用户名: 密码: 验证码:
几种常见氧化锰矿物的合成、转化及表面化学性质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤氧化锰矿物是动植物锰素的重要来源,是土壤中的重要吸附载体、氧化还原主体、化学反应催化剂及环境信息载体,其资源属性和环境属性日益受到人们的关注。开展土壤氧化锰矿物的合成、转化及性质研究,对于深入了解和认识锰的地球化学行为、土壤演变、土壤质量与生态环境之间的关系,促进氧化锰矿物资源的开发与利用具有重要的理论和实践意义。
     本文采用X-射线衍射(XRD)、透射电镜(TEM/ED/EDAX)、高分辨透射电镜(HRTEM)、傅里叶红外光谱(FTIR)、激光拉曼光谱(LR)、热重分析(TGA)、全量分析和表面酸性位点分析等技术,系统研究了水钠锰矿、钙锰矿、锰钾矿、黑锰矿和锂硬锰矿等土壤中常见氧化锰矿物的合成条件、生成途径、表面电荷性质,以及对重金属离子的吸附和Cr(Ⅲ)、As(Ⅲ)的氧化特性及其影响因素,探讨了不同氧化锰矿物的结构特征、形成机制以及与土壤环境条件的关系。取得的主要结果有:
     1、系统地开展了土壤氧化锰矿物的合成、表征与性质研究。合成了水钠锰矿、锂硬锰矿、锰钾矿、钙锰矿和黑锰矿等土壤中常见氧化锰矿物,对其结构、形貌、组成和电荷性质进行了鉴定和表征,初步探明了不同合成条件的影响规律。
     (1) 反应液流动速率和氧气流量是影响碱性介质中水钠锰矿生成的主要因素,反应受O_2的扩散控制。反应前对MnCl_2和NaOH溶液通N_2或O_2处理以及反应过程中温度对水钠锰矿的生成没有影响,且提高温度可以增加产物的结晶度。合成单相水钠锰矿的条件为:OH/Mn摩尔比为13.7,O_2的流量2L/min,在常温和机械搅拌(450r/min)下氧化5小时。
     (2) 盐酸滴加速度、反应时间和老化处理是影响酸性介质中水钠锰矿合成的主要因素。对生成的水钠锰矿进行老化处理可以大大提高产物的结晶度。单相酸性水钠锰矿的合成条件为:HCl:KMnO_4=2:1,在沸腾和搅拌条件下以0.7mL/min的速度滴加盐酸,滴加完毕后再反应30min,产物在60℃下老化处理12h。合成的酸性水钠锰矿为含少量K的H型水钠锰矿,红外光谱表明它与碱性水钠锰矿具有类似的短程结构。
     (3) 影响钙锰矿热液合成的主要因素是热液温度和处理时间,体系压力对钙锰矿的合成影响小。以Mg-水钠锰矿为前驱物,热液合成的钙锰矿呈纤维状,三个互交120°方向生长的晶体共同组成三连晶结构。
     (4) 锰钾矿的结晶度随反应温度的提高而增加,老化处理对产物的结晶度略有增加,而延长反应时间对产物的影响较小。合成单相锰钾矿的条件为:MnO_4~-/Mn~(2+)摩尔比为0.7,在100℃下反应20min,产物经50℃老化处理24h;以水钠锰矿为母
    
    几种常见氧化锰矿物的合成、转化及表面化学性质
    体,与LimAln(oH)x针轻基复合离子交换后,热液条件合成的铿硬锰矿为六方片状晶
    体,其中含有少量水钠锰矿杂质;在弱碱性介质中,以O:为氧化剂氧化Mn(OH)2
    合成黑锰矿,合成的单相黑锰矿为暗黄色假立方晶体。
     (5)酸性水钠锰矿、碱性水钠锰矿、锰钾矿、钙锰矿的PZC较低,分别为1 .75、
    3.37、2.10和3.5,其表面可变负电荷量的大小顺序为:酸性水钠锰矿>碱性水钠
    锰矿>锰钾矿妻钙锰矿,黑锰矿的 PZC较高,表面可变负电荷量远低于其他四
    种氧化锰矿物。
     2、首次在回流条件下一次合成了大量单相钙锰矿,填补了国内外在该领域的空
    白。回流sh和24h合成的钙锰矿的平均化学组成分别为Mgo.:郝no2.:,(H 20)1.15和
    Mgo.;7MnO2.10(H2O)088,随着回流时间的延长,钙锰矿结晶度进一步提高,且无其它
    矿相生成;回流条件合成的钙锰矿与天然钙锰矿及某些热液条件合成的钙锰矿具有
    相同的形貌特征和生长特点,其表面具有较强的L喇s酸性位点,而Bronsted酸性
    位点较弱;回流条件合成的钙锰矿保持热稳定性达400℃。提出了钙锰矿在热液条
    件和表生条件下可能具某些相似的形成机制,即在较高的热液温度下,钙锰矿的形
    成时间较短,在温度较低的表生环境中,钙锰矿的形成需要较长的时间。
     3、结合快速x射线衍射(xRD)方法和相关氧化锰矿物的Eh一pH平衡关系分
    析,查明了碱性介质中02氧化Mn(OH)2合成水钠锰矿的反应过程和生成途径。反
    应过程可分为以下四个阶段:(l)黑锰矿(Mn3o4)和六方水锰矿(p一MnOOH)的
    形成阶段;(2)黑锰矿和六方锰矿转化为布塞尔矿阶段;(3)布塞尔矿生长阶段;
    (4)布塞尔矿转化成水钠锰矿阶段。生成途径可表示为:
    Mn(0H):~六方水锰矿~布塞尔矿~水钠锰矿
    、尸
    黑锰矿
     矿物的转化受矿物表面溶解O:浓度决定的Eh值控制。
     4、初步探明了不同类型氧化锰矿物对重金属离子的吸附和Cr(lII)及As(m)的氧
    化特性。(l)酸性水钠锰矿对PbZ+、CuZ+、eoZ+、edZ+和znZ+等重金属的吸附能力
    最强,黑锰矿的吸附能力最弱,除黑锰矿吸附更多的c矿+外,供试氧化锰矿物对Pb2+
    的最大吸附量远大于其它重金属。并提出:①重金属的水解常数和矿物的表面负电
    荷量,都是通过改变氧化锰矿物表面诱导水解作用及吸附离子形态来影响氧化锰矿
    物对重金属的吸附;②酸性水钠锰矿吸附的重金属离子,尤其是Pb2+,主要为非水
    化离子形态,而锰钾矿、钙锰矿和黑锰矿则是水化离子形态为主。(2)氧化锰矿物
    对Cr(In)的最大氧化量大小顺序为(mmol服
As essential source of Mn element for the nutrition of animals and plants, one of important adsorbents, redox agents, catalysts and carriers for environmental information in soils and aquatic system, Mn oxide minerals have been attracting more and more concerns of researchers on their resource and environmental properties. Investigations on the syntheses, transformations and properties of them could shed light on geochemistry behaviors of Mn, soil progress, and relations between soil quality and environments, they are also of great significance to promote exploration and utilization of Mn oxide minerals.
    Base on a review of research development on the common Mn oxide minerals in soils, this dissertation dealt with syntheses conditions, origination and transformation, and surface chemistry characteristics of them, using techniques of XRD, TEM/ED, HRTEM, IR, LR, TGA and surface acidity analysis. Structure identifications, formation mechanisms and their relations to the environments in soils and sediments were also discussed.
    1 .Fluxion velocity of reactive suspension and the rate of O2 flow significantly influenced the synthesis of birnessite. Vigorous stirring made the synthesis facile to produce pure birnessite. However the pretreatment of the reacting solutions by N2 and the reaction temperature had little effect on the synthesis. Increasing the reaction temperature led to a larger crystal size, better crystallinity and lower surface area. The adopted conditions for synthesis of pure birnessite were: NaOH to Mn molar ratio of 13.7, the O2 flow rate of 2 L/min, and oxidation for 5 h during vigorous stirring at normal temperature. The average composition of the synthesized pure birnessite was Nao 2sMnO2.o7'0.66H2O, and surface area of 38 m2/g.
    2. At 25 , the formation process of the birnessite by oxidation of Mn(OH)2 with 62 in alkali medium could be divided into four stages: 1) hausmannite and feitknechtite formation period, 2) transformation of hausmannite and feitknechtite into buserite period, 3) buserite crystal growing period, 4) transformation of buserite into birnessite period. The diffusion of O2 was the key step on the product during the course of the oxidation The pathways of the birnessite formation in this study might be:
    
    
    3 x Hydrothermal temperature and treatment time significantly influenced the synthesis of todorokite. Variation of system pressure caused by changing filling ratio of the autoclave had little effect on the synthesis. The crystal of the synthetic todorokite consisted of fibers, grew at 120?angles to form trilling patterns, which morphology and growth characteristics were the same to those of naturally occurring todorokite. Its average composition was Mgo i6MnC>2.o7'0.82H2O, and surface area of 35.5 m2/g. The formation mechanisms of todorikite may be similar under hydrothermal and surficial conditions, it takes longer time to form todorokite in surficial environment than that at a relative high temperature in hydrothermal environment.
    4> Single phase and well-crystallized todorokite was synthesized by heating and refluxing process from birnessite as a precursor. The average chemical composition of the synthesized todorokites by refluxing for 8 h and for 24 h was Mgo.i9MnO2.n(H2O)i 15 and MgonMnCh io(H2O)o88, respectively. Their surface area was 103.9 and 98.5 m2/g. The crystallinity of the todorokite increased and no other phase was produced with increasing refluxing period. The synthesized todorokites had the same morphologies and the similar structural characteristics with the natural todorokites and hydrothermally synthesized samples. The chemical compositions of the synthetic tordorokites by refluxing process were close to those of todorokites synthesized by hydrothermal process, except a higher average oxidation state of Mn for the former. The synthetic todorokite had strong surface Lewis acidity and weak Bronsted acidity. It could keep thermally stable up to 400 癈, above the temperature, it would gradually decompose, release O2 and transformed to spine phase eventually.
    5 > D
引文
1.丁振华,郑宝山,张杰,Belkin H E,Finkelman R B,赵峰华,周代兴,周运书 陈朝刚.黔西南高砷煤中砷存在形式的初步研究.中国科学(D辑),1999,29(5):421-425
    2.丁维新.土壤pH对锰赋有形态的影响.热带亚热带土壤科学,1994,3(4):233-237
    3.于天仁.土壤的电化学性质及其研究法(修订本).北京:科学出版社,1976
    4.于天仁.土壤化学原理.北京:科学山版社,1987
    5.于天仁,陈志诚主编.土壤发生中的化学过程.北京:科学出版社,1990
    6.于天仁,季国亮,丁昌璞等著.可变电荷土壤的电化学.北京:科学出版社,1996
    7.于天仁.我国农业持续发展和生态环境中重大土壤问题的化学机理研究建议.土壤,2001,33(3):119-122
    8.中国科学院贵阳地球化学研究所.矿物X射线粉晶鉴定手册.北京:科学出版社,1978
    9.王云,魏复盛等编著.土壤环境元素化学.北京:中国环境科学出版社,1995
    10.王濮,潘兆橹,翁玲宝.系统矿物学(上册).北京:地质出版社,1984
    11.冉勇,刘铮.土壤和氧化物对稀土元素的专性吸附及其机理.科学通报,1992,18:1705-1709
    12.冉勇,傅家谟,Gilkes Rj.氧化锰对金(Ⅰ)和金(Ⅱ)络和物的吸附.中国科学,1998,28(6):523-531
    13.冯树屏.砷的分析化学.北京:中国环境出版社,1986
    14.冯雄汉,刘凡,谭文峰,王贻俊,刘祥文.碱性介质中合成水钠锰矿的几个影响因素.地球化学,2002,31(5):495-500
    15.冯雄汉,刘凡,谭文峰,刘详文,胡红青.回流条件下钙锰矿的合成及其初步表征.中国科学(D辑),2003,33(11):1084-1093
    16.刘凡,谭文峰,王贻俊.土壤中氧化锰矿物的类型及其与土壤环境条件的关系.土壤通报,2002a,33(3):175-180
    17.刘凡,谭文峰,刘桂秋,李学垣,贺纪正.几种土壤中铁锰结核的重金属离子吸附与锰矿物类型,土壤学报,2002b,39(5):699-706
    18.刘永红,吴金明,董元彦,李学垣.土壤表面电荷测定的两种方法之比较.土壤学报,2003,40(5):745-749
    19.刘志光.土壤中的铁、锰氧化物的有机还原和溶解.土壤通报,1991,22(3):119-121
    20.刘良梧,张民.变性土铁锰氧化物结核与钙质结核的元素富集及其环境意义.土壤,1995,27(5):262-268
    21.刘季花,林学辉,梁宏锋,崔汝勇,李杨.东太平洋海底结核及相关沉积物的稀土元素地球化学特征.海洋学报,1999,21(2):134-141
    22.刘英俊,曹励明,李兆麟等编著.元素地球化学.北京:科学出版社,1984
    23.刘桂秋,冯雄汉,谭文峰,刘凡.几种土壤铁锰结核对Cr(Ⅲ)的氧化动力学特性.华中农业大学学报,2002b,21(5):450-454
    24.刘桂秋,刘凡,谭文峰.几种土壤锰结核对Cr(Ⅲ)的氧化与锰矿物类型.土壤与环境,2002a,
    
    11(3):241-244
    25.刘桂秋,谭文峰,冯雄汉,刘凡.几种土壤铁锰结核对Cr(Ⅲ)的氧化特性:Ⅱ pH、离子强度、温度等因素的影响.土壤学报,2003,40(6):852-857
    26.刘莲生,张正斌,郑士淮,王修林,赵美训.海水中镉在δ-MnO_2、γ-MnOOH和水锰矿上液固分配的一种新型等温线.海洋与湖沼,1985,16(2):102-115
    27.刘铮.土壤与植物中锰的研究进展.土壤学进展.1991,19(6):1-10
    28.刘斌,夏熙.含钙、含钡利含镍钡镁锰矿的合成及在水溶液中电化学性能.应用科学学报,2001,19(2):185-188
    29.吕志成,张培萍,段国正,郝立波,董广华.内蒙古额仁陶勒盖银矿床锰矿物的矿物学初步研究.矿物岩石,2002,22(1):1-5
    30.汤艳杰,贾建业,谢先德.粘土矿物的环境意义.地学前缘.2002,9(2):337-344
    31.许东禹.多金属结核的特征及成因,北京:地质出版社,1993
    32.许东禹.太平洋中部多金属结核及其形成环境.北京:地质出版社,1994
    33.许嘉琳,杨居荣.陆地生态系统中的重金属.北京:中国环境出版社,1995
    34.何振立,周启星,谢正苗.污染及有益元素的土壤化学平衡.北京:中国环境科学出版社,1998
    35.吴巧玲,孙尧俊,黄月芳,费伦,龙英才.镁离子型Bimessite的合成和表征.分析测试学报,1998,17(2):20-23
    36.吴乾丰.微量砷的测定方法简介.环境科学丛刊,1984,5(4):8-12
    37.吴湘滨,戴塔根.湘西南震旦地层的微量元素地球化学特征及其地质含义.地质地球化学,2001,29(3):40-45
    38.李小虎,张新虎,郑朋,张铭杰.土壤矿物学研究综述.甘肃地质学报.2003,12(1):37-42
    39.李学垣.土壤化学.北京:高等教育出版社,2001
    40.李学垣.土壤化学及实验指导.北京:中国农业出版社,1997
    41.李建威,Vasconcelos P M,张均.锰氧化物的氩去气行为:来自~(40)Ar/~(39)Ar激光阶段加热分析的证据.科学通报,2002,47(14):1050-1058
    42.杨勇,舒东,余海,夏熙,林祖赓.大隧道结构锂锰氧化物电极材料研究.电源技术,1997,21(5):190-199
    43.杨登旭,王光明.碱性介质中片锰矿之生成机制.中国农业化学会志,1991,29(1):106-117
    44.陈同斌,韦朝阳,黄泽春,黄启飞,鲁全国,范稚莲.砷超富集植物是蜈蚣草及其对砷的富集特征.科学通报,2002,47(3):207-210
    45.陈红,方士.用MnO_2氧化废水中As(Ⅲ)为As(Ⅴ)的特性.高等学校工程学报,2000,14(1):48-52
    46.陈建林,张富生,林承毅,史君贤,沈华悌,王基庆,马维林.太平洋中国开辟区锰结核生物成因研究.地质学报,2001,75(2):228-232
    47.陈英旭,朱祖祥,何增耀.环境中氧化锰对Cr(Ⅲ)氧化机理的研究.环境科学学报,1993,13(1):45-50
    48.陈英旭,何增耀,吴建平.土壤中铬的形态及其转化.环境科学,1994,15(3):53-56
    
    
    49.陈英旭.铬的土壤化学.土壤学进展,1992,20(5):7-13
    50.单连芳,曲高生,文丽.人工合成锰矿物实验及其产物.矿物学报,1998,18(3):281-291
    51.林年丰,汤洁,卞建民.内蒙古砷中毒病区环境地球化学特征研究.世界地质,1999,18(2):83-88
    52.武汉大学.分析化学(第四版).北京:高等教育出版社,2000
    53.赵其国,徐梦洁,吴志东.东南红壤丘陵地区农业可持续发展研究.土壤学报,2000,37(4):433-442
    54.赵其国.现代土壤学与农业持续发展.土壤学报,1996,33(1):1-12
    55.赵其国.21世纪土壤科学展望.地球科学进展,2001,16(5):704-709
    56.赵其国,周健民.为21世纪土壤科学的创新发展作出新的贡献——参加第17届国际土壤学大会综述.土壤,2002,34(5):237-246
    57.赵其国.发展与创新现代土壤科学.土壤学报,2003,40(5):321-327
    58.郝瑞霞,彭省临.湖润锰矿床的元素地球化学特征.地质地球化学,1998,26(4):33-37
    59.郝瑞霞,彭省临.桂西南湖润锰矿床矿物的相变特征.中国锰业,1999,17(2):9-14
    60.夏定国,刘涛,汪夏燕,焦庆影,杨辉.化学改性二氧化锰结构表征.中国科学技术大学学报,2001,31(3):334-338
    61.夏熙,刘斌.钡镁矿合成及在水溶液中电化学性质研究.无机材料学报,2000,15(4):636-640
    62.徐仁扣,刘志光.土壤中的氧化锰对酚类化合物的氧化降解作用.土壤学报,1995,32(2):179-185
    63.袁可能.植物营养元素的土壤化学.北京:科学出版社.1983
    64.郭世勤,孙文泓.太平洋中部多金属结核矿物学.北京:海洋出版社,1992
    65.章长江,孙尧俊,黄月芳.Mn型分子筛的合成与表征.复旦学报(自然科学版),1999,38(6):673-680
    66.萧绪琦,郭世勤.太平洋中部多金属结核中锰矿物的电镜研究.地质学报,1992,66(3):219-226
    67.萧绪琦,郭立鹤,刘新波.太平洋多金属结核中的锰矿物及其相变.岩石矿物学杂志,1997,16(4):367-373
    68.谢正苗,朱祖祥,袁可能,黄昌勇.十壤中二氧化锰对As(Ⅲ)的氧化及其意义.环境化学,1989,8(2):1-6
    69.谢正苗,朱祖祥,袁可能,黄昌勇.不同土壤中水稻砷害的临界含砷量的探讨.中国环境科学,1991,11(2):105-108
    70.谢正苗,黄吕勇,何振立.土壤中砷的化学平衡.环境科学进展.1998,6(1):22-37
    71.韩喜球,沈华悌,陈建林等.太平洋多金属结核的生物成因与生物-化学二元成矿机制初探.中国科学(D辑),1997,27(4):349-353
    72.鲁安怀,高翔,秦善,等.锰钾矿(K_xMn_(8-x)O_(16)):天然活性八面体分子筛(OMS-2).科学通报,2003,48(6):615-618
    73.鲁安怀,卢晓英,任子平,韩丽荣,方勤方,张琳萍.天然铁锰氧化物及氢氧化物环境矿物学研究.地学前缘,2000,7(2):473-483
    
    
    74.鲁安怀.矿物学研究从资源属性到环境属性的发展.高校地质学报,2000,6(2):245-251
    75.熊毅等编著.土壤胶体(第一册).北京:科学出版社,1983
    76.熊毅等编著.土壤胶体(第二册).北京:科学出版社,1985
    77.熊毅,陈家坊等编著.土壤胶体(第三册).北京:科学出版社,1990
    78.谭文峰,刘凡,贺纪正,李学垣.琳溶土铁锰结核中锰矿物的鉴定方法及性质的研究.见:黄巧云主编.《迈向二十一世纪的土壤与植物营养》.北京:中国农业出版社,1997,102-106
    79.谭文峰,李永华,刘凡,李学垣.湖北省几种土壤铁锰结核中的锰矿物类型.华中农业大学学报,1998,28:42-47
    80.谭文峰,刘凡,李永华,贺纪正,李学垣.土壤铁锰结核中锰矿物类型鉴定的探讨.矿物学报.2000a.20:63-67.
    81.谭文峰,刘凡,李永华,贺纪正,李学垣.我国几种土壤铁锰结核中的锰矿物类型.土壤学报,2000b,37(2):192-201
    82.谭文峰,刘凡,李学垣.几种土壤铁锰结核对Cr(Ⅲ)的氧化特性(Ⅰ)——氧化锰矿物类型与吸附态离子的影响.环境科学学报,2001,21(5):592-596
    83.樊耀亭,吕秉玲,徐杰,蒋永贵,张琳萍.水溶液中二氧化锰对铀的吸附环境.科学学报.1999,19(1):42-46
    84.潘纲,秦延文,李贤良,胡天斗,谢亚宁,吴自玉.用EXAFS研究Zn在水锰矿上的吸附-解吸机理.环境科学,2003a,24(3):1-7
    85.潘纲,李贤良,秦延文,胡天斗,吴自玉,谢亚宁.EXAFS研究Zn在δ-MnO_2上的吸附-解吸机理.环境科学,2003b,24(4):54-59
    86.潘根兴.淮北土壤铁锰结核中过渡金属元素的富集及其环境地球化学意义.科学通报,1989,34(19):1505-1507
    87.潘根兴.从苏北变性土钙积层铁锰氧化物性质看当地晚第四纪环境的变化.科学通报,1992,37(13):1223-1225
    88. Ali A A, A1-Sagheer F A, Zaki M I. Surface texture morphology and chemical composition of hydrothermally synthesized tunnel-structure manganese(Ⅳ) oxide, Int J Inorg Mater, 2001, 3: 427-435
    89. Amacher M C, Baker D A. Redox reactions involving chromium. Plutonium and manganese in soils. DOE/DP/04515-1, Las Vegas, Nevada: Institute for research on land and water resources, Pennsylvania state university and U. S. Dept. of Energy, 1982
    90. Anderson P R, Christensen T H. Distribution coefficients of cadmium cobalt, nickel, and zinc in soils. J Soil Sci, 1988, 39:15-22
    91. Arrhenius G O, Tsai A G. Structure, phase transformation and prebiotic catalysis in marine manganate minerals. Scripps Institute of Oceanography, 1981, 81-28, 1-19
    92. Atkinson R J, Posner A M, Quirk J P. Adsorption of potential determining ion on the ferric oxide-aqueous electrolyte interface. J Phys Chem, 1967, 71: 550-558.
    93. Balisterieri L S, Murray J W. The surface chemistry of δ-MnO_2 in major ion seawater. Geochim Cosmochim Acta, 1982, 46:1041-1052
    
    
    94. Banerjee D, Nesbitt H W. XPS study of reductive dissolution of bimessite by oxalate:Rates and mechanistic aspects of dissolution and redox processes. Geochim Cosmochim Acta, 1999, 63: 3025-3038
    95. Banerjee D, Nesbitt H W. Oxidation of aqueous Cr(Ⅲ) at birnessite surfaces: constraints on reaction mechanism. Geochim Cosmochim Acta, 1999, 63: 1671-1687
    96. Barrow N J, Bowden J W, Posner A M, Quirk J E An objective method for fitting models of ion adsorption on variable charge surfaces. Aust J Soil Res, 1980, 18:37-47
    97. Bartlett R J, James J M. Behavior of chromium in soils Ⅲ. Oxidation. J Environ Qual, 1979, 8: 31-35
    98. Baur W H Rutile-type compounds V Refinement of MnO_2 and MgF_2. Acta Crystallogr, 1976, 32: 2200-2204
    99. Bish D L, Post J E. Thermal behavior of complex, tunnel-structure manganese oxides. Am Mineral, 1989, 74, 177-186
    100. Bricker O E Some stability relations in the system Mn-O_2-H_2O and one atmosphere total pressure Am Mineral, 1965, 50:1296-1354
    101. Brown G. Associated minerals. In: Brindley G W, Brown G eds. , Crystal structures of clay minerals and their X-ray identification. London, UK: London Press, 1984:361-410
    102. Bums R G, Fuerstenau D W. Electron probe determination of interelement relationships in manganese nodules. Am Mineral, 1966, 51: 895-902
    103. Bums R G, Bums V M, Sung w, Brown B A. Ferromanganese mineralogy suggested terminology of the principal manganese oxide phases. Geol Soc Am Ann Meet Miami Abstr, 1974, 6: 1029-1030
    104. Bums R G, Bums V M. Mechanism for nucleation and growth of manganese nodules. Nature, 1975, 255:130-131
    105. Bums R G. The uptake of cobalt into ferromanganese nodules, soils, and synthetic manganese(Ⅳ) oxides. Geochim Cosmochim Acta. 1976, 40:95-102
    106. Bums R G, Bums V M. Mineralogy. In: Glasby G P ed. , Marine manganese deposits. Amsterdam: Elsevier Scientific Publishing Co. , 1977: 185-248
    107. Bums V M, Burns R G. Post-depositional metal enrichment processes inside manganese nodules from the north equatorial Pacific. Earth and Planetary Science Letters, 1978, 39:341-348
    108. Bums R G, Bums V M, Stockman H W. A review of the todorokite-buserite problem: Implications to the mineralogy of marine manganese nodules. Am Mimeral, 1983, 68:972-980
    109. Bums R G. , Bums V M, Stockman H W. The todorokite-buserite problem: further considerations. Am Mimeral, 1985, 70:205-208
    110. Buser W, Graf P, Feitknecht W. Beitrag zur Kenntnis der manganese(Ⅱ)-manganite und des δ-MnO_2. Heir Chim Acta 1954, 37:2322-2333
    111. Bystrom A, Bystrom A M. The crystal structure of hollandite, the related manganese oxide minerals, and α-MnO_2. Acta Crystallogr, 1950, 3:146-154
    
    
    112. Bystrom A, Bystrom A M. The position of the barium atoms in hollandite. Acta Crystallogr, 1951, 4:469
    113. Cai J, Liu J, Willis W S, Suib S L. Framework doping of iron in tunnel structure cryptomelane. Chem Mater, 2001, 13:2413-2422
    114. Cai J, Liu J, Suib S L. Preparative parameters and framework dopant effects in the synthesis of layer-structure birnessite by air oxidation. Chem Mater, 2002, 14, 2071-2077
    115. Chen C C, Golden D C, Dixon J B. Transformation of synthetic birnessite to cryptomelane: an electron microscopy study. Clays Clay Miner, 1986, 34, 511-520
    116. Chen X, Shen Y F, Suib S L, O'Yang C L. Characterization of manganese oxide octahedral molecule sieve (M-OMS-2) materials with different metal cation dopants. Chem Mater, 2002, 14: 940-948.
    117. Chen Y X, Chen Y Y, Lin Q, Hu Z Q, Hu H, Wu J Y. Factors affecting Cr(Ⅲ) oxidation by manganese oxides. , Pedosphere, 1997, 7(2): 185-192
    118. Childs C W, Leslie D M. Interelement relationship in iron manganese concretion from a cateuary sequence of yellow-grey soils in loess. Soil Sci, 1977, 123:369-376
    119. Ching S, Petrovay D J, Jorgensen M L, Suib S L. Sol-gel synthesis of layered birnessite-type manganese oxides. Inorg Chem, 1997, 36, 883-890
    120. Chorover J, Amistadir M K. Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces. Geochim Cosmochim Acta, 2001, 65:95-109
    121. Chukhrov F V, Gorshkov A I, Sivtsov A V. New data on natural todorkites. Nature, 1979, 278: 631-632
    122. Chukhrov F V, Gorschkov A I, Rudnitskaya E S, Beresovskaya V V, Sivtsov A V. Manganese minerals in clays-A reviews. Clays Clay Miner, 1980, 28:346-354
    123. Chukhrov F V, Groshkov A I. Iron and manganese oxide minerals in soils. Transactions of the Royal Society of Edinburgh, 1981, 72:195-200
    124. Chukhrov F V, Sakharov B V, Gorshkov A I. The structure of birnessite from the Pacific Ocean. Akademiya Nauk SSSR Izvestiya, Seriya Geologicheskaya, 1985, 8: 66-73.
    125. Coddington K. A review of arsenals in biology. Tox Environ Chem, 1986, 11 : 281-290
    126. Cole W F, Wadsley A D, Walkley A. An x-Ray diffraction study of manganese dioxide. Rrans Electrochem Soc, 1947, 92: 133-158
    127. Cornell R M, and Giovanoli R. Transformation of hausmannite into birnessite in alkaline media. Clays Clay Miner, 1988, 36, 249-257
    128. Cullity B D. Elements of X-ray Diffraction (2nd edition). Massachusetts: Addison-Wesley Publishing Company: Reading, 1994:99-106
    129. Davies S H R, Morgan J J. Manganese(Ⅱ) oxidation kinetics on oxide surfaces. J Colloid Interf Sci, 1989, 129:63-77
    130. DeGuzman R N, Shen Y F, Shaw B R, Suib S L, O'Young C L. Role of Cyclic Voltammetry in Characterizing Solids: Natural and synthetic manganese oxide octahedral molecular sieves. Chem
    
    Mater, 1993, 5; 1395-1400
    131. Deschamps E, Ciminelli V S T, Weidler P G, Ramos A Y. Arsenic sorption onto soils enriched in Mn and Fe minerals. Clays Clay Miner, 2003, 51:197-204
    132. DeVilliers J E. Lithiophorite from the Postmasburg manganese deposits. Am Mineral, 1945, 30: 629-634
    133. Dixon J B. Dating soil need opportunity and challenge. Proceeding of Euroclay'95, Dating of Soil Formation—Quantitative Approaches in Soil Mineralogy, 1995
    134. Driehaus W, Seith R, Jekel M. Oxidation of arsenate(Ⅲ) with manganese oxides in water treatment. Water Res, 1995, 29:297-305
    135. Drits V A, Silvester E, Gorshkov A I, Manceau A. Structure of synthetic monoclinic Na-rich bimessiteand hexagonal birnessite: Ⅰ. Results from X-ray diffraction and selected-area electron diffraction. Am Mineral, 1997, 82:946-961
    136. Drits V A , Lanson B, Gorskhov A I, Manteau A. Sub-and superstructure of four-layer Ca-exchanged bimessite. Am Mineral, 1998, 83:97-118
    137. Drits V A, Lanson B, Bougerol-Chaillout C, Gorshkov A I, Manceau A. Structure of heavy-metal sorbed bimessite: Part 2 Results from electron diffraction. Am Mineral, 2002, 87:1646-1661
    138. Duncan M J, Leroux F, Corbeit J M, Nazar L E Todorokite as a Li insertion cathode: Comparison of a large tunnel framework "MnO_2" structure with its related layered structure. J Electrochem Soc, 1998, 145:3746-3757
    139. Eary L E, Rai D. Kinetics of chromium(Ⅲ) oxidation to chromium(Ⅵ) by reaction with manganese oxide. Environ Sci Technoi, 1987, 26:79-85
    140. Fendorf S E, Zasoski R J. Chromium(Ⅲ) oxidation by δ-MnO_2: Characterization. Environ Sci Technol, 1992, 21:1187-1193
    141. Fendoff S E, Zasoski R J, Burau R G. Competing metal ion influences on Chromium(Ⅲ) oxidation by bimessite. Soil Sci Soc Am J, 1993, 57:1508-1515
    142. Fendorf S, Eick M J, Grossl P R, Sparks D L. Arsenate and chromate retention mechanisms on goethite, 1 . Surface structure. Environ Sci Technol, 1997, 31:315-320
    143. Fendorf S E. Fundamental aspects and applications of x-ray absorption spectroscopy in clay and soil science. In: Schulze D G, Stuckie J W, Bertsch P M, eds. , Synchrotron X-Ray Method in Clay Science. Boulder: the Clay Minerals Society, 1999:19-67
    144. Feng Q, Kanoh H, Miyai Y, Ooi K. Metal ion extraction/insertion reactions with todorokite-type manganese oxide in the aqueous phase. Chem Mater, 1995a, 7:1722-1727
    145. Feng, Q, Kanoh H, Miyai Y, Ooi K. Hydrothermal synthesis of lithium and sodium manganese oxides and their metal ion extraction/insertion reactions. Chem Mater, 1995b, 7:1226-1232
    146. Feng Q, Honbu C, Yanagisawa K, Yamasaki N. Synthesis of lithiophorite with sandwich layered structure by hydrothermal soft chemical process. Chem Lett, 1998a, 757-758
    147. Feng Q, Yanagisawa K, Nakamichi Y. Hydrothermal soft chemical process for synthesis of manganese oxides with tunnel structures. Journal of Porous Materials, 1998b, 5:153-161
    
    
    148. Feng Q, Honbu C, Yanagisawa K, Yamasaki N. Hydrothermal soft chemical reaction for formation of sandwich layered manganese oxide. Chem Mater, 1999, 11:2444-2450
    149. Feng Q, Higashimoto Y, Kajiyoshi K, Yanagisawa K. Synthesis of lithium manganese oxides from layered manganese oxides by hydrothermal soft chemical process. J Mater Sc Lett, 2001, 20: 269-271
    150. Foster A L, Brown G E, Parks G A. X-ray absorption fine structure study of As(Ⅴ) and Se(Ⅳ) sorption complexes on hydrous Mn oxides. Geochim Cosmochim Acta, 2003, 67:1937-1953
    151. Frondel C, Marvis U B, Ito J. New occurrence of todorokite. Am Mineral, 1960, 45:1167-1173
    152. Frondel C. New manganese oxides: hydrohausmannite and woodruffite. Am Mineral, 1953, 38: 761-769
    153. Fu G, Allen H E, Cowan C E. Adsorption of cadmium and copper by manganese dioxide. Soil Sci, 1991, 152:72-81
    154. Gadde R R, Laitinen H A. Studies of heavy metal adsorption by hydrous iron and manganese oxides. Anal Chem, 1974, 46:2022-2026
    155. Geelhoed J S, Hiemstra T, Riemsdijk W H V. Competitive adsorption between phosphate and citrate on goethite. Environ Sci Technol, 1998, 32:2119-2123
    156. Gilkes R J. Geochemistry and mineralogy of manganese in soils. In: Graham R D, Hannam K J eds. , Manganese in Soils and Plants. Netherlands: Kluwer Academic Publishers, 1988:23-35
    157. Giovanoli R, Maurer R, Feitknecht W. Zur Struktur des γ-MnO_2. Helv Chem Acta, 1967, 50: 1072-1080
    158. Giovanoli R. A simplified scheme for polymorphism in the manganese dioxides. Chimia, 1969, 23: 470-472
    159. Giovanoli R. , St(?)hli E, Feitknecht W. (?)ber Oxidehydroxide des vierwertigen Mangans mit Schichtengitter. 1. Natriummangan(Ⅱ, Ⅲ)-manganat(Ⅳ). Helv Chim Acta, 1970a, 53:209-220
    160. Giovanoli R, St(?)hli E, Feitknecht W. (?)ber. Oxidehydroxide des vierwertigen Mangans mit Schichtengitter. 2. Mangan(Ⅲ)-manganat(Ⅳ). Helv Chim Acta, 1970b, 53:453-464
    161. Giovanoli R, Staehli E. Oxide und Oxyhydroxide des drei-und vierwertigen Mangans. Chimia, 1970c, 24:49-61
    162. Giovanoli R, Buhler H, Sokolowska K. Synthetic lithiophorite: electron microscopy and X-ray diffraction. Journal de Microscopic, 1973, 8:271-284
    163. Giovanoli R, Burki P, Giuffredi M, Stumm W. Layer structured manganese oxide hydroxides Ⅳ. The buserite group; structure stabilization by transition elements. Chimia, 1975, 29:517-520
    164. Giovanoli R. Vom Hexaquo-Mangan-Sediment. Reaktionssequenzen feinteilger fester Manganoxidhydroxide. Chimia, 1976, 30:102-103
    165. Giovanoli R. Vernadite is random-stacked birnessite. Mineralium Deposita, 1980, 15, 251-253
    166. Giovanoli R. On natural and synthetic manganese nodules. In: Varentsov I M, Grasselly G Eds. , Geology and Geochemistry of manganese, Vol. 1. Budapest: Hungarian Academy of Science, 1980b: 251-253
    
    
    167. Giovanoli R. A review of the todorokite-buserite problem: implications to the mineralogy of marine manganese nodules: discussion. Am Mineral, 1985, 70:202-204
    168. Golden D C, Chen C C, Dixon J B. Synthesis of Todorokite. Science. 1986a, 231:717-719
    169. Golden D C, Dixon J B, Chen C C. Ion exchange, thermal transformations, and oxidizing properties of birnessite. Clays and Clay Minerals, 1986b, 34:511-520
    170. Golden D C, Chen C C, Dixon J B. Transformation of birnessite to buserite, todorokite, and manganite under mild hydrothermal treatment. Clays Clay Miner. 1987, 35:271-280
    171. Golden D C, Dixon J B, Kanehiro Y. The manganese oxide mineral, iithiophorite, in an Oxisol from Hawaii. Aust. J. Soil Res, 1993, 31: 51-66
    172. Goodenough J B, Loeb A L. Theory of ionic ordering, crystal distortion, and magnetic exchange due to covalent forces in spinels. Phys Rev, 1955, 98:391-408
    173. Grafe M, Eick M J, Grossl P R. Adsorption of Arsenate(Ⅴ) and Arsenate(Ⅲ) on goethite in the presence and absence of dissolved organic carbon. Soil Sci Soc Am J, 2001, 65:1680-1687
    174. Gulens J, Champ D R, Jackson R E. Influence of redox environments on the mobility of arsenic in ground water. Am Chem Soc Symp Ser, 1979, 93:81-95
    175. Hayes K F, Leckie J O, Modeling ionic strength effects on cation adsorption at hydrous oxide/ solution interface. J Colloid Interf Sci, 1987, 115:564-572
    176. Healy T W, Herring A P, Fuerstenau D W. The effect of crystal structure on the surface properties of a series of manganese dioxides. J. Colloid Interf Sci, 1966, 21:435-444
    177. Hem J D. Redox processes at surfaces of manganese oxide and their effects on aqueous metal ions. Chem Geol, 1978, 21:199-218
    178. Hem J D. Rates of manganese oxidation in aqueous systems. Geochim Cosmochim Acta, 1981, 45:1369-1374
    179. Hem J D, Lind C J. Nonequilibrium models for predicting forms of precipitated manganese oxides. Geochim Cosmochim Acta, 1983, 47:3907-3923
    180. H(?)nocque O, Ruffet G, Colin F. ~(40)Ar/~(39)Ar dating of West African lateritic cryptomelanes. Geochim Cosmochim Acta, 1998, 62:2739-2756
    181. Hettiarachchi G M, Pierzynski G M, Ransom M D. In situ stabilization of soil lead using phosphorus and mangandese oxide. Environ Sci Technol, 2000, 34:4614-4619
    182. Hey M H, Embrey P G. Twenty-eight lists of new mineral names. Mineral Mag, 1974, 39: 903-932
    183. Huang P M. Kinetics of Redox reactions on manganese oxides and its impact on environmental quality. In: Sparks D L, Suarez D L eds. Rate of Soil Chemical Processes. Madison: SSSA Apec. Publ. 27, 1991:191-230
    184. Jackson B P, Miller W P. Effectiveness of phosphate and hydroxide for desorption of arsenic and selenium species from iron oxides. Soil Sci Soc Am J, 2000, 64:1616-1622
    185. Jenne E A. Controls on Mn, Fe, Co, Ni and Zn concentration in soils and water: significant role of hydrous Mn and Fe oxides. In: Gould R Fed. , Trace inorganics in water, Am Chem Ser 73.
    
    Washington D C: Am Chem Soc, 1968:337-387
    186. Johnson C A, Xyla A G. The oxidation of Chromium(Ⅲ)to chromium(Ⅵ) on the surface of manganite(γ-MnOOH). Geochim Cosmochim Acta, 1991, 55:2861-2866
    187. Jones L H P, Milne A A. Birnessite a new manganese oxide mineral from Aberdeenshire, Scotland. Miner Mag, 1956, 31 : 283-288
    188. Kijima N, Yasuda H, Sato T, Yoshimura Y. Preparation and characterization of open tunnel oxide α-MnO_2 precipitated by ozone oxidation. J Solid State Chem. 2001. 159:94-102
    189. Kim J B, Dixon J B, Chusuei C C, Deng Y J. Oxidation of Chromium(Ⅲ) to (Ⅵ) by Manganese Oxides. Soil Sci Soc Am J, 2002, 66, 306-315
    190. Krauskopf K B. Factors controlling the concentrations of 13 rare metal in sea-water. Geochim Cosmochim Acta, 1956, 9:1-32
    191. Kuma K, Usui A, Paplawsky W, Gedulin B, Arrhenius G. Crystal structures of synthetic 7 (?) and l0(?) manganates substituted by mono-and divalent cations. Miner Mag, 1994, 58:425-477
    192. Lagaly G. Layer charge heterogeneity in vermiculite. Clays Clay Miner, 1981, 30:215-222
    193. Lanson B, Drits V A. , Silvester E, and Manceau A. Structure of H-exchanged hexagonal bimessite and its mechanism of formation from Na-rich monoclinic buserite at low pH. Am Mineral, 2000, 85:826-838
    194. Lanson B, Drits V A, Feng Q, Manceau A. Structure of synthetic bimessite: Evidence for a triclinic one-layer unit cell. Am Mineral, 2002a, 87:1662-1671
    195. Lanson B, Drits V A, Bougeroi-Chaillout C, Plancon A, and Manceau A. Structure of heavy-metal sorbed birnessite: Part 1. Results from X-ray diffraction. Am Mineral, 2002b, 87:1631-1645
    196. Laverdiere M R, Weaver R M. Charge Characteristic of spodic horizons. Soil Sci Soc Am J, 1977, 41:505-510
    197. Leeper G M, Swaby R J. The oxidation of manganese compounds by microorganisms in the soil. Soil Sci, 1947, 49:163-169
    198. Levinson A A. Bimessite from Mexico. Am Mineral, 1962, 47(5-6): 79-791
    199. Liu F, Cristofaro A D, Violante A. Effect of pH, phosphate and oxalate on the adsorption/dedorption of arensate on/from goethite. Soil Science, 2001, 166:197-208
    200. Liu F, Colombo C, He J Z, Violante A. Trace elements in manganese-iron nodules from a Chinese Alfisol. Soil Sci Soc Am J, 2002, 66, 661-671
    201. Loganathan P, Burau R G. Sorption of heavy metals by a hydrous manganese oxide. Geochim. Cosmochim. Acta, 1973, 37:1277-1293.
    202. Loganathan P, Burau R G, Fuerstenau D W. influence of pH on the sorption of Co~(2+), Zn~(2+) and Ca~(2+) by a hydrous manganese oxide. Soil Sci. Soc. Am. J, 1977, 41:57-62
    203. Luo J and Suib S L. Preparative parameters, magnesium effects, and anion effects in the crystallization of birnessites. J Phys Chem B, 1997, 101 : 10403-10413
    204. Luo J, Huang A, Park S H. Crystallization of sodium-birnessite and accompanied phase transformation. Chem Mater, 1998, 10:1561-1568
    
    
    205. Luo J, Zhang Q, Huang A. Double-aging method for preparation of stabilized Na-buserite and Transformations to todorkites incorporated with various metals. Inorg Chem, 1999, 38: 6106-6113
    206. Ma Y, Luo J, Suib S L. Syntheses of birnessites using alcohols as reducing reagents: Effects of synthesis parameters on the formation of birnessites. Chem Mater, 1999, 11:1972-1979
    207. Mah D. Thermodynamic Properties of Manganese and its Compound. U S Bur. Mines, Rept Inv, 1960, 5600
    208. Majcher E H, Chorover J, Bollag J M, Huang P M. Evolution of CO_2 during birnessite-induced oxidation of 14C-Labeled catechol. Soil Sci Soc Am J, 2000, 64:157-163
    209. Malati M A, Sear A. Oxidations by manganese(Ⅲ)-. Oxidation of chromium(Ⅲ). Polyhedron, 1989, 8:1874-1875
    210. Manteau A, Llorca S & Calas G. Crystal chemistry of cobalt and nickel in lithiophorite and asbolane from New Caledonia. Geochim Cosmochim Acta, 1987, 51 : 105-113
    211. Manceau A, Charlet L. X-ray absorption spectroscopic study of the sorption of Cr(Ⅲ) at the oxide-water interface. J Colloid lnterf Sci, 1992a, 148:425-442
    212. Manteau A, Gorskhov A I, Drits V A. Structural chemistry of Mn, Fe, Co, and Ni in Mn hydrous oxides. Ⅱ. Information from EXAFS spectroscopy, electron and X-ray diffraction. Am Mineral, 1992b, 77:1144-1157
    213. Manceau A, Lanson B, Schlegel M L, Harge J C, Musso M, Eybert-Berard L, Hazemann J L, Chateiger D, Lamble G M. Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy. Am J Sci, 2000, 300:289-343
    214. Mandernack K W, Tebo B M. Manganese scavenging and oxidation at hydrothermal vents and in vent plumes. Geochim Cosmochim Acta, 1993, 57:3907-3923
    215. Manning B A, Goidberg S. Adsorption and stability of arsenic(Ⅲ) at the clay mineral-water interface. Environ Sci Technol, 1997, 31 : 2005-2011
    216. Matocha C J, Elzinga E J, Spark D L. Reactivity of Pb(Ⅱ) at the Mn(Ⅲ, Ⅳ) (oxyhydr)oxide-water interface. Environ Sci Technol, 2001a, 35:2967-2972
    217. Matocha C J, Sparks D L, Amonette J E, Kukkadapu R K. Kinetics and mechanism of birnessite reduction by catechol. Soil Sci Soc Am J, 2001 b, 65:58-66
    218. Matocha C J, Sparks D L, Amonette J E, Kukkadapu R K. Kinetic and mechanism of birnessite reduction by catechol. Soil Sci Soc Am J, 2002, 66:306-315
    219. McBride M B. Adsorption and oxidation of phenolic compounds by iron and manganese oxides. Soil Sci Soc Am J, 1987, 51:1466-1472
    220. McDaniel P A, Buol S W. Manganese distributions in acid soils of the north Carolina piedmont. Soil Sci Soc Am J, 1991, 55:152-158
    221. McKenzie R M. The sorption of cobalt by manganese minerals in soils. Aust J Soil Res, 1967, 5: 235-246
    222. McKenzie R M. The reaction of cobalt with manganese dioxide minerals. Aust J Soil Res, 1970, 8:
    
    97-106
    223. McKenzie R M. The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese. Miner Mag, 1971, 38:493-503
    224. McKenzie R M. The sorption of some heavy metals by the lower oxides of manganese. Geoderma, 1972, 8:29-35
    225. McKenzie R M. An electron microprobe study of the relationships between heavy metals and manganese and iron in soils and ocean floor nodules. A ust J Soil Res, 1975, 13:177-188
    226. McKenzie R M. The effect of two manganese dioxides on the uptake of Pb, Co, Ni, Cu and Zn by subterranean clover. Aust J Soil Res, 1978, 16:209-214
    227. McKenzie R M. Proton release during adsorption of heavy metal ions by a hydrous manganese dioxide. Geochim Cosmochim Acta, 1979, 43:1855-1857
    228. McKenzie R M. The adsorption of lead and other heavy metals on oxides of manganese and iron. Aust J Soil Res, 1980a, 19:41-50
    229. Mckenzie R M. The manganese oxides in soils. In: Varentsov I M, Grasselly G Eds. , Geology and Geochemistry of manganese, Vol. 1. Budapest: Hungarian Academy of Science, 1980b: 259-269
    230. McKenzie RM. The surface charge on manganese dioxides. Aust J Soil Res, 1981, 19:41-50
    231. McKenzie R M. Manganese oxides and hydroxides. In: Dixon J B, Weed S Beds. , Minerals in Soil Environments (2nd edition). Madison: SSSA Book Series 1, 1989:439-465
    232. Means J L, Crerar D A, Borcsik M P, Duguid J O. Adsorption of cobalt and selected actinides by Mn and Fe oxides in soils and sediments. Geochim. Cosmochim Acta, 1978, 42:1763-1773
    233. Mellin T A, Lei G. Stabilization of 10(?)-manganates by interlayer cations and hydrothermal treatment: implications for the mineralogy of marine manganese concretions. Mar Geol, 1993, 115:67-83
    234. Moore J N, Walker J R, Hayes T H. Reaction scheme for the oxidation of As(Ⅲ) to As(Ⅴ) by birnessite. Clays Clay Miner, 1990, 38:549-555
    235. Moore T E, Ellis M, Selwood P W. Solid oxides and hydroxides of manganese. J Am Chem Soc, 1950, 72:856-866
    236. Morgan J J, Stumm W. Colloid-chemical properties of manganese dioxide. J Colloid Sci, 1964, 19: 347-359
    237. Mukherjee B. X-ray study of psilomelane and cryptomelane. Mineral Mag, 1959, 32:166-171
    238. Murray J W. The surface chemistry of hydrous manganese dioxide. J Colloid Interf Sci, 1974, 46: 357-371
    239. Murray J W. The interaction of metal ions at the manganese dioxide-solution interface. Geochim Cosmochim Acta, 1975a, 39:505-519
    240. Murray J W. The interaction of cobalt with hydrous manganese dioxide. Geochim Cosmochim Acta, 1975b, 39:635-647
    241. Nahon D, Beauvais A, Boeglin J L, Ducloux J, N'ziegui-Mpangou P. Manganite formation in the first stage of the lateritic manganese ores in Africa. Chem Geol, 1983, 40:25-42
    
    
    242. Nahon D, Beauvais A, N'ziegui-Mpangou P, Ducloux J. Chemical weathering of Mn-gamets under lateritic conditions in north-west Ivory Coast (West Africa). Chem Geol, 1984, 45:53-71
    243. Nahon D, Beauvais A, Trescases J J. Manganese concentration through chemical weathering of metamorphic rocks under lateritic conditions. In: Drever J I ed. , The chemistry of weathering. Boston: Reidel Boston, 1985:177-291
    244. Naidja A, Huang P M, Bollag J M. Comparison of reaction products from the transformation of catechol catalyzed by birnessite or tyrosinase. Soil Sci Soc Am J, 1998, 62:188-195
    245. Nesbitt H W, Canning G W, Bancroft G M. XPS study of reductive dissolution of 7(?)-bimessite by H_3AsO_3 with constraints on reaction mechanism Geochim Cosmochim Acta, 1998, 62: 2097-2110
    246. Non J S, Schwarz J A. Estimation of the point of zero charge of simple oxides by mass titration. J Colloid InterfSci, 1989, 130:157-163
    247. Norvell W A. Inorganic reactions of manganese in soils. In: Graham R D, Hannam R J, Uren N C eds. , Manganese in soils and plants. Dordrecht: Kluwer Academic Pub, 1988:37-58
    248. Nriagu J O, Nieboer E. Advances in environmental science and technology: Chromium in the natural and human environments. American Chemica Society, 1988
    249. Ooi K, Miyai Y, Katoh S. Ion-exchange properties of ion-sieve-type manganese oxides prepared by using different kinds of introducing ions. Separation science and technology, 1987, 22: 1779-1789
    250. Oscarson D W, Huang P M, Liaw W. The oxidation of arsenite by aquatic sediments. J Environ Qual, 1980, 9:700-703
    251. Oscarson D W, Huang P M, Defosse C, Herbillon A. The Oxidative power of Mn(Ⅳ) and Fe(Ⅲ) oxides with respect to As(Ⅲ) in terrestrial and aquatic environments. Nature, 1981a, 291:50-51
    252. Oscarson D W, Huang P M, Liaw W K. The role of manganese in the oxidation of arsenite by freshwater lake sediments. Clays and Clay Miner, 1981b, 29:219-225
    253. Oscarson D W, Huang P M, Liaw W, Hammer U T. Kinetic of oxidation of arsenate by various manganese dioxides. Soil Sci Soc Am J, 1983a, 47:644-648
    254. Oscarson D W, Huang P M, Hammer U T, Liaw W K. Oxidation and sorption of arsenite by manganese dioxide as influenced by surface coatings of iron and aluminum osides and calcium carbonate. Water, Air and Soil Pollution, 1983b, 20:233-244
    255. Ostwald J. Some observations on the chemical composition of todorokite. Miner Mag, 1986, 50: 336-40
    256. Ostwald J. Two varieties of lithiophorite in some Australian deposits. Miner Mag, 1984, 48:383-388
    257. Parc S, Nahon D, Tardy Y, Vieillard P. Solubility products and stability fields of cryptomelane, nsutite, birnessite and lithiophorite in lateritic weathering. Am Mineral, 1989, 74:466-475
    258. Parida K M, Gorai B, Das N N. Studies on Indian Ocean Manganese Nodules. J Colloid Interf Sci, 1997, 187:375-380
    
    
    259. Party E P. An infrared study of pyridine adsorbed or acid solids. J Catal, 1963, 2:371-379
    260. Paterson E. Intercalation of synthetic buserite by dodecylammonium chloride. Am Mineral, 1981, 66:424-427
    261. Paterson E, Bunch J L, Clark D R. Cation exchange in synthetic manganates: Ⅰ. Alkylammonium exchange in a synthetic phyllomanganate. Clay Minerals, 1986, 21:949-955
    262. Pauling L, Kamb B. The crystal structure of lithiophorite. Am Mineral, 1982, 67:817-821
    263. Peak D, Ford R G, Sparks D L. An in situ ATR-FTIR investigation of sulfate bonding mechanisms on goethite. J Colloid Interf Sci, 1999, 218:289-299
    264. Post J E, Von Dreele R B, Buseck P R. Symmetry and cation displacements in hollandites: structure refinements of hollandite, cryptomelane, and priderite. Acta Crystallogr, 1982, 38: 1056-1065
    265. Post J E, Bish D L. Rietveld refinement of the todorokite structure. Am Mineral, 1988a, 73: 861-869
    266. Post J E, Appleman D E. Chalcophanite, ZnMn_3O_73H_2O: New crystal-structure determinations. Am Mineral, 1988b, 73:1401-1404
    267. Post J E, and Bish D L. Rietveld refinement of the coronadite structure. Am Mineral, 1989, 74: 913-917
    268. Post J E, Veblen D R. Crystal structure determination of synthetic sodium, magnesium, and potassium birnessite using TEM and the Rietveld method. Am Mineral, 1990, 75:477-489
    269. Post J E. Crystal structures of manganese oxide minerals. In: Skinner H C W, Fitzpatrick R W eds. , Biomineralization, Processes of Iron and Manganese. Cremlingen-Destedt: CATENA Verlag, 1992:51-73
    270. Post J E, Appleman D E. Crystal structure refinement of lithiophorite. Am Mineral, 1994, 79:370-374
    271. Post J E. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc Natl Acad Sci, 1999, 96:3447-3454
    272. Postma D. Concentration of Mn and separation from Fe in sediments. Ⅰ. Kinetics and stoichiometry of the relation between birnessite and dissolved Fe(Ⅱ) at 10℃. Geochim Cosmochim Acta, 1985, 49:1023-1033
    273. Potter R M, and Rossman G R The tetravalent manganese oxides: identification, hydration, and structural relationships by infrared spectroscopy. Am Mineral, 1979, 64:1199-1218
    274. Ramsdell L S. An X-ray study of psilomelane and wad. Am Mineral, 1932, 17:143-149
    275. Randall S R, Sherman D M, Ragnarsdottir K V. An Extended X-ray absorption fine structure spectroscopy investigation of cadmium sorption on cryptomelane (KMn_8O_(16)). Chem Geol, 1998, 151:95-106
    276. Rhoton F E, Bigham G M, Schulze D G. Properties of Iron-manganese nodules from a sequence of eroded fragipan soils. Soil Sci Soc Am J, 1993, 57:1386-1392
    277. Richmond W E, Fleischer M. Cryptomelane, a new name for the commonest of the "Psilomelane"
    
    minerals. Am Mineral, 1942, 27:607-613
    278. Risser J A, Bailey G W. Spectroscopic study of surface redox reactions with manganese oxides. Soil Sci Soc Am J, 1992, 56:82-86
    279. Ross D S, Bartlett R J. Evidence for non-microbial oxidation of manganese in soil. Soil Sci, 1981, 132:153-160
    280. Ross S J, Franzmeier D P, Roth C B. Mineralogy and chemistry of manganese oxides in some Indiana soils. Soil Sci Soc Am J, 1976, 40:137-143
    281. Scott M J, Morgan J J. Reactions at oxide surfaces 1. oxidation of As(Ⅲ) by synthetic birnessite. Environ Sci Technoi, 1995, 29:1898-1905
    282. Shaughnessy D A, Nitsche H, Booth C H, Shuh D K, Waychunas G A, Wilson R E, Gill H, Cantrell K J, Serne R J. Molecular interfacial reactions between Pu(Ⅵ) and manganese oxide minerals manganite and hausmannite. Environ Sci Technol, 2003, 37, 3367-3374
    283. Shen Y F, Zerger R P, Suib S L, McCurdy L, Potter D I, O' Yang C L. Manganese oxide octahedral molecular sieves: Preparation, characterization and application. Science, 1993, 260: 511-515
    284. Shen Y F, Suib S L, O' Yang C L. Effects of inoganic cation templates on octahedral molecular sieves of manganese oxide. J Am Chem Soc, 1994, 116:11020-11029
    285. Shin J Y, Buzgo C M, Cheney M A. Mechanochemical degradation of atrazine adsorbed on four synthetic manganese oxides. Colloids and Surfaces A, 2000, 172:113-123
    286. Shindo H, Huang P M. Role of Mn(Ⅳ) oxide in abiotic formation of humic substances in the environment. Nature, 1982, 298:363-365
    287. Shindo H, Huang PM. Signification of Mn(Ⅳ) oxide in abiotic formation of organic nitrogen complexes in natural environments. Nature, 1984a. 308: 57-58.
    288. Shindo H, Huang P M. Comparison of the influence of manganese(Ⅳ) and typrosinase on the formation of humic substances in the environment. Sci. Total Environ, 1992, 117/118:103-110
    289. Shindo H, Oshita T, Matsudomi N, Usui K, Goh T B. Catalytic role of Mn(Ⅳ) oxide in the formation of humic-enzyme complexes in the soil ecosystem. Sci Plant Nutr, 1996, 42:141-146
    290. Shuman L M. Separating soil iron-and manganese-oxide fractions for microelement analysis. Soil Sci SocAm J, 1982, 46:1099-1102
    291. Sibanda H M, Young S D. Competitive adsorption of humus acids and phosphate on goethite, gibbsite, and two tropical soils. J Soil Sci, 1986, 37:197-204
    292. Siegel M D, Turner S. Crtstalline todorokite associated with biogenic debris in manganese nodules. Science, 1983, 219:172-174
    293. Sigel M D, Turner S. Crystalline todorokite associated with biogenic debris in manganese nodules. Science, 1983, 219:172-174
    294. Silvester E J, Manceau A, Drits V A. The structure of monoclinic Na-rich birnessite and hexagonal birnessite. Part 2 Results from chemical studies and EXAFS spectroscopy. Am Mineral, 1997, 82:962-978
    
    
    295. Silvester E J, Manceau A. The mechanism of chromium(Ⅲ) oxidation by Na-buserite. J Phys Chem, 1995, 99:16662-16772
    296. Spark K M, Johnson B B, Wells J D. Characterizing heavy-metal adsorption on oxides and oxyhydroxides. European Journal of Soil Science, 1995, 46:621-631
    297. Sparks D L. Soil physical chemistry. Florida: CRC Press, 1986:83-178
    298. Sposito G, Reginato R J. Opportunities in basic soil science research. Madison: Soil science society of America, 1992
    299. St(?)hli E. (?)ber manganate(Ⅳ) mit Schichten-Struck-tur. PhD thesis, Univ. of Bern, Switzerland, 1968
    300. Stone A T, Morgan J J. Reduction and dissolution of manganese(Ⅲ) and manganese(Ⅳ) oxides by organics. 1. Reaction with hydroquinone. Environ Sci Technol, 1984a, 18:450-456
    301. Stone A T, Morgan J J. Reduction and dissolution of manganese(Ⅲ) and manganese(Ⅳ) oxides by organics. 2. Survey of the reactivity of organics. Environ Sci Technol, 1984b, 18:617-624
    302. Stone A T. Reductive dissolution of manganese(Ⅲ)/(Ⅳ) oxides by substituted phenols. Environ. Sci Technol, 1987, 21:979-988
    303. Stumm W, Giovanoli R. On the nature of particulate manganese in simulated lake waters. Chimia, 1976, 30:423-425
    304. Stumm W. Chemistry of the Solid-Water Interface. John Wiley and Sons, 1992
    305. Suare D L, Langmuir D. Heavy metal relationship in Pennsylvania soil. Geochim Cosmochim Acta, 1976, 40:589-598
    306. Sugiyama S, Yamamoto S. Preparation of α-MnO_2 with an open tunnel. J Solid State Chem, 1999, 144:136-142
    307. Suib S L. Sorption, catalysis, and separation by design. Chem Innov, 2000, 30:27
    308. Sun X, Doner H E. Adsorption and oxidation of arsenite on goethite. Soil Sci, 1998, 163:278-287
    309. Sung W, Morgan J J. Oxidative removal of Mn(Ⅱ) from solution catalyzed by the lepidocrocite surface. Geochim Cosmochim Acta, 1981, 45:2377-2383
    310. Taakamatsu T, Kawashima M, Koyoma M. The role of Mn~(2+)-rich hydrous manganese oxide in the accumulation of arsenic in lake sediments. Wat Res, 1985, 19:1029-1032
    311. Takahashi Y, Shimizu H, Usui A, Kagi H, Nomura M. Direct observation of tetravalent cerium in ferromanganese nodules and crusts by X-ray-absorption near-edge structure (XANES). Geochim Cosmochim Acta, 2000, 64:2929-2935
    312. Tan W F, Liu F, Li Y H, He J Z, Li X Y. Mineralogy of manganese oxides in iron-manganese nodules of several main types of soils in China. Pedosphere, 2000, 10:365-274
    313. Taylor R M, McKenzie R M. The association of trace elements with manganese minerals in Australian soils. Aust J Soil Res, 1966, 4:29-39
    314. Taylor R M, McKenzie R M, Norrish K. The mineralogy and chemistry of manganese oxides in some Australian soils. Aust J Soil Res, 1964, 2:235-248
    315. Taylor R M. The association of manganese and cobalt in soils—further observations. J Soil Sci,
    
    1968, 19:77-80
    316. Tejedor M I, Paterson E, Reversibility of lattice collapse in synthetic buserite: In: Mortland M M, Farmer V C eds. , Proc lnt Clay ConfOxford. Amsterdam: Elsevier, 1978:501-508
    317. Tian Z R, Tong W, Wang J Y, Duan N G, Krishnan V V, Suib S L. Manganese oxide mesoporous structures: mixed valent semiconducting catalysts. Science, 1997, 276:926-930
    318. Traina S J, Doner H E. Heavy metal induced releases of manganese (Ⅱ) from a hydrous manganese dioxide. Soil Sci Soc Am J, 1985a, 49:317-321
    319. Traina S J, Doner H E. Copper-manganese(Ⅱ) exchange on a chemically reduced birnessite. Soil Sci Soc Am J, 1985b, 49:307-313
    320. Trivedi P, Axe L. A comparison of strontium sorption to hydrous aluminum, iron, and manganese oxides. J Colloid Interf Sci, 1999, 218:554-563
    321. Tsuji M, Tamaura Y. Yhermodynamic study of M~+/H~+ exchanges on a cryptomelane-type manganic acid. Solvent extraction and ion exchange, 2000, 18:187-202
    322. Tu S, Racz G J, Goh T B. Transformations of synthetic bimessite as affected by pH and manganese concentration. Clays Clay Miner, 1994, 42:321-330
    323. Turner S, Buseck P R. Manganese oxide tunnel structures and their intergrowths. Science, 1979, 203:456-458
    324. Turner S, Buseck P. Todorokies: A new family of naurally occuring mananese oxides. Science, 1981, 212:1024-1027
    325. Turner S, Siegel M D, Buseck P R. Structure features of tordorkite intergrowths in manganese nodules. Nature, 1982, 296:841-842
    326. Turner S, Buseck P. Defects in nsutite (γ-MnO_2) and dry-cell battery efficiency. Nature, 1983, 304:143-146
    327. Usui A. Nickel and copper accumulation as essential elements in 10 (?) manganite of deep-sea manganese nodules. Nature, 1979, 279:411-413
    328. Usui A, Mellin T A, Nohara M, Yuasa M. Structure stability of marine 10(?)-manganates from the Ogasawara (Bonin) arc: implication for low-temperature hydrothermal activity. Mar Geol, 1989, 86:41-56
    329. Usui A, Mita N. Geochemistry and mineralogy of a modem buserite deposit from a hot spring in Hokkaido, Japan. Clays Clay Miner, 1995, 43:116-172.
    330. Uzochukwu G A, Dixon J B. Manganese oxide minerals in Nodules of two soils of Texas and Alabama. Soil Sci Soc Am J, 1986, 50:1358-1363
    331. Van der Weijden C H, Kruissink E C. Some geochemical controls on lead and barium concentrations in ferromanganese deposits. Mar Geochem, 1977, 5: 93-112
    332. Vileno E, Ma Y, Zhou H, Suib S. L Facile synthesis of synthetic tordorkite(OMS-1), co-precipitation reactions in the presence of a microwave field. Microporous and Mesporous Materals, 1998, 20:3-15
    333. Vileno E, Zhou H, Zhang Q, Suib, S L, Corbin D R, Koch T A. Synthetic todorkite produce by
    
    microwave heating: An active oxidation catalyst. J Catal, 1999, 187:285-297
    334. Violante A. and Pigna M. Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Sci Soc Am J, 2002, 66:1788-1796
    335. Wada H, Seirayosakol A, Kimura M, Takai Y. The process of manganese deposition in paddy soils: (Ⅰ) A hypothesis and its verification. Soil Sci Plant Nutr, 1978a, 24:55-62
    336. Wada H, Seirayosakol A, Kimura M, Takai Y. The process of manganese deposition in paddy soils: (Ⅱ) the microorganisms responsible for manganese deposition. Soil Sci Plant Nutr, 1978b, 24: 319-325
    337. Wadsley A D. The crystal structure of chalcophanite, ZnMn_2O_7. 3H_2O. Acta Crystallogr, 1955, 8: 165-172
    338. Wadsley A D. Synthesis of some hydrated manganese minerals. Am Mineral, 1950a , 35: 485-488
    339. Wadsley A D. A hydrous manganese oxide with exchange properties. Journal of American chemical society, 1950b, 72: 1881-1884
    340. Wadsley A D. The structure of lithiophorite (Al, Li)MnO_2(OH)2. Acta Crystallogr, 1952, 5: 676-680
    341. Wadsley A D. The crystal structure of psilomelane (Ba, H_2O)2Mn_5O_10. Acta Crystallogr, 1953, 6: 433-438
    342. Weaver R M, Hochela M F, Ilton E S. Dynamic processes occurring at the Cr_(aq)~Ⅲ-manganite (γ-MnOOH) interface: Simultaneous adsorption, microprecipitation, oxidation/reduction, and dissolution. Geochim Cosmochim Acta, 2002, 66:4119-4132
    343. Wehrli B, Stumm W. Vanadyl in natural waters: Adsorption and hydrolysis promoted oxygenation. Geochim Cosmochim Acta, 1989, 53:69-77
    344. Yang D S, Wang M K. Characterization and a fast method for synthesis of sub-micron lithiophorite. Clays Clay Miner, 2003, 51:96-101
    345. Yang D S, Wang M K. Syntheses and characterization of birnessite by oxidizing pyroehroite in alkaline conditions. Clays Clay Miner, 2002, 50, 63-69
    346. Yang X J, Kanoh H, Tang W P, Liu Z H, Ooi K. New route for preparation of layered manganese oxides with muitivalent metals in the interlayer. Chem Lett, 2001, 612-613
    347. Yang X J, Kanoh H, Tang W P, Liu Z H, Ooi K. Lithium Magnesium Manganese Oxides Prepared from Mg-Birnessite or Mg-Todorokite by a LiNO_3 Flux Method. Chem Lett, 2000, 1192-1193
    348. Yin Y G, Xu W Q, DeGuzman R N, Suib S L. Studies of stability and reactivity of synthetic cryptomelane-like mangandese oxide octahedral molecular sieves, Inorg Chem, 1994, 33: 4384-4389
    349. Zhou H, Wang J Y, Chen X, O'Young, C L, Suib S L. Studies of oxidative dehydrogenation of ethanol over manganese oxide octahedral molecular sieve catalysts. Microporous and Mesoporous Materals, 1998, 21: 315-324
    350. Zwicker W K, Meijer W, Jaffe H W. Nsutite—a widespread manganese oxide mineral. Am Mineral, 1962, 47:246-266

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700