用户名: 密码: 验证码:
干旱胁迫下白皮松苗木电阻抗及生理指标的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白皮松(Pinus bungeana Zucc.)是特产中国的珍贵树种,是我国北方主要的园林绿化树种和山区或干旱地带绿化造林优良树种。白皮松造林适宜采用3~4年生容器苗。本试验对4年生白皮松容器苗进行栽植前干旱(土壤相对含水量分别为B1:75~80%(正常浇水),B2:55~60%(轻度干旱),B3:35~40%(严重干旱))和栽植后干旱(土壤相对含水量A1:75~80%,A2:55~60%,A3:35~40%,A4:15~20%(极严重干旱))处理,通过一系列的生理指标的测定(电解质渗透率、可溶性糖、PV曲线参数等)来了解白皮松在栽植前后能够适应的干旱范围,为白皮松科学造林提供理论依据。通过对这些生理指标的分析,来探讨白皮松耐旱机理。另一方面,栽植前和栽植后干旱处理后,进行白皮松苗针叶和茎的电阻抗分析,并得到电阻抗图谱参数的变化规律,得出这些参数随各个生理参数的响应变化曲线,求证相关性。确定可以表征植物抗旱程度的电阻抗参数。为快速检测和评价植物抗旱性提供新的技术手段。主要结果如下:
     1.栽植前干旱B3处理下,针叶含水量无显著降低,电解质渗透率增加,叶绿素含量和最大光合效率(Fv/Fm)降低。表明栽植前干旱B3处理对针叶有一定伤害。栽植后如果正常浇水,这些影响将消除;如果遭遇栽植后干旱,B3处理的受害程度不比B1和B2处理的深,表明白皮松容器苗造林在栽植前遭到严重干旱胁迫(35~40%)时不会影响造林后的表现。然而栽植后严重干旱胁迫A3和A4处理4周后,白皮松针叶的含水量降低,电解质渗透率增加,Fv/Fm降低,表明白皮松受害。因此应避免栽植后初期4周以上严重干旱胁迫。
     2.栽植前和栽植后干旱都造成了针叶内可溶性糖和淀粉含量的降低,表明干旱下针叶内碳水化合物在输出。栽植后严重干旱A3和A4处理下,超氧化物岐化酶(SOD)活性随干旱胁迫,表现为“升高-降低-升高”,然后在长期的极严重干旱胁迫(A4)下降低,认为是白皮松针叶内主要的保护酶。过氧化物酶(POD)活性随干旱胁迫降低,只在试验最后,严重干旱处理(A3,A4)的POD活性升高,认为不是白皮松针叶内保护酶系统的关键酶。蛋白质含量在严重干旱胁迫(A3,A4)下,先诱导新的蛋白产生而使总蛋白量增加,然后在干旱后4周受到严重伤害后降低,表明蛋白质是重要的调节物质。超氧阴离子在严重干旱胁迫A4处理下始终保持高含量,表明A4处理下白皮松受到活性氧伤害。
     3.栽植前和栽植后干旱对白皮松针叶的含水量和电解质渗透率的影响比对茎更早,更大。白皮松受到干旱后,针叶中产生的可溶性糖和淀粉向茎中转移,使茎中的可溶性糖含量增加,以利于茎的抗旱性。干旱胁迫下茎的淀粉含量降低,可能是转化成为了可溶性糖来增加渗透调节能力。栽植前和栽植后干旱都造成了根系活力的增强。
     4.白皮松苗木在初始质壁分离时的相对含水量(RWCtlp)大部分都高于90%,所以认为白皮松苗木的忍耐脱水能力不强。在A3和A4干旱胁迫处理下,主要通过降低初始质壁分离时的渗透势(ψwtlp)和饱和含水时的渗透势(ψssat)来维持最低膨压和保持最大膨压,从而增强抗旱性。在A2和A3处理下,通过增加束缚水含量,和轻微地增加忍耐脱水能力来增强抗旱性。在A1和A4处理下,还可以通过调节细胞壁弹性来增强抗旱性。
     5.栽植前干旱处理下,针叶的电阻抗图谱和参数变化不大。栽植后干旱处理引起电阻抗图谱和参数发生改变。针叶的胞内电阻率(ri)和高频电阻(r∞)随干旱时间延长,在A1和A2处理下升高,在A3和A4处理下变化不大。针叶的胞外电阻率(re)和细胞膜时间恒量(τm)在A4处理下大幅度降低。电阻抗参数和针叶的含水量、相对电导率、叶绿素含量、F_v/F_m、可溶性糖含量的变化密切相关。其中,r_e和τ_m变化规律性更强,与F_v/F-m(r=0.54~0.89)、含水量(r=0.74~0.98)、可溶性糖含量(r=0.52~0.96)在3周以上为线性正相关,与相对电导率(r=-0.54~-0.97)、叶绿素含量为线性负相关(r=-0.62~-0.8),因此,认为这两个参数可以作为估测白皮松针叶抗旱性的最佳指标。
     6.茎的r_1, r_2, r_e和弛豫时间τ2在严重干旱胁迫A4下降低,r和r_i变化不大;茎的弛豫时间τ_1在A4处理干旱胁迫下,前4周高于A1,在干旱5周后显著降低;在干旱胁迫5周后,茎的弛豫时间的分布系数ψ2在A2,A3和A4处理下比A1处理的高。其中r1和re在A4处理下变化规律更强,与含水量、相对电导率、可溶性糖含量、淀粉含量、根系活力都在3周以上有显著相关性(R2>0.5),与淀粉含量(r=0.51~0.97)、含水量(r=0.71~0.97)在3周以上为线性正相关,和相对电导率为负相关(r=-0.75~-0.99),因此认为这两个参数可以作为估测白皮松茎抗旱性的最佳指标。
Pinus bungeana Zucc. is a Chinese special precious species. It is a kind of main landscaping species in the northern part of China and the excellent tree of afforestation in arid region and mountainous areas. Three or four year-old container seedlings are suitable for the forestation. In this experiment, we treated 4-year-old P. bungeana container seedlings with preplanting (soil relative water content was B1: 75-80% (normal irrigation), B2: 55-60% (light drought), and B3: 35-40% (severe drought)) and postplanting (A1: 75-80%, A2: 55-60%, A3: 35-40%, and A4: 15-20%) drought, measured a series of physiologic indexes (Electrolyte leakage, soluable sugar, PV curve parameters and so on), aiming to find what scope of drought the P. bungeana could tolerate before and after planting, and offer the theoretical guide for scientific forestation. Based on the analysis of the physiologic indexes, it is aimed to explore the mechanism of drought resistance of P. bungeana. In addition, after preplanting and postplanting drought treatments, we measured the electrical impedance parameters of needles and stems of P. bungeana, and followed the change rules of the parameters. The correlation between electrical impedance parameters and various physiological parameters was studied to find the best impedance parameters which can estimate the plant drought-resistance degree, and provide a technical method for fast monitoring and assessing plant drought-resistance. Main results are as follows:
     1. Under preplanting B3 treatment (severe drought), water content of needles did not decrease significantly, electrolyte leakage of needles increased, chlorophyll content and maximal PS II efficiency (F_v/F_m ) of needles declined significantly. These changes suggested that needles were damaged to some extent. Such effects would be ignored if normal irrigation was given after planting. However, if postplanting drought happened, injury degree of B3 treatment was not deeper than that of B1 and B2. So for preplanting severe drought of container seedlings would not affect the seedlings performance after planting. After 4 weeks A3 and A4 severe drought treatments, water content of needles decreased, electrolyte leakage of needles increased, and F_v/F_m of needles declined significantly, indicating that needles were injured. We therefore suggest that in the early phase after planting, more than 4 weeks severe drought should be avoided.
     2. Preplanting and postplanting drought caused decrease in soluble sugar and starch content of needles, suggesting that the carbohydrates in needles outputed under the drought stress. Under postplanting severe drought A3 and A4 treatments, Superoxide dismutase (SOD) changed with a trend of“rise– decrease– rise”, then decreased in long-term extremely severe drought stress (A4). So SOD is thought as main protective enzyme in needles of P. bungeana seedlings. Peroxidase (POD) activity decreased with drought stress in the early four weeks, and r_ised only after five weeks severe drought treatments (A3, A4). Thus, POD activity is not regarded as key enzyme of protective enzyme system in needles of P. bungeana seedlings. The total protein content increased in severe drought stress (A3, A4) through producing new protein in the early drought phase, and decreased after four weeks ser_ious drought injury, showing that protein was an important regulating substance. Super oxide anion always remained high in severe drought stress (A4), showed that P. bungeana seedlings was damaged by active oxygen under A4 treatment.
     3. Effects of preplanting and postplanting drought on water content and electrolyte leakage of needles in P. bungeana seedlings were earlier and larger than those of stems. Soluble sugar and starch produced in needles transfered to stems under drought stress, to make the soluble sugar content of stems increased, and to strengthen drought resistance of the stems. Starch content of stems reduced under drought stress, probably because starch content in stems transformed to soluble sugar to increase the osmotic adjustment ability. Preplanting and postplanting drought caused the enhance of root activity.
     4. The relative water content at incipient plasmolysis (RWCtlp) of P. bungeana seedlings was mostly higher than 90%. So we think endurance dehydration capability of P. bungeana seedlings was not strong. Under A3 and A4 drought stress, P. bungeana seedlings mainly decreased osmotic potential at incipient plasmolysis (ψwtlp) and maximum osmotic potential at saturation point (ψssat) to maintain minimum turgor pressure and maximum turgor pressure, thereby increasing drought resistance. Under A2 and A3 drought strss, P. bungeana seedlings increased drought resistance through increasing bound water volume and slightly raising endurance dehydration capability. Under A1 and A4 treatments, P. bungeana seedlings also adjusted cell wall elasticity to increase the drought resistance. 5. After preplanting drought treatments, electr_ical impedance spectra and parameters of needles did not change a lot. Postplanting drought treatments caused the changes in electr_ical impedance spectra and parameters. With prolonged drought, intracellular resistance (r_i) and high frequency resistance (r∞) of needles r_ised under A1 and A2 treatments, and changed little under A3 and A4 treatments. Extracellular resistance (re) and membrane time constant (τ_m) decreased greatly under A4 treatment. Some impedance parameters closely related to water content, relative electr_ical conductivity, chlorophyll content, F_v/F_m , and soluble sugar content in needles. Among these impedance parameters, re andτ_m correlated better, and had linear positive correlations with F_v/F_m (r=0.54~0.89), water content (r=0.74~0.98), and soluble sugar content (r=0.52~0.96) in three weeks, while had negative linear correlations with relative electr_ical conductivity (r=-0.54~-0.97), and chlorophyll content (r=-0.62~-0.8). Therefore, re andτ_m could be regarded as the best parameters to estimate the drought resistance of needles in P. bungeana seedlings.
     6. Impedance parameters r_1, r2, re and relaxation timeτ2 of stems decreased, whereas r and r_i did not change a lot under severe drought stress (A4). Relaxation timeτ1 of stems under A4 treatment was higher than that under A1 in the first four weeks, and decreased significantly after five weeks drought. After five weeks drought stress, distr_ibution coefficient (ψ2 ) of relaxation timeτ2 of stems was higher under A2, A3 and A4 treatments than that under A1 treatment. Among the impedance parameters, r_1 and re changed regularly under A4 drought treatment, and had significant correlations with water content, relative electrical conductivity, soluble sugar content, starch content and root activity in three weeks (R~2>0.5), and had positive linear correlations with starch content (r=0.51~0.97) and water content (r=0.71~0.97), negative linear correlations with relative electrical conductivity (r=-0.75~-0.99) in three weeks. So r_1 and re could be regarded as the best parameters to estimate the drought resistance of stems in P. bungeana seedlings.
引文
[1] Kramer P J. Water relations of plants[M]. New York and London: Academic Press, 1983.
    [2]武维华.植物生理学[M].北京:科学出版社, 2003.
    [3]张建国,李吉跃.京西山区人工林水分参数的研究(Ⅲ)[J].北京林业大学学报, 1994, 16(4): 46-54.
    [4] Levitt J. Response of plant to environmental stresses[M]. New York: Academic Press, 1972.
    [5] Kramer P J, Kozlowski T T. Physiology of woody plants[M]. New York, San Francisco, London: Academic press, 1979. 811.
    [6] Turner N C. Adaptation to water deficit: A changing perspective[J]. Australian Journal of Plant physiology, 1983, 13: 175-190.
    [7]李吉跃,张建国.北方主要造林树种耐旱机理及其分类模型的研究(Ⅰ)[J].北京林业大学学报, 1993, 15(3): 1-11.
    [8] Dickmann D I. Photosynthesis, water relations and growth of two hybrid Populus genotypes during a severe drought[J]. Canadian Journal of Forest Research, 1992, 22(8): 1092-1106.
    [9] Rhizopoulou S. Influence of soil drying on root development, water relations and leaf growth of Ceratonia siliqua L.[J]. Oecolgia, 1991, 88(1): 41-47.
    [10]喻方圆,徐锡增, Robert D,等.水分和热胁迫对5种苗木生长及生物量的影响[J].南京林业大学学报(自然科学版), 2003, 27(4): 10-14.
    [11] Mazzoleni S. Differential physiological and morphological responses of two hybrid Populus clones to water stress[J]. Tree Physiol, 1988, 4: 61-70.
    [12] Hsiao T C. Plant responses to water stress[J]. Annual Review of Plant Physiology, 1973, 24: 519-570.
    [13]杨鹏辉,李贵全,郭丽,等.干旱胁迫对不同抗旱大豆品种花荚期质膜透性的影响[J].干旱地区农业研究, 2003, 21(3): 127-130.
    [14]王宇超,王得祥,彭少兵,等.干旱胁迫对木本滨藜生理特性的影响[J].林业科学, 2010, 46(1): 61-67.
    [15]陈立松,刘星辉.水分胁迫对荔枝叶片呼吸代谢有关酶活性的影响[J].林业科学, 2003, 39(2): 39-43.
    [16]陈颖,谢寅峰,沈惠娟,等.银杏幼苗对水分胁迫的生理响应[J].南京林业大学学报(自然科学版), 2002, 26(2): 55-58.
    [17]李永杰,李吉跃,蔡囊,等.铅胁迫对大叶黄杨铅积累量及叶片生理特性的影响[J].水土保持学报, 2009, 23(5): 257-260.
    [18] Wu F Z, Bao W K, Li F L, Wu N. Effects of drought stress and N supply on the growth, biomass partitioning and water use efficiency of Sophora davidii seedlings[J]. Environmental and Experimental Botany, 2008, 63: 248-255.
    [19]哈申格日乐,宋云民,李吉跃,等.水分胁迫对毛乌素地区4树种幼苗生理特性的影响[J].林业科学研究, 2006, 19 (3): 358-364.
    [20]阮晓,王强,许宁一,等.白梭梭同化枝对干旱胁迫的生理生态响应[J].林业科学, 2005, 41(5): 28-32.
    [21]柯玉琴,庄重光,何华勤,等.不同灌溉处理对铁观音茶树光合作用的影响[J].应用生态学报, 2008, 19(10): 2132-2136.
    [22]樊卫国,刘国琴,何嵩涛,等.刺梨对土壤干旱胁迫的生理响应[J].中国农业科学, 2002, 35(10): 1243-1248.
    [23]杨燕,刘庆,林波,等.不同施水量对云杉幼苗生长和生理生态特性的影响[J].生态学报, 2005, 25(9): 2152-2158.
    [24]邹春静,韩士杰,徐文铎,等.沙地云杉生态型对干旱胁迫的生理生态响应.[J].应用生态学报, 2003, 14(9): 1446-1450.
    [25]王晶英,赵雨森,王臻,等.干旱胁迫对银中杨生理生化特性的影响[J].水土保持学报, 2006, 20(1): 197-200.
    [26]李芳兰,包维楷,吴宁.白刺花幼苗对不同强度干旱胁迫的形态与生理响应[J].生态学报, 2009, 29(10): 5406-5416.
    [27]李在军,冷平生,从者福.黄连木对干旱胁迫的生理响应[J].植物资源与环境学报, 2006, 15(3): 47-50.
    [28] GalléA, Haldimann P, Feller U. Photosynthetic performance and water relations in young pubescent oak (Quercus pubescens) trees during drought stress and recovery[J]. New Phytologist, 2007, 174: 799-810.
    [29]孔艳菊,孙明高,胡学俭,等.干旱胁迫对黄栌幼苗几个生理指标的影响[J].中南林学院学报, 2006, 26(4): 42-46.
    [30]黎燕琼,刘兴良,郑绍伟,等.泯江上游干旱河谷四种灌木的抗旱生理动态变化[J].生态学报, 2007, 27(3): 870-878.
    [31]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报, 1999, 16(4): 444-448.
    [32] Demmig, Adams, Adams III. W.W. Photoprotection and other responses of plants to high light stress[J]. Annual Review of Plant Physiology and Plant Morecular Biology, 1992, 43: 599-626.
    [33] Maxwell K, Johnson G N. Chlorophyll fluorescence practical guide[J]. Journal of Experimental Botany, 2000, 51: 659-668.
    [34]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报, 2006, 18(1): 51-55.
    [35] Gillies S L, Binder W D. The effect of sub-zero temperatures in the light and dark on cold-hardened, dehardened and newly flushed white spruce (Picea glauca [Moench.] Voss) seedlings[J]. New Forests, 1997, 13: 91-104.
    [36]赵丽英,邓西平,山仑.水分亏缺下作物补偿效应类型及机制研究概述[J].应用生态学报, 2004, 15(3): 523-526.
    [37]赵丽英,邓西平,山仑.渗透胁迫对小麦幼苗叶绿素荧光参数的影响[J].应用生态学报, 2005, 16(7): 1261-1264.
    [38] Qiu B S, Zhang A H, Liu Z L, et al. Studies on the photosynthesis of the terrestrial cyanobacterium Nostoc flagelliforme subjected to desiccation and subsequent rehydration[J]. Phycologia, 2004, 43(5): 521-528.
    [39] Lu C M, Zhang J H. Effects of water stress on photosystem II photochemistry and its thermo stability in wheat plants[J]. Journal of Experimental Botany, 1999, 50: 1199-1206.
    [40]付士磊,周永斌,何兴元,等.干旱胁迫对杨树光合生理指标的影响[J].应用生态学报, 2006, 17(11): 2016-2019.
    [41]王良桂,张春霞,彭方仁,等.干旱胁迫对几种楸树苗木叶片荧光特性的影响[J].南京林业大学学报(自然科学版), 2008, 32(6): 119-122.
    [42]孙景宽,张文辉,陆兆华,等.干旱胁迫下沙枣和孩儿拳头叶绿素荧光特性研究[J].植物研究, 2009, 29 (2): 216-223.
    [43]李伟,曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响[J].西北植物学报,2006, 26(2): 266-275.
    [44] Yoshiji O, Teruo S, Masashi T. Turgor regulation in a brackish charophyte[J]. Plant & Cell Physiology, 1984, 25: 572-581.
    [45]谭勇,梁宗锁,安玉艳.冬季干旱胁迫下黄土高原三种常绿树种叶片渗透调节物质变化研究[J].水土保持研究, 2007, 14(3): 70-73. [ 46 ] Li T H, Li S H. Leaf responses of micropropagated apple plants to water stress nonstructural carbohydrate composition and regulatory role of metabolic enzyme[J]. Tree physiology, 2005, 25: 495-504.
    [47]赵军营,李绍华,代占武,等.半根和全根干旱对嘎拉苹果组培苗渗透调节物质积累的影响.西北植物学报, 2005, 25(12): 2484-2489.
    [48]黄国文,陈良碧.干旱对上部烟叶细胞结构和化学成分的影响[J].生命科学研究, 2000, 4(2): 183-187.
    [49]任安芝,高玉葆,王巍,等.干旱胁迫下内生真菌感染对黑麦草光合色素和光合产物的影响.生态学报, 2005, 25(2): 225-231.
    [50]马新明,熊淑萍,李琳.土壤水分对不同专用小麦后期光合特性及产量的影响[J].应用生态学报, 2005, 16(1): 83-87.
    [51]范雪梅,姜东,戴廷波,等.花后干旱或渍水下氮素供应对小麦光合和籽粒淀粉积累的影响[J].应用生态学报, 2005, 16 (10): 1883-1888.
    [52]孙广玉,侯晨.盐碱土条件下马蔺幼苗渗透调节物质和光合特性对干旱的响应[J].水土保持学报, 2008, 22(2): 202-205.
    [53]朱秀红,郝绍菊,茹广欣,等.干旱梯度下刺槐无性系生理指标的变化与品种抗旱性的关系[J].山东农业科学, 2006(2): 48-50.
    [54]魏良民.几种旱生植物碳水化合物和蛋白质变化的研究[J].干旱地区研究, 1991, 8(4): 38-41.
    [55]李妮亚,高俊凤,汪沛洪.小麦幼苗水分胁迫诱导蛋白的特征[J].植物生理学报, 1998, 24(1): 65-71.
    [56]王红梅,包维楷,李芳兰.不同干旱胁迫强度下白刺花幼苗叶片的生理生化反应[J].应用与环境生物学报, 2008, 14 (6): 757-762.
    [57]陈成升,谢志霞,刘小京.等渗盐分、干旱胁迫下冬小麦叶片部分渗透调节物质的动态变化[J].植物研究, 2009, 29 (6): 708-713.
    [58]康俊梅,杨青川,樊奋成.干旱对苜蓿叶片可溶性蛋白的影响[J].草地学报, 2005, 13(3): 199-202.
    [59]林植芳,李双顺,林桂珠.水稻叶片的衰老与超氧化物歧化酶活性及脂质过氧化作用的关系[J].植物学报, 1984, 26(6): 605-615.
    [60] McCord J M, Fridovich I. Superoxide dismutase: Anenzymic function for erythrocuprein (hemocuprein) [J]. Jounal of Biological Chemistry, 1969, 244: 6049-6055.
    [61]李雄彪,吴琦.植物细胞壁[M].北京大学出版社, 1993.
    [62]王孟本,冯彩平,李洪建,等.树种保护酶活性与PV曲线水分参数变化的关系[J].生态学报, 2000, 20(1): 173-176.
    [63]杨建伟,周索,韩蕊莲,等.土壤干旱对刺槐蒸腾变化及抗旱性研究[J].西北林学院学报, 2006, 21(5): 32-36.
    [64]常硕其,彭克勤,段继春.茶树干旱胁迫研究进展[J].中国农学通报, 2005, 21(3): 194-196.
    [65]王贺正,马均,李旭毅,等.水分胁迫对水稻结实期活性氧产生和保护系统的影响[J].中国农业科学, 2007, 40(7): 1379-1387.
    [66]汤春芳,刘云国,曾光明,等.镉胁迫对萝卜幼苗活性氧产生、脂质过氧化和抗氧化酶活性的影响[J].植物生理与分子生物学学报, 2004, 30: 469-474.
    [67]田小磊,吴晓岚,李云,等.盐胁迫条件下γ-氨基丁酸对玉米幼苗SOD、POD、及CAT活性的影响[J].实验生物学报, 2005, 38(1): 75-79.
    [68] Jonaliza C L, Grenggrai P, Boonrat J, et al. Quantitative traitloci associated with drought tolerance at reproductive stage in rice[J]. Plant Physiology, 2004, 135: 384-399.
    [69]魏爱丽,王志敏,陈斌,等.土壤干旱对小麦绿色器官光合电子传递和光合磷酸化活力的影响[J].作物学报, 2004, 30: 487-490.
    [70]孙一荣,朱教君,康宏樟.水分处理对沙地樟子松幼苗膜脂过氧化作用及保护酶活性影响[J].生态学杂志, 2008, 27(5): 729-734.
    [71]薛设,王进鑫,吉增宝,等.旱后复水对刺槐苗木叶片保护酶活性和膜质过氧化的影响[J].西北农林科技大学学报(自然科学版), 2009, 37(7): 81-85.
    [72]季孔庶,孙志勇,方彦.林木抗旱性研究进展[J].南京林业大学学报(自然科学版), 2006, 30(6): 123-128.
    [73] Kramer P, Boyer J. Water relations of plants and soils[M]. San Diego: Academic Press, 1995.
    [74]段九菊,郭世荣,康云艳,等.盐胁迫对黄瓜幼苗根系生长和多胺代谢的影响[J].应用生态学报, 2008, 19(1): 57-64.
    [75]赵忠,李鹏.渭北黄土高原主要造林树种根系分布特征及抗旱性研究[J].水土保持学报, 2002, 16(1): 97-100.
    [76]吴洪生,尹晓明,刘东阳,等.镰刀菌酸毒素对西瓜幼苗根细胞跨膜电位及叶细胞有关抗逆酶的抑制.中国农业科学, 2008, 41(9): 2641-2650.
    [77]何兴东,从培芳,高玉葆,等.利用压力-容积曲线研究四种草本植物的抗旱性.南开大学学报(自然科学版), 2006, 39(3): 16-22.
    [78] Scholander P F, Hammel H T, Bradstreet E D, et al. Sap pressure in vascular plants[J]. Science, 1965, 148: 339-346.
    [79] Tyree M T, Richter H. Alternate methods of analyzing water potential isotherms: some cautions and clarifications.II. Curvilinearity in water potential isotherms[J]. Canadian Journal of Botany, 1982, 60: 911-916.
    [80] Cheung Y N S, Tyree M T, Dainty J. Some possible sources of error in determining bulk elastic moduli and other parameters from pressure-volume curves of shoots and leaves[J]. Canadian Journal of Botany, 1976, 43: 758-765.
    [81] Richter H. A diagram for the description of water relations in plant cells and organs[J]..Journal of Experimental Botany, 1978, 29: 1197-1203.
    [82]马瑞昆,蹇家利, Richter H. PV曲线压力室技术改进[J].植物生理学通讯, 1990, 4: 65-67.
    [83] Schulte P, Hinckley T. A comparison of pressure-volume curve data analysis technique[J]. Journal of Experimental Botany, 1985, 36: 1590-1602.
    [84]李吉跃. PV技术在油松侧柏苗木抗旱特性研究中的应用[J].北京林业大学学报, 1989, 11: 3-11.
    [85]王孟本,李洪建,柴宝峰,等.黄土区树种抗旱性特性的研究[J].植物研究, 1999, 19: 341-346.
    [86]冯今朝.沙生植物水分特征曲线及水分关系的初步研究[J].中国沙漠, 1995, 15: 222-226.
    [87]沈繁宜,李吉跃.植物叶组织弹性模量新的计算方法[J].北京林业大学学报, 1994, 16: 35-40.
    [88]韩刚,李彦瑾,孙德祥,等. 4种沙生灌木幼苗PV曲线水分参数对干旱胁迫的响应[J].西北植物学报, 2008, 28 (7): 1422 -1428.
    [89]王孟本,李洪建,柴宝峰.晋西北3个树种抗旱性指数的研究[J].植物研究, 1996, 6(2): 195-200.
    [90] Ackmann J J, Seitz M A. Methods of complex impedance measurements in biological tissue[J]. CRC Critical Review in Biomedical Engineering, 1984, 11: 281-311.
    [91] Zhang M I N, Willison J H M, Cox M A, et al. Measurement of heat injury in plant tissues by using electrical impedance analysis[J]. Canadian Journal of Botany, 1993, 71: 1605-1611.
    [92] Repo T, Zhang M I N, Ryypp? A, et al. Effects of freeze-thaw injury on parameters of distributed electrical circuits of stems and needles of Scots pine seedlings at different stages of acclimation[J]. Journal of Experimental Botany, 1994, 45: 823-833.
    [93] Burr K E B, Hawkins C D B, L’Hirondelle S J L, et al. Methods for Measuring Cold Hardiness of Conifers[A]. In: Bigras FJ, Colombo SJ (eds). Conifer Cold Hardiness[C]. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2001. 369-401.
    [94] MacDougall R C, Thompson R G, Piene H. Stem electrical capacitance and resistance measurements as related to total foliar biomass of balsam fir trees[J]. Canadian Journal of Forest Research, 1987, 17: 1071-1074.
    [95] Cox M A, Zhang M I N, Willison J H M. Apple bruise assessment through electrical impedance measurements[J]. Journal of Horticultural Science, 1993, 68: 393-398.
    [96] Stout D G. Effect of cold acclimation on bulk tissue electrical impedance. I. Measurements with birdsfoot trefoil at subfreezing temperatures[J]. Plant Physiology, 1988a, 86: 275-282.
    [97] Stout D G. Effect of cold acclimation on bulk tissue electrical impedance. II. Measurements with alfalfa and birdsfoot trefoil at nonfreezing temperatures[J]. Plant Physiology, 1988b, 86: 283-287.
    [98] Repo T, Zhang M I N. Modelling woody plant tissues using a distributed electrical circuit[J]. Journal of Experimental Botany, 1993, 44: 977-982.
    [99] Repo T, Leinonen M, Paakkonen T. Electrical impedance analysis of shoots of Scots pine: intracellular resistance correlates with frost hardiness[A]. In: Proceedings of the Finnish-Japanese Workshop on Molecular and Physiological Aspects of Cold and Chilling Tolerance of Northern Crops[C], 17-20 March, Jokioinen, Finland, 1997. 27-30.
    [100] Repo T, Zhang G, Ryypp? A, et al. The relation between growth cessation and frost hardening in Scots pines of different origins[J]. Trees, 2000, 14: 456-464.
    [101] Mancuso S, Rinaldelli E. Response of young mycorrhizal and non-mycorrhizal plants of olive tree (Olea europaea L.) to saline conditions. II. Dynamics of electrical impedance parameters of shoots and leaves[J]. Advance in Horticultural Science, 1996, 10: 135-145.
    [102] Ozier-Lafontaine H, Bajazet T. Analysis of root growth by impedance spectroscopy (EIS)[J]. Plant Soil, 2005, 277: 299-313.
    [103] Repo T, Laukkanen J, Silvennoinen R. Measurement of the tree root growth using electrical impedance spectroscopy[J]. Silva Fennica, 2005, 39(2): 159-166.
    [104] Mancuso S. Seasonal dynamics of electrical impedance parameters in shoots and leaves relate to rooting ability of olive (Olea europaea) cuttings[J]. Tree Physiology, 1998, 19: 95-101.
    [105] Repo T, Zhang G, Ryypp? A, et al. The electrical impedance spectroscopy of Scots pine (Pinus sylvestris L.) shoots in relation to cold acclimation[J]. Journal of Experimental Botany, 2000, 51: 2095-2107.
    [106] Zhang G, Ryypp? A, Repo T. The electrical impedance spectroscopy of Scots pine needles during coldacclimation[J]. Physiologia Plantarum, 2002, 115: 385-392.
    [107] Repo T. Influence of different electrodes and tissues on the impedance spectra of Scots pine shoots[J]. Electro-Magnetobiol, 1994, 13: 1-14.
    [108] Zhang M I N, Repo T, Willison J H M, et al. Electrical impedance analysis in plant tissues: on the biological meaning of Cole-Coleαin Scots pine needles[J]. European Biophysics Journal, 1995, 24: 99-106.
    [109] Zhang G, Ryypp? A, Vapaavuori E, et al. Quantification of additive response and stationarity of frost hardiness by photoperiod and temperature in Scots pine[J]. Canadian Journal of Forest Research, 2003, 33: 1772-1784.
    [110]余叔文,汤章成.植物生理与分子生物学(第二版) [M].北京:科学出版社, 1996.
    [111]刘广才.河北省干旱成因及抗旱对策分析[J].中国防汛抗旱, 1999, 4.
    [112]徐秀梅,张新华,王汉杰.四翅滨藜抗旱生理特性研究[J].南京林业大学学报(自然科学版), 2004, 28(5): 54-59.
    [113]李吉跃.植物耐旱性及其机理[J].北京林业大学学报, 1991, 13(3): 92-100.
    [114]蒋高明.当前植物生理学研究的几个热点问题[J].植物生态学报, 2001, 25(5): 514-519.
    [115]罗毅,郭伟.作物模型研究与应用中存在的问题[J].农业工程学报, 2008, 24(5): 307-312.
    [116] Br?nnum P. Preplanting indicators of survival and growth of desiccated Abies procera bareroot planting stock[J]. Scandinavian Journal of Forest Research, 2005, 20: 36-46.
    [117] McKay H M, Milner A D. Species and seasonal variability in the sensitivity of seedling conifer roots to drying and rough handling[J]. Forestry, 2000, 73: 259-270.
    [118] McKay H M, White I M S. Fine root electrolyte leakage and moisture content: indices of Sitka spruce and Douglas-fir seedling performance after desiccation[J]. New Forests, 1997, 13: 139-162.
    [119] Mena-Petite A, Estavillo J M, Du?abeitia M, et al. Effect of storage conditions on post planting water status and performance of Pinus radiata D. Don stock-types[J]. Annals of Forest Science, 2004, 61: 695-704.
    [120] Helenius P, Luoranen J, Rikala R. Effect of preplanting drought on survival, growth and xylem water potential of actively growing Picea abies container seedlings[J]. Scandinavian Journal of Forest Research, 2005, 20: 103-109.
    [121] Helenius P, Luoranen J, Rikala R. Physiological and morphological responses of dormant and growing Norway spruce container seedlings to drought after planting[J]. Annals of Forest Science, 2005, 62: 1-7.
    [122]董茜,刘春华.春季严重干旱条件下不同杨树苗型及浇水方法的造林效果分析[J].科技信息, 2006, 4: 180.
    [123] Ryypp? A, Repo T, Vapaavuori E. Development of freezing tolerance in roots and shoots of Scots pine seedlings at nonfreezing temperatures[J]. Canadian Journal of Forest Research, 1998, 28: 557-565.
    [124]张宪政.植物生理学实验技术[M].沈阳:辽宁科学技术出版社, 1994.
    [125]杨世勇,王方,谢建春.重金属对植物的毒害及植物的耐性机制[J].安徽师范大学学报(自然科学版), 2004, 1: 71-72.
    [126]赵丽英,邓西平,山仑.不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究[J].中国生态农业学报, 2007, 15(1): 63-66.
    [127]许大全,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学通讯, 1992, 28(4): 237-243.
    [128] Chen Q, Zhang H Y, Tang L L, et al. Effects of water and nitrogen supply on spinach (Spinacia oleracea L. ) growth and soil mineral N residues[J]. Pedosphere, 2002, 12: 171-178.
    [129]王金锡,许金铎.长江上游高山高原林区迹地生态与营林更新技术[M].北京:林业出版社, 1995.
    [130] Jeon M W, Ali M B, Hahn E J, et al. Photosynthetic pigments, morphology and leaf gas exchange during ex vitro acclimatization of micropropagated CAM Doritaenopsis plantlets under relative humidity and air temperature[J]. Environmental and Experimental Botany, 2006, 55: 183-194.
    [131]上海植物生理学会:《植物生理学实验手册》,上海科技出版社, 1985, 134-138.
    [132]张宪政.作物生理研究法[M].农业出版社, 1992: 148-149.
    [133]邹琦,李合生.植物生理学实验指导[M].北京:中国农业出版社, 2000, 62-63, 173-174.
    [134]高丽萍,陶汉之,程素贞.钙和萘乙酸对猕猴桃果实贮藏的影响[J].果树科学, 1996, 13(2): 115-116.
    [135]王爱国,罗广华.植物的超氧自由基与羟胺反应的定量关系[J].植物生理学通讯, 1990, 26(6): 55-57.
    [136]徐云岭,余叔文.苜蓿愈伤组织盐适应过程中的溶质积累[J].植物生理学报, 1992, 18 (1) : 93- 99.
    [137]庞士铨.植物逆境生理学基础[M].吉林:东北林业大学出版社, 1990.
    [138]应朝阳,吕亮雪,刘国道,等.干旱胁迫对多年生落花生生长和活性氧代谢的影响[J].热带作物学报, 2006, 27(1): 17-21.
    [139]龚吉蕊,赵爱芬,张立新,等.干旱胁迫下几种荒漠植物抗氧化能力的比较研究[J].西北植物学报, 2004, 24(9): 1570-1577.
    [140]徐迎春,李绍华,柴成林,等.水分胁迫期间及胁迫解除后苹果树源叶碳同化物代谢规律的研究[J].果树学报, 2001, 18(1): 1-6.
    [141]王有年,杜方,于同泉,等.水分胁迫对桃叶片碳水化合物及其相关酶活性的影响[J].北京农学院学报, 2001, 16(4): 11-16.
    [142]韦莉莉,张小全,侯振宏,等.杉木苗木光合作用及其产物分配对水分胁迫的响应[J].植物生态学报, 2005, 29(3): 394-402.
    [143]李亚青,张钢,卻书鹏,等.白皮松茎和针叶的电阻抗参数与抗寒性的相关性[J].林业科学, 2008, 44(4): 28-34.
    [144]王爱芳,张钢,魏士春,等.不同发育时期樟子松(Pinus sylvestris L. var. mongolica Litv.)的电阻抗参数与抗寒性的关系[J].生态学报, 2008, 28(11): 5741-5749.
    [145]董胜豪,张钢,卻书鹏,等.脱锻炼期间白皮松针叶的电阻抗图谱参数和生理指标的相关性[J].园艺学报, 2009, 36 (6) : 891-897.
    [146]张军,赵慧娟,张钢,等.电阻抗图谱法在刺槐种质资源抗寒性测定中的应用[J].植物遗传资源学报, 2009, 10 (3) : 419-425.
    [147]刘晓红,黄廷林,王国栋,等.盐胁迫对小麦叶片电阻抗图谱参数的影响[J].浙江大学学报(农业与生命科学版), 2009, 35(5): 564-568.
    [148]刘晓红,黄廷林,王国栋,等.小麦叶片电阻抗图谱参数对重金属胁迫的响应[J].中山大学学报(自然科学版), 2009, 48(5): 114-119.
    [149]刘晓红,王国栋,张钢.水分胁迫对不同小麦品种叶片电阻抗参数的影响[J].西北农林科技大学学报(自然科学版), 2007, 35(2): 210-214.
    [150] Macdonald J R. Emphasizing solid materials and systems[A]. In: John Wiley & Sons ed. Impedance Spectroscopy[C]. New York: Inc, 1987.
    [151] Hurme P, Repo T, Savolainen O, et al. Climatic adaptation of bud set and frost hardiness in Scots pine (Pinus sylvestris)[J]. Canadian Journal of Forest Research, 1997, 27: 716-723.
    [152]孙志虎,王庆成.应用PV技术对北方4种阔叶树抗旱性的研究[J].林业科学, 2003, 39(2): 33-38.
    [153]王孟本,李洪建.黄土高原人工林水分生态研究[M] .北京:中国林业出版社, 2001, 106-118.
    [154]狄晓艳,王孟本,陈建文,等.杨树无性系PV曲线水分参数的研究[J].西北植物学报, 2007, 27(1): 98 -103.
    [155]刘建平,李志军,韩路,等.胡杨、灰叶胡杨P-V曲线水分参数的初步研究[J].西北植物学报, 2004, 24(7): 1255-1259.
    [156] Bowman W D, Roberts S W. Seasonal changes in tissue elasticity in chaparral shrubs[J]. Plant Physiology, 1985, (65): 233-236.
    [157]杨敏生,裴宝华,于冬梅.水分胁迫对毛白杨杂种无性系苗木维持膨压和渗透调节能力的影响[J].生态学报, 1997, 17(4): 364-370.
    [158] Wang M B, Li H J, Cai B F. Water ecophysiological characteristics of Caragana korshinskii [J]. Acta Phytoecologica Sinica, 1996, 20(6): 494-501.
    [159]陈由强,叶冰莹,朱锦懋. PV曲线技术比较三种木本植物的水分状况[J].福建师范大学学报(自然科学版), 1999, 15(4): 71-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700