用户名: 密码: 验证码:
转化生长因子β1促进生物稳定性聚氨酯支架表面软骨组织生成
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的评估以生物稳定性聚氨酯(polyurethane PU)为中心支架,应用转化生长因子β1(TGFβ1)促进支架表面残耳软骨细胞生长,制备软骨组织替代物的可行性。
     内容实验采用弹性聚氨酯(polyurethane PU)材料作为中心支架;以体外扩增获得的残耳软骨细胞作种子细胞;以TGFβ1促进软骨组织生长。将细胞-支架复合后,诱导培育形成软骨组织-支架复合物。
     方法
     取残耳软骨组织,胶原酶消化法获得软骨细胞,体外传代培养及生物学特性研究。
     体外实验将第5代软骨细胞接种于支架表面,实验组使用TGFβ1诱导,分别于第1、2、3周取材进行大体观察,组织学和免疫组化检测。应用2x3析因设计处理湿重数值。
     体内实验实验组使用含有TGFβ1的完全培养基,对照组使用普通完全培养基,体外培养1周后,接种于裸鼠皮下。分别于第4、8、12周取材进行大体观察,组织学,免疫组化,RT-PCR和扫描电镜检查。使用SPSS16.0统计软件处理湿重数值。
     结果原代和第1-5代残耳软骨细胞生长旺盛。细胞在聚氨酯支架表面形成软骨组织,向支架内迁移并分泌基质。组织学检测显示基质内有糖胺多糖及Ⅱ型胶原形成,RT-PCR检测到各实验组SOX9、RUNX2、Aggrecan、CollagenX基因表达水平均高于所对应的阳性对照组,扫描电镜显示细胞在支架表面及孔隙内生长。统计显示体内实验中实验组和对照组获得的软骨组织湿重具有显著差异。
     结论残耳软骨细胞能够形成包裹聚氨酯支架的软骨组织层,TGFβ1有促进与聚氨酯支架复合的软骨组织生长的作用。
Objective:The aim of the present study was to evaluate the quality of candidate product based on human-microtia-derived cells and polyurethane scaffold and to identify the necessity of Transforming Growth Factorβ1.
     Contents:Human misshapen auricular chondrocytes from microtia were embedded in elastic polyurethane scaffold and treated with transforming growth factorβ1 to form candidate for cartilage.
     Methods:The human misshapen auricular chondrocytes from microtia were isolated and cultured to observe morphological changes, growth curves. The second passage chondrocytes were identified by immunohistochemistry with collagen type II monoclonal antibody.
     In vitro the fifth passage chondrocytes were embedded in polyurethane scaffold and cultured under the conditions:#1 without growth factors (control);#2 with 10ng/ml of TGFβ1 (test). After 1,2 and 3 weeks, morphological examination were then studied.The specimens were processed hard tissue sections. Sections were cut and performed with histology assessments. After testing the data for normal distribution and equal variance, differences between the groups were analyzed by the Univariate Analysis of Variance. Statistical significance was accepted for a value of p<0.05.
     The fifth passage chondrocytes were directly seeded into polyurethane scaffold and cultured under the conditions:#1 without growth factors (control);#2 with 10ng/ml of TGFβ1(test) for 7 days. Then the chondrocyte-polyurethane constructs were implanted into Balb/c nude mice subcutaneously. After 4,8 and 12 weeks follow-up, the cartilage-scaffold constructs in nude mice were taken out for morphological examination, expressions of collagen typeII, collagen typeⅪ, RunX2, SOX9 and aggrecan in cartilage with RT-PCR, histology assessments and scanning electron microscopy(SEM). After testing the data for normal distribution and equal variance, differences between the groups were analyzed by the Wilcoxon Signed Ranks. Statistical significance was accepted for a value of p< 0.05.
     Results:The growth curve showed that the proliferation of chondrocytes from the first to the fifth passage was powerful. Scanning electron microscopy (SEM) pictures showed that cartilage grew well both inside and outside of the scaffold. Histology slices from the test groups showed a better three-dimensional cell growth and extensive cell distribution inside the scaffolds. The result of RT-PCR showed expression of SOX9, RUNX2, Aggrecan and CollagenX higher in experimental group when compare to corresponding control groups. The wet weight results of cartilage obtained from the mice showed significant difference (p<0.05)between the groups under the conditions:#1 without growth factors(control);#2 with lOng/ml of TGF 0 1(test).
     Conclusion:Biological stabile polyurethane scaffold represent a promising new type of scaffold for the reconstruction of cartilage. TGFβ1 can accelerate the formation of cartilage on the polyurethane scaffold.
引文
[1]Revell C M, Athanasiou K A. Success Rates and Immunologic Responses of Autogenic, Allogenic, and Xenogenic Treatments to Repair Articular Cartilage Defects[J]. TISSUE ENGINEERING,2009,15(1):1-15.
    [2]Burke A J C, Wang T D, Cook T A. Irradiated Homograft Rib Cartilage in Facial Reconstruction[J]. ARCH FACIAL PLAST SURG,2004,6:334-341.
    [3]张之智,胡金明,赵鹏.关节镜下微骨折术修复膝关节软骨缺损[J].中国骨与关节损伤杂志,2008,23(7):578-579.
    [4]成令忠.组织学[M].北京市崇文区天坛西里10号:人民卫生出版社1994:287-295.
    [5]司徒镇强,吴军正.细胞培养[M].西安市北大街85号:世界图书出版西安公司,2008:26-27.
    [6]Martin I, Obradovic B, Freed L E. Method for Quantitative Analysis of Glycosaminoglycan Distribution in Cultured Natural and Engineered Cartilage[J]. Annals of Biomedical Engineering,1999,27:656-662.
    [7]Saim A B, Cao Y, Weng Y. Engineering Autogenous Cartilage in the Shape of a Helix Using an Injectable Hydrogel Scaffold[J]. Laryngoscope,2000, 110:1694-1697.
    [8]苏顺清,辛时林,张一鸣.硅凝胶免疫活性的研究进展[J].中华整形烧伤外科杂志,1999,15(5):378-379.
    [9]马忠泰,金群华.人工关节无菌性松动机制的研究进展[J].中华实验外科杂志,1998,15(2):190-191.
    [10]Methe H, Hess S, Edelman E R. The effect of three-dimensional matrix-embedding of endothelial cells on the humoral and cellular immune response[J]. Seminars in Immunology,2008,20:117-122.
    [11]Song Y, Wennink J W H, Kamphuis M M J. Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering[J].J Biomed Mater Res,2010,95A:440-446.
    [12]Smith I O, Liu X H, Smith L A. Nano-structured polymer scaffolds for tissue engineering and regenerative medicine[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol,2009,1(2):226-236.
    [13]Corey J M, Gertz C C, Wang B. The design of electrospun PLLA nanofiber scaffolds compatible with serum-free growth of primary motor and sensory neurons[J].Acta Biomater,2008,4(4):863-875.
    [14]Hong Y, Guan J, Fujimoto K L. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds[J]. Biomaterials,2010,31:4249-4258.
    [15]Hafeman A E, Li B, Yoshii T. Injectable Biodegradable Polyurethane Scaffolds with Release of Platelet-derived Growth Factor for Tissue Repair and Regeneration[J]. Pharmaceutical Research,2008,25(10):2387-2399.
    [16]Raghunath J, Georgiou G, Armitage D. Degradation studies on biodegradable nanocomposite based on polycaprolactone/polycarbonate (80:20%) polyhedral oligomeric silsesquioxane[J]. Journal of Biomedical Materials Research,2009,91A:834-844.
    [17]Zhu Y, Hu J, Yeung K. Effect of soft segment crystallization and hard segment physical crosslink on shape memory function in antibacterial segmented polyurethane ionomers[J]. Acta Biomaterialia,2009,5:3346-3357.
    [18]Ajili S H, Ebrahimi N G, Soleimani M. Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants[J]. Acta Biomaterialia,2009,5:1519-1530.
    [19]陈昊东,赵剑豪,曾戎.聚碳酸亚丙酯/壳聚糖纳米纤维复合三维多孔支架的构建与性能[J].中国组织工程研究与临床康复,2010,14(21):3873-3877.
    [20]Christophel J J, Chang J S, Park S S. Transplanted Tissue-Engineered Cart ilage[J]. Arch Facial Plast Surg,2006,8:117-122.
    [21]Kon E, Delcogliano M, Filardo G. Novel nano-composite multi-layered biomaterial for the treatment of multifocal degenerative cartilage lesions[J].Knee Surg Sports Traumatol Arthrosc,2009,17:1312-1315.
    [22]Tan Q, Hillinger S, van Blitterswijk C A. Intra-scaffold continuous medium flow combines chondrocyte seeding and culture systems for tissue engineered trachea construction [J]. Interactive CardioVascular and Thoracic Surgery,2008,8:27-30.
    [23]王炜.整形外科学[M].杭州:浙江科学技术出版社,1999,1066-1077.
    [24]Cao Y, Vacanti J, Paige K. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear[J]. Plast Reconstr Surg,1997,100(2):297-302.
    [25]Butler D, Goldstein S, Guilak F. Functional tissue engineering:the role of biomechanics[J]. J Biomech Eng,2000,122:570-575.
    [26]Gimble J. Adipose tissue-derived therapeutics [J]. Expert Opin Biol Ther, 2003,3:705-713.
    [27]Kamil S H, Vacanti M P, Vacanti C A. Microtia Chondrocytes as a Donor Source for Tissue-Engineered Cartilage[J]. Laryngoscope,2004,114:2187-2190.
    [28]Stokes D G, Liu G, Dharmavaram R. Regulation of type-II collagen gene expression during human chondrocyte de-differentiation and recovery of chondrocyte-specific phenotype in culture involves Sry-type high-mobility-group box (SOX) transcription factors[J]. Biochem. J,2001,360:461-470.
    [29]杨建军.聚氨酯医用材料[M].化学工业出版社,2008:142.
    [30]Wetzels G M R, Kode L H. Photoimmobilisation of poly (N-vinyl-pyrrolidinone) as a means to improve haemocompatibility of polyurethane biomaterials [J].Biomaterials,1999,20:1879-1887.
    [31]Tuli R, Tuli S, Nandi S. Transforming Growth Factor-β mediated Chondrogenesis of Human Mesenchymal Progenitor Cells Involves N-cadherin and Mitogen-activated Protein Kinase and Wnt Signaling Cross-talk[J]. THE JOURNAL OF BIOLOGICAL CHEMISTRY,2003,278(42):41227-41236.
    [32]Hunziker E B, Rosenberg L C. Repair of Partial-Thickness Defects in Articular Cartilage:Cell Recruitment from the Synovial Membrane[J]. Journal of Bone and Joint Surgery,1996,78:721-733.
    [33]Crombrugghe B, Lefebvre V, Nakashima K. Regulatory mechanisms in the pathways of cartilage and bone format i on [J]. Curr Opin Cell Biol,2001,13(6): 721-727.
    [34]Lefebvre V, Huang W, Harley V. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alphal (II) collagen gene. [J].1997, 172336-2346.
    [35]Zhang P, Jimenez S, Stokes D. Regulation of human COL9A1 gene expression. Activation of the proximal promoter region by SOX9 [J]. J Biol Chem, 2003,278:117-123.
    [36]Bridgewater L, Lefebvre V, Crombrugghe B. Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2al tissue-specific enhancer[J]. J Biol Chem,1998,273:14998-15006.
    [37]Sekiya I, Tsuji K, Koopman P. SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6[J]. J Biol Chem,2000,275:10738-10744.
    [38]Inada M, Yasui T, Nomura S. Maturational disturbence of chondrocytes in CBF a 1-dificient mice[J]. Dev Dyn,1999,214(4):279.
    [39]Hafeman A E, Li B, Yoshii T. Injectable Biodegradable Polyurethane Scaffolds with Release of Platelet-derived Growth Factor for Tissue Repair and Regeneration [J]. Pharmaceutical Research,2008,25(10):2387-2399.
    [40]Li B, Yoshii T, Hafeman A E. The effects of rhBMP-2 released from biodegradable polyurethane/microsphere composite scaffolds on new bone formation in rat femora[J]. Biomaterials,2009,30:6768-6779.
    [41]Wang F, Li Z, Tamama K. Fabrication and Characterization of Prosurvival Growth Factor Releasing, Anisotropic Scaffolds for Enhanced Mesenchymal Stem Cell Survival/Growth and Orientation[J]. Biomacromolecules,2009,10(9): 2609-2618.
    [1]Hong Y, Guan J, Fujimoto K'L. Tailoring the degradation kinetics of poly (ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds[J]. Biomaterials,2010,31:4249-4258.
    [2]Hafeman A E, Li B, Yoshii T. Injectable Biodegradable Polyurethane Scaffolds with Release of Platelet-derived Growth Factor for Tissue Repair and Regeneration[J]. Pharmaceutical Research,2008,25(10):2387-2399.
    [3]Raghunath J, Georgiou G, Armitage D. Degradation studies on biodegradable nanocomposite based on polycaprolactone/polycarbonate (80:20%) polyhedral oligomeric silsesquioxane[J]. Journal of Biomedical Materials Research,2009,91A:834-844.
    [4]Zhu Y, Hu J, Yeung K. Effect of soft segment crystallization and hard segment physical crosslink on shape memory function in antibacterial segmented polyurethane ionomers[J]. Acta Biomaterialia,2009,5:3346-3357.
    [5]Ajili S H, Ebrahimi N G, Soleimani M. Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants[J]. Acta Biomaterialia,2009,5:1519-1530.
    [6]Khorasani M T, Shorgashti S. Fabrication of microporous polyurethane by spray phase inversion method as small diameter vascular grafts material[J]. Journal of Biomedical Material Research,2006,77A:253-260.
    [7]Rowlands A S, Lim S A, Martin D. Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation[J]. Biomaterials,2007,28:2109-2121.
    [8]Hei jkants R G J C, van Calck R V, van Tienen T G, et al. Polyurethane scaffold formation via a combination of salt leaching and thermally induced phase separation [J]. Journal of Biomedical Materials Research,2008,87(A): 921-932.
    [9]Grenier S, Sandig M, Mequanint K. Polyurethane biomaterials for fabricating 3D porous scaffolds and supporting vascular cells [J]. Journal of Biomedical Materials Research,2007,82A:802-809.
    [10]Srivastava R, Srinivas D, Ratnasamy P. Syntheses of polycarbonate and polyurethane precursors utilizing C02 over highly efficient, solid as-synthesized MCM-41 catalyst [J]. Tetrahedron Letters,2006,47:4213-4217.
    [11]Zhang C, Wen X, R N. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique [J]. Biomaterials,2008,29:3781-3791.
    [12]Wang F, Li Z; Tamama K. Fabrication and Characterization of Prosurvival Growth Factor Releasing, Anisotropic Scaffolds for Enhanced Mesenchymal Stem Cell Survival/Growth and Orientation[J]. Biomacromolecules,2009,10(9): 2609-2618.
    [13]Bashur C A, Shaffer R D, Dahlgren L A. Effect of Fiber Diameter and Alignment of Electrospun Polyurethane Meshes on Mesenchymal Progenitor Cells[J]. TISSUE ENGINEERING,2009,15(9):2435-2445.
    [14]Eglin D, Grad S, Gogolewski S. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering[J]. Journal of Biomedical Materials Research,2010,92A:393-408.
    [15]Blanco T M, Mantalaris A, Bismarck A. The development of a three-dimensional scaffold for ex vivo biomimicry of human acute myeloid leukaemia[J]. Biomaterials,2010,31:2243-2251.
    [16]Li B, Yoshii T, Hafeman A E. The effects of rhBMP-2 released from biodegradable polyurethane/microsphere composite scaffolds on new bone formation in rat femora[J]. Biomaterials,2009,30:6768-6779.
    [17]Zhang L, Zhou J, Lu Q. A Novel Small-Diameter Vascular Graft:In Vivo Behavior of Biodegradable Three-Layered Tubular Scaffolds[J]. Biotechnology and Bioengineering,2008,99(4):1007-1015.
    [18]Fujimoto K L, Guan J, Oshima H, et al. In Vivo Evaluation of a Porous, Elastic, Biodegradable Patch for Reconstructive Cardiac Procedures [J]. Ann Thorac Surg,2007,83:648-654.
    [19]Laschke M W, Strohe A, Menger M D. In vitro and in vivo evaluation of a novel nanosize hydroxyapatite particles/poly(ester-urethane) composite scaffold for bone tissue engineering[J]. Acta Biomaterialia,2009, article in press.
    [20]Gogolewski S, Gorna K. Biodegradable polyurethane cancellous bone graft substitutes in the treatment of iliac crest defects[J]. Journal of Biomedical Materials Research,2007,80 (A):94-101.
    [21]Gogolewski S, Gorna K, Turner A S. Regeneration of bicortical defects in the iliac crest of estrogen-deficient sheep, using new biodegradable polyurethane bone graft substitutes[J]. Journal of Biomedical Materials Research,2006,77 (A):802-810.
    [22]Ganta S R, Piesco N P, Long P. Vascularization and tissue infiltration of a biodegradable polyurethane matrix[J]. Journal of Biomedical Materials Research,2003,64A:242-248.
    [23]Gisselfaelt K, Edberg B, Flodin P. Synthesis and Properties of Degradable Poly (urethane urea) s To Be Used for Ligament Reconstructions [J]. Biomacromolecules,2002,3(5):951-958.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700