用户名: 密码: 验证码:
AP1000核电蒸发器和非能动换热器管子与管板胀接的数值模拟分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文应用三维有限元方法,对第三代AP1000核电蒸汽发生器和非能动换热器的管子与管板在不同胀接工艺参数下的胀接过程和接头力学行为进行了数值模拟,在此基础上研究了胀接工艺的确定方法。主要的研究工作和结果如下:
     (1)研究了胀接压力、管子与管板初始间隙和材料拉伸性能对管子与管板界面残余接触压力、接头拉脱强度、过渡区残余应力及管子减薄率的影响规律。结果表明:随胀接压力的增加,界面残余接触压力、管子拉脱力、管子减薄率基本呈线性增长趋势;随管子与管板间初始间隙的增加,界面残余接触压力和管子拉脱力减小,管子减薄率增大;管材Alloy690的屈服强度对胀接力学参数有一定影响,而管板材料A508的屈服强度对胀接力学参数基本没有影响。
     (2)计算得到了界面残余接触压力、接头拉脱强度和管子减薄率与胀接压力和管子/管板初始间隙之间的定量关系式。基于这些关系式,分析建立了AP1000蒸发器和非能动换热器管子与管板胀接工艺参数的确定方法。
     (3)对AP1000蒸发器的管子与管板胀接接头的二次侧过渡区,进行了减小残余拉应力的微胀工艺研究,确定了不同胀接压力与管子/管板初始间隙下都适用的最佳微胀位置与最佳微胀压力范围。
By using the three-dimensional finite element simulation, the expanding process and joint performance at different technological parameters have been simulated for steam generator and passive heat exchanger in AP1000 nuclear power. Based on this, the determination method of expanding process parameters has been investigated. The main research work and the results obtained are as follows:
     (1) The effects of expansion pressure, initial clearance and mechanical properties of materials on residual contact pressure at the interface of joints, pull-out strength, the residual stress at the transition zone and the wall reduction have been investigated. The result shows that, with increasing the expansion pressure, the residual contact pressure, the pull-out force and the wall reduction increase linearly. With increasing the initial clearance, residual contact pressure at the interface of joints and pull-out strength decrease, the wall reduction increases. The yield stress of Alloy690 tube material has certain effect on expanding mechanical parameters, while A508 tubesheet material has no effect on them.
     (2) The quantitative equations between expansion pressure, initial clearance and mechanical properties of materials on residual contact pressure at the interface of joints, pull-out strength, and the wall reduction were obtained. Based on these equations, the determination method of expanding process of the AP1000 steam generator and passive heat exchanger has been established.
     (3) The little expanding process in the secondary surface of tube-to-tubesheet joints have been simulated and investigated for AP1000 steam generator. The little expanding process parameters that can be used for joints with different expansion pressure and different initial clearance were obtained.
引文
[1]丁训慎.核电厂蒸汽发生器设计中的安全问题[J].核安全.2005,第2期.
    [2]丁训慎.核电厂蒸汽发生器制造中的安全问题[J].核安全.2006,第1期:15.
    [3]Bullough R, Tomkins B, Wilson R, Wintle JB. A review of methods and applications of reliability analysis for structural integrity assessment of UK nuclear plant[J]. International Journal of Pressure Vessels and Piping,1999,76 (4):909.
    [4]臧希年,申世飞编著.核电厂系统及设备[M].北京:清华大学出版社,2007.
    [5]邹小平.秦山核电二期600 MW蒸汽发生器关键焊接技术[J].锅炉技术.2006,37(4).
    [6]薛松龄.蒸汽发生器中传热管和管板胀接过程的数值模拟[D].哈尔滨:哈尔滨工程大学,2007.
    [7]顾永康.60万kW核电蒸汽发生器的管子与管板焊接[J].焊接.2001,(2).
    [8]朱跃钊,蒋金柱,桑芝富.影响胀接结构可靠性的几个因素[J].压力容器,22(1):12
    [9]孙祥升.换热器管子与管板接头连接方法的试验研究[J].石油化工设备.1996,25(6):38-40.
    [10]陶申昌.管壳式换热器管板与换热管的连接[J].压力容器.2002,19(4).
    [11]聂清德.化工设备设计[M].北京:化学工业出版社,1991:25-26.
    [12]田林宝.胀管方法综述[J].锅炉制造.2000,(3).
    [13]段成红.管子与管板连接接头的强度和密封性能的研究[D].博士学位论文,北京:北京化工大学,2007.
    [14]顾建强.液压胀管极限压力及胀紧力计算[J].压力容器.1993,(01).
    [15]朱敏.传热管与管板连接接头可靠性[J].石油化工设备,2001 30(2):38.
    [16]宋祥春,王福春. Inconel 690管子胀接工艺试验[J].压力容器.2006第23卷第10期.
    [17]徐鸿.换热器管束的失效和提高管束寿命的途径[J].中日第四次化工设备技术交流论文集.
    [18]Yokell S. Expanded, and Welded-and-Expanded Tube-to-Tubesheet Joints[J]. Journal of Pressure Vessel Technology.1992,114(2):157-165.
    [19]Goodier J N Schoessow G J. The Holding Power and Hydraulic Tightness of Expanded Tube Joints:Analysis of The Stress and Deformation [J]. Trans.ASME J.Press.Ves.Tech.1943,65(7):489-496.
    [20]Kohlpaintner W. R. Calculation of Hydraulically Expanded Tube-to-Tubesheet Joints[J]. Journal of Pressure Vessel Technology.1995,117(1):24-30.
    [21]Nadai.A. Theory of the Expanding of Boiler and Condenser Tube Joints Through Rolling[J]. Transactions of the ASME.1943,65:865-868.
    [22]Allam Mahdi A. Analysis of Hydraulically Expanded Tube-to-Tubesheet Joints[D].Montreal:Ecole Polytechnique of Montreal,1996.
    [23]匡良明.静压胀管接头性能分析[J].石油化工设备.1999.
    [24]颜惠庚,李培宁.换热器的液压胀管研究(一)——胀接压力的确定[J].压力容器.1996,2:126-130.
    [25]段成红,钱才富.操作条件对胀接接头密封性能的影响[J].化工设备与管道.2007第44卷第二期.
    [26]段成红,钱才富.换热器管子与管板接头拉脱力的研究[J].北京化工大学学报.2007第34卷第3期.
    [27]李磊,王海峰,桑芝富.换热器管子/管板液压胀接的有限元模拟[J].南京化工大学学报.2001第23卷第6期.
    [28]侯权,潘红良,蔡丽安.换热器管子与管板液压胀合有限元ANSYS分析研究[J].现代机械。2004年第6期.
    [29]王海峰,桑芝富,石庭瑞.液压胀管数值模拟[J].石油化工设备.2001第30卷 第3期.
    [30]王海峰,桑芝富.换热器液压胀接接头残余接触压力[J].南京工业大学学报.2003第25卷第5期.
    [31]王海峰,桑芝富.换热器管子与管板液压胀接接头连接性能[J].石油化工设备.2005,34(1):13.
    [32]Nor Eddine Laghzale,Abdel-Hakim Bouzid. Theoretical Analysis of Hydraulically Expanded Tube-to-Tubesheet Joints With Linear Strain Hardening Material Behavior[J]. Journal of Pressure Vessel Technology,2009, Vol.131.
    [33]Nor Eddine Laghzale,Abdel-Hakim Bouzid. Analytical Modeling of Hydraulically Expanded Tube-To-Tubesheet Joints[J].PVP2007-26690.
    [34]A.S. Banwatt, R.G. Sauve.Calandria Tube to Calandria Tubesheet Roller-Expanded Joint Qualification[J]. PVP2006-ICPVT-11-93645
    [35]A. Al-Aboodi, N. Merah. FEA of the effects of initial tube-tubesheet clearance,wall reduction and material strain hardening on rolled joint strength[J]. PVP2006-ICPVT-11-93202
    [36]Xinjian Duan, Michael J. Kozluk.Structural Integrity Assessment of Steam Generator Tube by the Use of Heterogeneous Finite Element Method [J]. Journal of Pressure Vessel Technology.2008, Vol.130.
    [37]Yoon-Suk Chang,Jong-Min Kim,Nam-Su Huh.Steam Generator Tubes Containing Wear-Type Defects [J]. Journal of Pressure Vessel Technology.2008, Vol.130.
    [38]N. Merah,A. Al-Zayer,A. Shuaib,A. Arif.Finite element evaluation of clearance effect on tube-to-tubesheet joint strength[J].International Journal of Pressure Vessels and Piping 80 (2003) 879-885。
    [39]N. Merah,A. Al-Aboodi,A. N. Shuaib.Combined Effects of Tube Projection, Initial Tube-Tubesheet Clearance, and Tube Material Strain Hardening on Rolled Joint Strength[J]. Journal of Pressure Vessel Technology.2009, Vol.131.
    [40]A. N. Shuaib,N. Merah,M. K. Khraisheh.Experimental Investigation of Heat Exchanger Tubesheet Hole Enlargement[J].Journal of Pressure Vessel Technology.2003, Vol.125.
    [41]Shuaib AN, Merah N, Ahmed M, Al-Nassar YN, Al-Anizi SS. Integrity of Roller-Expanded Tube-to-Tubesheet Joints With Over enlarged Tubesheet Holes[J]. Journal of Pressure Vessel Technology,2008,130(2):1
    [42]颜惠庚,李培宁.换热器的液压胀接研究(二)——残余接触压力与摩擦系数[J].压力容器.1996,13(4):39-43.
    [43]颜惠庚,郁翠菊.换热器液压胀管残余接触压力的工程图算法[J].化工机械.2001,28(4):211-214.
    [44]Soler A. I., Hong Xu. Analysis of Tube-Tubesheet Joint Loading Including Thermal Loading[J]. Journal of Applied Mechanics.1984,51(2):339-344.
    [45]Chaaban A., Ma H., Bazergui A. Tube-Tubesheet Joint:A Proposed Equation for the Equivalent Sleeve Diameter Used in the Single-Tube Model [J]. Journal of Pressure Vessel Technology.1992,114(1):19-22.
    [46]王海峰.幂强化材料的液压胀管残余接触压力理论解[J].石油机械.2007,35(11).
    [47]Allam M., Bazergui A. Axial Strength of Tube-to-Tubesheet Joints:Finite Element and Experimental Evaluations [J]. Journal of Pressure Vessel Techno logy.2002,124(1):22-31.
    [48]陆怡.一种新的液压胀接残余接触压力的测定方法[J].化工机械.2003,30(1).
    [49]Sang Z. F., Zhu Y. Z., Widera G. E. O. Fatigue Behavior of Tube-to-Tubesheet Expanded Joints[J]. Journal of Pressure Vessel Technology.1991,113(2):341-344.
    [50]Sang Z. F., Zhu Y. Z., Widera G. E. O. Reliability Factors and Tightness of Tube-to-Tubesheet Joints[J]. Journal of Pressure Vessel Technology.1996,118(2): 137-141.
    [51]Merah N., Al-AboodiA., Shuaib A. N., Al-Nassar Y., Al-Anizi S. S. Combined Effects of Tube Projection, Initial Tube-Tubesheet Clearance, and Tube Material Strain Hardening on Rolled Joint Strength[J]. Journal of Pressure Vessel Technology.2009, 131(5):051201.
    [52]王海峰.先焊后胀连接中胀接对焊缝区应力的影响[J].石油机械.2009,37(4).
    [53]M. Allam, A. Chaaban, A. Bazergui.Estimation of Residual Stresses in Hydraulically Expanded Tube-to-Tubesheet Joints[J].Journal of Pressure Vessel Technology.1998, Vol. 120/129.
    [54]Rod McGregor,Doug Hornbach.Experimental residual stress evaluation of hydraulic expansion transition in alloy 690 steam generator tubing[J].Proceedings and Symposium Discussions,1995, Breckenridge, CO.
    [55]D. P. Updike,A. Kalnins,S. M. Caldwell.Residual Stresses in Transition Zones of Heat Exchanger Tubes[J].Journal of Pressure Vessel Technology.1992, Vol.114
    [56]Kyu In Shin,Jai Hak Park,Hong-Deok Kim,Han-Sub Chung.Simulation of stress corrosion crack growth in steam generator tubes[J].Nuclear Engineering and Design 214 (2002)91-101.
    [57]D.R. Diercks,W.J. Shack,J. Muscara.Overview of steam generator tube degradation and integrity issues[J].Nuclear Engineering and Design 194 (1999) 19-30。
    [58]L.Cizelj,B.Mavko,H. Riesch-Oppermann & A. Baiicker-Foit.Propagation of stress corrosion cracks in steam generator tubes[J].Int.J.Pres.Ves. & Piping 63 (1995) 35-43.
    [59]Mayumi Ochi,Kiminobu Hojo,Kazuo Ogawa,Naoki Ogawa.Simplified stress intensity factor equation for SCC propagation in the pipe welds[J].PVP2009-78001.
    [60]Nam-Su Huh, Yoon-Suk Chang and Young-Jin Kim.Failure pressure for steam generator tube with two different collinear axial through-wall cracks[J]. PVP2006.
    [61]庄茁等译,有限元软件入门指南[M].北京:清华大学出版社,1998.
    [62]Hibbit, Karlsson, Sorensen, INC. ABAQUS Analysis User's Manual[M]. Vension6.5.2004.
    [63]Lee Woei-Shyan, Liu Chen-Yang, Sun Tai-Nong. Deformation behavior of Inconel 690 super alloy evaluated by impact test[J]. Journal of Materials Processing Technology.2004,153-154:219-225.
    [64]Tanguy B., Besson J., Piques R., Pineau A. Ductile to brittle transition of an A508 steel characterized by Charpy impact test:Part Ⅱ:modeling of the Charpy transition curve[J]. Engineering Fracture Mechanics.2005,72(3):413-434.
    [65]西屋电气公司.西屋公司的AP1000先进非能动型核电厂[J].现代电力.2006,23(5).
    [66]金泰宇.AP1000主要设备的制造技术[J].三代核电技术报告会文集.
    [67]Lee J.H., Park Y.W., Song M.H., Kim Y.J., Moon S.I. Determination of equivalent single crack based on coalescence criterion of collinear axial cracks[J]. Nuclear Engineering and Design.2001,205 (1-2),1-11.
    [68]Park Y.W., Song M.H., Lee J.H., Moon S.I., Kim Y.J. Investigation on the interaction effect of two parallel axial through-wall cracks existing in steam generator tube [J].Nuclear Engineering and Design.2002,214 (1-2),13-23.
    [69]Moon S.-I., Chang Y.-S., Kim Y.-J., Lee J.-H., Song M.-H., Choi Y.-H., Hwang S.-S. Assessment of plastic collapse behavior for tubes with collinear cracks[J]. Engineering Fracture Mechanics.2006,73 (3),296-308.
    [70]Huh N.-S., Kim J.-M., Chang Y.-S., Kim Y.-J., Hwang S.-S., Kim J.-S. Elastic-plastic fracture mechanics assessment for steam generator tubes with through-wall cracks[J]. Fatigue and Fracture of Engineering Materials and Structures.2007,30 (2),131-142.
    [71]Huh Nam-Su, Chang Yoon-Suk, Kim Young-Jin. Failure pressure for steam generator tube with two different collinear axial through-wall cracks.2006,PVP2006-ICPVT-11.
    [72]Chang Y.-S., Huh N.-S., Kim Y.-J., Lee J.-H., Choi Y.-H. Coalescence evaluation of collinear axial through-wall cracks in steam generator tubes [J]. Nuclear Engineering and Design.2007,237 (12-13),1460-1467.
    [73]Kim H.-S., Jin T.-E., Kim H.-D., Chang Y.-S., Kim Y.-J. Restraining effect of support plates on the limit loads for circumferential cracks in the steam generator tube[J].Nuclear Engineering and Design.2008,238 (1),135-142.
    [74]Nak-Hyun Kim, Chang-Sik Oh, Yun-Jae Kim. A method to predict failure pressures of steam generator tubes with multiple through-wall cracks[J].Engineering Fracture Mechanics.2010,842-855.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700