydroforming (THF) is an advanced process of forming closed-section, hollow parts with different cross sections by applying an internal hydraulic pressure and additional axial compressive loads. In the past few years, it has been rapidly developed as a remarkable research area. But it is still not fully implemented in the domestic industry due to its complexity of process and short history. In particular, tubular hydroforming, which makes onestep forming of complex closed hollow parts possible, is effectively used for high volume application in automotive industry because various closed sections resulting in the highest bending and torsional stiffness sectional shape can be easily formed by use of this technology. In this paper, the hydroforming of straight tube with axial feeding and hydroforming of bended tube without axial feeding are studied by plasticity theory, numerical simulation and experiment, the forming rules and process control strategy are discussed.
     Based on metal plasticity theory, the stress strain state and process control principles of two types of hydroforming are proposed. The non-symmetry T-shaped tube is simulated, and the material flow, stress strain state and thickness distribution of non-symmetry T-shaped tube are analysised, the influence of process parameters such as axial feeding, limit pressure, loading path, friction condition and counter force are discussed.Then the process control strategy of this kind of hydroforming parts is delivered. The typical bended hydroforming part—front transom is also investigated, the FEA model of whole process including bending and hydroforming is set up and the influence of bending process is discussed. Aim at the characteristic of profiled cross-section tube hydroforming, this paper present a per-loaded pressure loading path. By this loading path, the forming result is better than that of conventional loading path. The forming part can obtain smaller corner radius and uniform thickness distribution.
     The strain-based forming limit diagram (FLD) as an effective criterion of sheet forming quality has been extensively applied in THF research. But the traditional strain-based FLD is a function of strain history. Strain path effects undermine the utility of the traditional FLD for formability assessment of processes that are inherently non-linear, such as hydroforming of tubes. In this paper, the stress-based forming limit diagram (FLSD) is introduced in the forming limit investigate of tube hydroforming. The forming limit of LF21 Aluminum alloy sheet was tested and its forming limit diagram (FLD) was determined. Then the FLSD of LF21 was constituted by transformation formulas between limit strain and limit stress and Hill'79 yield model. This FLSD was used in conjunction with finite element simulations to predict the onset of fracture and limit forming pressure in tube hydroforming. Results indicate that the simulation result compares well with the theoretics analysis and experimental result and the FLSD is able to predict the forming limit of tube hydroforming with remarkable accuracy.
     In order to overcome the disadvantages of conventional optimization methods, a feedback optimization methods consist of fuzzy logic control algorithm and adaptive simulation is proposed. By failure control rule constituted, failure indicators obtained from the simulation results are used as the input of the fuzzy logical control, and the output sets of the fuzzy logical control are used for adjusting the loading path. In this way, a reasonable loading path for hydroforming parts can be obtained. Its validity is verified by the optimization results of T-shaped tube and front transom.
     At last, on the basis of simulation and optimization results, the experiment equipment and forming die are produced and a series of experiments of front transom are performed. From the experimental results, the influence of pressure loading path pattern and friction condition are investigated. Then, the results from experiments are compared with the results from the FEA simulation and optimization, the percentage error between experiment and simulation results is not exceeding 10%, validated the veracity of FEA results.
引文
[1]周贤宾.加强基础研究、提升竞争能力-浅谈冲压成形技术的发展[R].第九届全国塑性工程学术年会报告,2005,7.
    [2]C.Hartl.Research and advances in fundamentals and industrial applications of hydroforming[J].Journal of Materials Processing Technology,2005,167(2):383-392.
    [3]郎利辉,苑世剑,王仲仁,等.管件内高压成形及其在汽车工业中的应用现状[J].中国机械工程,2004,15(3):268-271.
    [4]田浩彬,林建平,刘瑞同,等.汽车车身轻量化及其相关成形技术综述[J].汽车工程,2005,27(3):381-384.
    [5]韩英淳,于多年,马若丁.汽车轻量化中的管材液压成形技术[J].汽车工程(增刊),2003:3643.
    [6]苑世剑,王仲仁.内高压成形的应用进展[J].中国机械工程,2002,13(9):783-786.
    [7]F.Dohmann,C.Hartl.Tube hydroforrning-research and practical application[J].Journal of Materials Processing Technology,1998,71(1):171-186.
    [8]F.Dohmarm,C.Hartl.Hydroforming-a method to manufacture lightweight parts[J].Journal of Materials Processing Technology,1996,69(6):669-376.
    [9]郎利辉.内高压液力加工技术及其成形过程数值模拟[R].哈尔滨工业大学博士后出站报告,2001.
    [10]李洪洋.内高压成形的应力应变分析与台阶轴内高压成形的研究[D].哈尔滨工业大学博士学位论文,2002.
    [11]F.Dohmann,C.Hartl.Hydroforming:Research and Practical Application[C].Proceedings of 2th International Conference on Innovations in Hydroforming Technology,1997(A):1-45.
    [12]T.Altan.Formability and Design Issues in Tube Hydroforming[C].International Conference on Hydroforming,1999(1),10:1-22.
    [13]苑世剑,郎利辉,王仲仁.内高压成形技术研究与应用进展[J].哈尔滨工业大学学报,2000,32(5):60-63.
    [14]F.Dohmann.Introduction of the Processes of Hydroforming[C].International Conference on Hydroforming,1999(1),10:25-31.
    [15]郎利辉,苑世剑,王仲仁,等.防锈铝变径管内高压成形过程数值模拟[J].中国有色金属学报,2001,11(2):211-216.
    [16]彭颖红.金属塑性成形仿真技术[M].上海:上海交通大学出版社,1999.
    [17]N.Asnafi.Analytical modeling of tube hydroforming[J].Thin-Walled Structures,1999,34(3):295-330.
    [18]郎利辉,苑世剑,王仲仁,等.内高压液力成形缺陷产生及其失效分析[J].塑性工程学报,2001,8(4),30-35.
    [19]王同海.管材塑性加工技术[M].北京:机械工业出版社,1997.
    [20]D.M.Woo.Determination of Stress/Strain characteristics of Tubular Materials[J].Journal of Metals,1968,96:357-359.
    [21]黄建成.管材胀鼓成形之力学解析[D].台湾中山大学硕士学位论文,2001.
    [22]M.Keigler,H.Bauer,D.Harrison.Enhancing the formability of aluminum components via temperature controlled hydroforming[J].Journal of Materials Processing Technology,2005,167(6):363-370.
    [23]Koc.Muammer.Development of design guidelines for part,tooling and process in the tube hydroforming technology[D].The Ohio State University,1999.
    [24]Koc.Muammer,T.Altan.An overall review of the tube hydroforming technology[J].Journal of Materials Processing Technology,2001,108(2):384-393.
    [25]L.P.Lei,B.S.Kang,S.J.Kang.Prediction of the forming limit in hydroforming processes using the finite element method and a ductile rapture criterion[J].Journal of Materials Processing Technology,2001,139(1-3):673-679.
    [26]K.Manabe,S.Nakamura.Finite element simulation of hydroforming process fo pre-bent circular tubes[C].NUMISHEET'99,1999,9:503-308.
    [27]Chi-Mou Ni,Charles J.Bruggemann,T.Hassan.Application of hydroformed aluminum extrusions to vehicle sub-frame with varied wall thickness[R].SAE,3180,1999.
    [28]Jae-bong Yang,Byung-hee Jeon,Soo-Ik Oh.The tube bending technology of a hydroforming process for an automotive part[J].Journal of Materials Processing Technology,2001,111(1-3):175-181.
    [29]S.Atsushi,F.Sadakatsu,N.Michiharu.A trial design method of loading paths by FEM simulator for free hydraulic bugling[C].In:Proceedings of "TUBEHYDRO 2003",Japan:2003,18-21.
    [30]辛啟斌.材料成形计算机模拟[M].北京:冶金工业出版社,2006.
    [31]王瑁成,劭敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997,460-495.
    [32]李人宪.有限元法基础[M].北京:国防工业出版社,2002.
    [33]李乐.三通管液压成形技术有限元模拟及工艺分析[D].重庆大学硕士学位论文,2004.
    [34]杨雨春.多通管挤压胀形工艺及其弹塑性动力显式有限元模拟的研究[D].华中理工大学博士学位论文,1999.
    [35]J.P.Abrantes,C.Lima.Nunerical simulation of an aluminum alloy tube hydroforming[J].Journal of Materials Processing Technology,2006,179(1):67-73.
    [36]F.Dohmann,C.Hartl.Finite clement analysis of forming hollow camshafts using internal high pressure[C].Int.conf on modeling and simulation in metallurgical engineering an materials science,Beijing,1996,7:640-646.
    [37]F.Dohmann,A.Bohm,K.Dudziak.The shaping of hollow shaped workpieces by liquid bulge forming[C].Proeceding of the fourth international conference on technology of plasticity,1993:447-452.
    [38]F.Vollertsen,T.Prange,M.Sander.Hydroforming:needs development and perspectives[C].Proceedings of the 6th ICTP,1999,9:1197-1210.
    [39]Y.M.Hwang,T.Altan.Finite element analysis of tube hydroforming processes in a rectangular die[J].Finite Elements in Analysis and Design,2002,39(4):1071-1082.
    [40]Koc Muammer,T.Altan.Prediction of forming limits and parameters in the tube hydroforming process[J].International Journal of Machine Tools and Manufacture,2002,42(1):123-138.
    [41]M.Strano,T.Altan.An inverse energy approach to determine the flow stress of tubular materials for hydroforming applications[J].Journal of Materials Processing Technology,2004,146(1):92-96.
    [42]G.T.Kridli,L.Bao,P.K.Mallick,Y.Tian.Investigation of thickness variation and comer filling in tube hydroforming[J].Journal of Materials Processing Technology,2003,133(3):287-296.
    [43]S.D.Liu,D.Meuleman.Analytical and experimental examination of tubular hydroforming limits[R].SAE,980449,1998.
    [44]N.Asnafi.On stretch and shrink flanging of sheet aluminium by fluid forming[J].Journal of Materials Processing Technology,1999,96(2):198-214.
    [45]N.Asnafi,T.Nilsson,G.Lassl.Tubular hydroforming of automotive side members with extruded aluminium profiles[J].Journal of Materials Processing Technology,2003,142(1):93-101.
    [46]N.Asnafi,A Skogsgardh.Theoretical and exeimental analysis of stroke-controlled tube hydroforming[J].Matericals Science and Engineering,2000,279:95-110.
    [47]Sungtae Kim,Youngsuk Kim.Analytical study for tube hydroforming[J].Journal of Materials Processing Technology,2002,128:232-239.
    [48]Jeong Kim,L.P.Lei,Sang-Moon Hwang.Manufacture of an automobile lower arm by hydroforming[J].International Journal of Machine Tools and Manufacture,2002,42(1):69-78.
    [49]S.Fuchizawa,M.Narazaki.Experimental investigation into a tube forming method for providing tubes with thickness distribution in axial direction[C].Proceedings of the 6th ICTP,1999,9:1123-1128.
    [50]S.Fuchizawa,M.Narazaki.Bulge forming of aluminum alloy tubes by internal pressure and axial compression[C].Proceedings of the 4th ICTP,1993:497-500.
    [51]吴洪飞,苑世剑,王小松.初始缺陷和比例加载路径对圆柱壳弹塑性稳定性的影响[J].机械工程学报,2003,39(2):53-57.
    [52]王小松,苑世剑,王仲仁.内高压成形起皱行为的研究[J].金属学报,2003,39(12):1276-1280.
    [53]苏岚,王先进,唐荻,等.T型管液压成形过程的有限元分析[J].北京科技大学学报,2002,24(5):537-540.
    [54]雷丽萍,方刚,曾攀,等.汽车后延臂液压胀形的数值模拟[J].机械工程学报,2002,38(10):90-94.
    [55]李伟,韩英淳,史文库.轻型车后桥壳液压胀形仿真与试验研究[J].汽车技术,2007,9:55-58.
    [56]李新军,周贤宾,郎利辉.薄壁管轴压胀形关键工艺参数及成形极限[J].北京航空航天大学学报,2006,32(4):475-480.
    [57]张庆,周磊,赵长财.薄壁管胀形成形极限分析及其数值模拟[J].机械工程学报,2004,40(3):137-139.
    [58]田仲可.薄壁结构件塑性成形技术研究[D].西北工业大学博士学位论文,2002.
    [59]郑再象.汽车用异型截面管件液压成形设备及工艺参数研究[D].南京理工大学博士学位论文,2007.
    [60]周丽新.局部约束的板材液压成形理论与实验研究[D].中科院金属所博士学位论文,2007.
    [61]吴乐尧.管壳零件轴压液力成形过程的数值模拟[D].福州大学硕士学位论文,2002.
    [62]王学生,王如竹,李培宁.复合管液压成形装置及残余接触压力预测[J].中国机械工程,2004,15(8):662-667.
    [63]赵长财,肖宏,张庆.管材胀形中的圆角成形[J].机械工程学报,2006,42(10):115-119.
    [64]郑炳国.管件液压成形技术应用现状与发展趋势[R].管件内高压成形技术应用研讨会,台湾,2003,9.
    [65]王仲仁,苑世剑.塑性加工领域的新进展[J].金属成形工艺,2003,21(5):1-5.
    [66]中国大百科全书:力学篇[M].北京:中国大百科全书出版社,1985:559.
    [67]O.C.Zienkiewicz,R.L.Taylor.The Finite element method[M].4th edition.New York:McGraw-Hill,1991.
    [68]K.K.Gupta,J.L.Meek.A brief history of the beginning of the finite element method[J].International Journal for Numerical Methods in Engineering,1996,39:3761-3774.
    [69]P.V.Marcal,I.P.King.Elastic-plastic analysis of two-dimension stress system by the finite element method[J].Int.J.Mech.Sci.,1967,9:143-155.
    [70]Y.Yamada.Plastic stress-strain matrix and its application for the solution of elastic-plastic problems by the finite element method[J].International Journal of Mechanical Science,1968,10.
    [71]H.Iseki,T.Jimma,T.Murota.Finite element method of analysis of hydrostatic bulging of a sheet metal(Part 1).Bulletin of the JSME,1974,12(112):1240-1246.
    [72]D.M.Woo.The analysis of axisymmetric forming of sheet metal and the hydrostatic bulging process[J].International Journal of Mechanical Science,1964,6:303-317.
    [73]A.S.Wifi.An incremental complete solution of the stretch-forming and deep-drawing of a circular blank using a hemispherical punch[J].International Journal of Mechanical Science,1976,18:23-31.
    [74]N.M.Wang,B.Budiansky.Analysis of sheet metal stamping by a finite element method[J].Journal of Applied Mechanics,ASME,1978,100:73-82.
    [75]P.Hora,M.Skrikerud,T.Longchang.Possibilities and limitations of FEA simulation in hydroforming operations[C].Stuttgart Hydroforming Conference,1999.
    [76]美国ANSYS公司北京办事处.ANSYS非线性分析指南[M].北京:机械工业出版社,1987.
    [77]王国强.实用工程数值模拟技术及其在ANSYS上的实践管材塑性加工技术[M].西北工业大学出版社,1999,8.
    [78]R.H.Thomas,K.L.Wing.Nonlinear finite element analysis of shell(part 1):three-dimensional shells[J].Comp.meths.Appl.Mechs 1981,27:331-362.
    [79]铁摩辛科(美).板壳理论[M].北京:科学出版社,1980.
    [80]钟志华,李光耀.薄板冲压成形过程的计算机仿真与应用[M].北京:北京理工大学出版社,1998.
    [81]LS-DYNA keyword user's manunal[M].Livermore software technolog corporation,1999.
    [82]赵海欧.LS-DYNA动力分析指南[M].北京:兵器工业出版社,2003.
    [83]陈文亮.板料成形CAE分析教程[M].北京:机械工业出版社,2005:46-49.
    [84]林忠钦,等.车身覆盖件冲压成形仿真[M].北京:机械工业出版社,2004:78-84.
    [85]S.C.Tang.Computer prediction of the deformed shape of a draw blank during the binder-wrap stage[J].Journal of Applied Metal Working,1980,1(3):22-29.
    [86]R.Hill.Theoretical plasticity of texture daggregates[J].Mathematical Proceedings Camb Philo sophical Society,1979,8(5):1-79.
    [87]L.Gang,Y.Shijian,T.Bugang.Analysis of thinning at the transition comer in tube hydroforming[J].Journal of Materials Processing Technology,2006,177(4):688-691.
    [88]M.Plancak,F.Vollertsen,J.Woitschig.Analysis,finite element simulation and experimental investigation of friction in tube hydroforming[J].Journal of Materials Processing Technology,2005,170(2):220-228.
    [89]Jeong Kim,Sang-Woo Kim,Woo-Jin Song,Beom-Soo Kang.Analytical and numerical approach to prediction of forming limit in tube hydroforming[J].International Journal of Mechanical Sciences,2005,47:1023-1037.
    [90]林俊峰,苑世剑.空心双拐曲轴内高压成形数值模拟[J].塑性工程学报,2005,12(5):34-38.
    [91]Eta/DYNAFORM User's Manual[M].Engineering Technology Associates,Inc:2004.
    [92]王栋彦,等.Unigraphics快速入门及应用[M].北京:电子工业出版社,2000.
    [93]S.Jirathearanat.Advanced methods for finite element simulation for part and process design in tube hydroforming[D].The Ohio State University,2004.
    [94]M.Koc,T.Allen,S.Jirathearanat,T.Altan.The use of FEA and design of experiment to establish design guidelines for simple hydroformed parts[J].International Journal of Machine Tools and Manufacture,2000,40:2249-2266.
    [95]S.Jirathearanat,C.Hartl,T.Altan.Hydroforming of Y-shapes-product and process design using FEA simulation and experiments[J].Journal of Materials Processing Technology,2004,146(1):124-129.
    [96]Mun-Yong Lee,Sung-Man Sohn,Chang-Young Kang,Sang-Yong Lee.Study on the hydroforming process for automobile radiator support members[J].Journal of Materials Processing Technology,2002,130- 131(1):115-120.
    [97]刘钢,苑世剑,腾步刚.内高压成形矩形断面圆角应力分析[J].机械工程学报,2006,42(6):150-155.
    [98]Y.M.Hwang,W.C.Chen.Analysis of tube hydroforming in a square cross-sectional die[J].International Journal of Plasticity,2005,21:1815-1833.
    [99]陈魁.试验设计与分析[M].北京:清华大学出版社,2005,07.
    [100]赵选民.试验设计与分析[M].北京:科学出版社,2006.
    [101]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005.
    [102]数理统计编写组.数理统计[M].西安:西北工业大学出版社,1999.
    [103]Sung-long Kang,Hyoung-Kwang Kim,Beom-Soo Kang.Tube size effect on hydroforming formability[J].Journal of Materials Processing Technology,2005,160(1):24-33.
    [104]S.Keeler.Circular grid system-a valuable aid for evaluating sheet metal formability[R].SAE,680092,1965.
    [105]G.M.Goodwin.Application of strain analysis to sheet metal forming in the press shop[R].SAE,680093,1968.
    [106]吴建军,周维贤.板料成形性基础[M].西安:西北工业大学出版社,2004.
    [107]梁炳文,胡世光.板料成形塑性理论[M].北京:机械工业出版社,1987.
    [108]杨玉英.大型薄板成形技术[M].北京:国防工业出版社,1996.
    [109]王东.板料应力成形极限研究[D].南京航空航天大学硕士学位论文,2005.
    [110]谢英.复杂加载路径板料成形极限应变图和极限应力图研究[D].北京航空航天大学硕士学位论文,2004.
    [111]R.Hill.A theory of yielding and plastic flow of anisotropic metals[C].Proceedings of Royal Society of London,Series A,1948,193:281.
    [112]R.Hill.A user-friendly theory of orthotropic plasticity in sheet metals[J].International Journal of Mechanical Sciences,1993,35:19.
    [113]R.Hill.On discontinuous plastic states with special reference to localized necking in thin sheets[J].J Mech Phys Solids,1952,1:19-31.
    [114]H.W.Swift.Plastic instability under plane stress[J].J Mech Phys Solids,1952,1:1-18.
    [115]Z.Marciniak,K.Kuezynski.Limit strain in the processes of stretch-forming sheet metal[J].Int J Mech Sci,1967,9:609-620.
    [116]S.Storen,J.R.Rice.Localized necking in thin sheets[J].J Mech Phys Solids,1975,23:421-441.
    [117]陈光南.板料拉伸变形损伤、失稳与成形极限研究[D].北京航空航天大学博士学位论文,1991.
    [118]L.Gao,G.Q.Tong,Y.Guo.Surface roughness evolution and formability of IF sheet steel to grain size and sheet thickness[J].Transactions of NUAA,1999,16:21-27.
    [119]A.Haddad,P.Vacher,R.Arrieux.Numerical determination of forming limit diagrams of orthotropic sheets using the '3G' theory of plasticity[J].Journal of Materials Processing Technology,1999,92-93(3):419-423.
    [120]万敏,周贤宾.复杂加载路径下板料屈服强化与成形极限的研究进展[J].塑性工程学报,2000,2(7):35-39.
    [121]卢国清、邱晓刚.成形极限图的测试、应用和可信度分析[J].理化检验物理分册,2000,38:497-517.
    [122]王元勋,王书恒,沈为,等.矩形盒拉深时变压边力的数值模拟[J].中国机械工程,2007,18(10):1226-1229.
    [123]林敦文,关绍康,卢广玺,等.AlMgSi基合金车身板材成形极限及数值应用[J].机械工程材料,2006,30(4):64-67.
    [124]杨连发,郭成,黄美发.管材自由胀形时极限载荷及成形极限的确定[J].塑性工程学报,2006,13(1):13-17。
    [125]张庆,周磊,赵长财,等.复合管胀形成形极限研究[J].中国机械工程,2002,13(17):1455-1458.
    [126]S.Kohara.Forming limit curves of aluminum and aluminum alloy sheets and effects of strain path on the curves[J].Journal of Materials Processing Technology,1993,38(5):723-735.
    [127]C.L.Chow.Prediction of forming limit diagrams for Al6111 under non-proportional loading[J].International Journal of Mechanical Sciences,2001,43:471-486.
    [128]R.Arrieux,C.Bedrin,M.Boivin.Determination of an intrinsic forming limit stress diagram for isotropic sheets[J].12th IDDRG,1982:61-71.
    [129]T.B.Stoughton.A general forming limit criterion for sheet metal forming[J].International Journal of Mechanical Sciences,2000,42(1):1-27.
    [130]谢英,万敏,韩非.板料成形极限应力图研究[J].机械工程学报,2005,41(7):45-48.
    [131]陈明和,高霖,王辉,等.板料成形极限应力图及其应用研究进展[J].中国机械工程,2005,16(17):1593-1598.
    [132]R.Arrieux.Determination and use of the forming limit stress surface of orthotropic sheets[J].Journal of Materials processing technology,1997,54:25-32.
    [133]P.Vacher,A.Haddad,R.Arrieux.Determination of the forming limit diagrams using image analysis by the correlation method[J].CIRP Annals-Manufacturing Technology,1999,48(1):227-230.
    [134]T.B.Stoughton,Z.Xinhai.Review of theoretical models of the strain-based FLD and their relevance to the stress-based FLD[J].International Journal of Plasticity,2004,20:1463-1486.
    [135]S.Keeler.Forming limits for hydroforming and other simulations[J].Proceedings of AMERIPAM2000,Detroit,USA,Oct.2000.
    [136]GB15825.8-1995,金属薄板成形性能与实验方法:成形极限图(FLD)实验[S].
    [137]胡世光,陈鹤峥.板料冷压成形原理(修订版)[M].北京:国防工业出版社,1989.
    [138]GB15825.2-1995,金属薄板成形性能与实验方法:通用实验规程[S].
    [139]B.S.LEVY.Recommendations on the use of forming limit curves for hydroforming steel[C].Proceedings of the International Conference on Hydroforming,University of Stuttgart,1999: 77-96.
    [140]N.ASNAFI.Theoretical and experimental analysis of stroke-controlled tube hydroforming[J].Journal of Materials Science & Engineering A,2000,279(1-2):95-110.
    [141]L.M.Smith,J.Gholipour,A.Bardelcik.Application of an Extended Stress-Based Flow Limit Curve to Predict Necking in Tubular Hydroforming[C].NUMISHEET 2005,2005,778:511-516.
    [142]Z.Zimniak.Implementation of the forming limit stress diagram in FEM simulations[J].Journal of Materials Processing Technology,2000,106(3):261-266.
    [143]V.Uthaisangsuk,U.Prahl,W.Bleck.Stress based failure criterion for formability characterization of metastable steels[J].Computational Materials Science,2007,39:43-48.
    [144]K.Manabe,M.Suetake,H.Koyama,M.Yang.Hydroforming process optimization of aluminum alloy tube using intelligent control technique[J].International Journal of Machine tools and manufacture,2006,46(3):1207-1211.
    [145]W,Rimkus,H.Bauer,M.J.A.Mihsein.Design of Load-Curve for Hydroforming Application[J].Journal of Materials Processing Technology,2000,108:97-105.
    [146]J.B.Yang,B.H.Jeon.Design Sensitivity Analysis And Optimization of the Hydroforming Process[J].Journal of Materials Processing Technology,2001,113:666-673.
    [147]箫锫元.管液压成形负载条件之最佳化研究[D].台湾中山大学硕士学位论文,2002.
    [148]N.Abedrabbo,N.Zafar,R.Averill.Optimization of a Tube Hydroforming Process[R].SAE,980449,2002.
    [149]F.C.Lin,C.T.Kwan.Application of abductive network and FEM to Predict an acceptable product on T-shape tube hydroforming process[J].Computers and Structures,2004,82:1189-1200.
    [150]A.Aydemir,J.H.P de Vree,W.A.M.Brekelmans.An adaptive simulation approach designed for tube hydroforming processes[J].Journal of Materials Processing Technology,2005,159(2):303-310.
    [151]杨兵,张卫刚,林忠钦.一种管件液压成形加载路径的设计方法[J].上海交通大学学报,2006,40(6):893-897.
    [152]邱建新,张士宏,李国禄,等.均匀设计法、神经网络和遗传算法结合在内高压成形工艺参数优化中的应用[J].2005,12(4):76-79.
    [153]孙庚山,兰西柱.工程模糊控制[M].北京:机械工业出版社,1995.
    [154]P.Ray,B.J.MacDonald.Determination of the optimal load path for tube hydroforming processes using a fuzzy load control algorithm and finite element analysis[J].Finite Elements in Analysis and Design,2004,41:173-192.
    [155]吴宏振.T形管液压成形之自适应性模拟[D].台湾中山大学硕士论文,2003.
    [156]诸静.模糊控制原理与应用[M].北京:机械工业出版社,2005.
    [157]汤兵勇,路林吉,王文杰.模糊控制理论与应用技术[M].北京:清华大学出版社,2002.
    [158]张国良,曾静,柯熙政,等.模糊控制及其MATLAB应用M].西安:西安交通大学出版社,2002.
    [159]李伟.内高压成形设备液压控制系统研究[D].哈尔滨工业大学硕士学位论文,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700