用户名: 密码: 验证码:
逆合成孔径雷达成像及目标识别
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆合成孔径雷达(ISAR)是一种高分辨成像雷达,能够获取更多的目标信息。国际上对ISAR的研究已经取得很多成果,但真正投入应用的报道很少。雷达目标识别是国防上急需解决的一个重要问题,解决途径之一是用ISAR对目标进行二维成像,基于目标像进行目标识别。ISAR是大带宽雷达,制造成本高,在短期内大规模应用比较困难。将ISAR技术用于窄带相参雷达,实现高的横向距离分辨(横向一维成像),可以解决目前国防上尚待解决的目标架次分辨的问题。本文研究一维ISAR成像处理,二维ISAR实时成像以及基于ISAR二维像的目标识别,有利于推动ISAR的应用,不仅在国防上有非常重要的意义,在航空管制、港口监视等民用领域也有广阔的应用前景。
     文中一维ISAR成像处理、二维ISAR实时成像、基于ISAR二维像的目标识别研究均用外场数抓进行了验证,给出了结果。论文共有七章和一个附录,内容如下:
     第一章介绍ISAR二维成像和实时成像,ISAR一维成像以及目标自动识别的基本概念,并概述全文内容。
     第二章研究一维ISAR成像方法,包括距离对准、相位补偿的几种计算方法、单目标成像和多目标成像。给出用相位差分计算相位补偿参数的方法。分析了近似刚性多目标成像和非刚性多目标成像的差别,给出了成像方法和外场数据成像结果。
     第三章研究ISAR目标运动参数估计。提出横向一维像快速定标方法和切向速度计算方法。研究用目标移动速度和多普勒频移相结合克服测速误差大和速度模糊的矛盾。通过定标,能够准确估计目标尺寸,有利于分辨单目标和多目标或目标识别。
     第四章研究目标架次识别。提出横向动态一维像的概念及其计算、显示方法,介绍基于横向动态一维像的目标架次识别方法及其相关问题。
     第五章研究ISAR实时二维成像、图像后处理。讨论ISAR二维像实时成像的概念及其与SAR实时成像的差别。研究用软件实现非重叠实时成像方法。图像后处理包括图像连通处理、干扰条纹抑制、图像质心归一化等。其结果有利于图像特征提取,也符合光学图像的观察习惯。
     第六章研究基于ISAR目标二维像的自动目标识别问题,研究了四种特征及其提取方法,人工神经网络的识别过程。外场数据验证表明,所述目标识别方法效果良好。
     第七章对全文进行了总结,提出有待深入研究的工作
     附录介绍384雷达用作一维ISAR的外场数据采集方案。研究数据采集系统正交误差、直流偏移、系统干扰和噪声的计算方法。给出外场数据分析结果。
Inverse synthetic aperture radar (ISAR) is a kind of high resolution imaging radar. It can take more message than narrow-band radar. Though many outcomes have been taken out on imaging research, the reports number of applying the ISAR imaging in practice are very few. The recognition tecnique of radar targets is a urgent problem in national defence. One of the routes of recognition targets is imaging to target with ISAR. ISAR is a wide-band radar, so its price is very expensive. It is very difficult to widely use the ISAR in the near future. The tecnique of ISAR applies to nanrrow-band radar so that it has high accros-range resolution (ID imaging) to tell targets apart in nantional defenc. This thesis studies on ID imaging processing, ISAR 2D imaging in real time, and object imaging recognition. Those would extend ISAR and have important meaning not only in national defenc but also in civil.
    ISAR ID imaging processing, ISAR 2D imaging in real time, and object imaging recognition have been verified with field data. This thesis consists of six chapters and an appendix. The content is as follows:
    Chapter 1 introduces the essentials of ISAR ID imaging, ISAR 2D imaging in real time and object imaging recognition based on ISAR imaging.
    Chapter 2 deals with ISAR ID imaging, contains the algorithms of the range realignment, the phase compensation, single target imaging and multi-targets imaging. The method of difference phase compensation in ID ISAR is given out. The difference between quasi-inflexibility targets imaging and non-inflexibility targets imaging is analyzed. The imaging results of field data are given out.
    Chapter 3 studies estimation of moving target parameters. The methods of Fast ISAR ID imaging scaling and calculating the across speed of target are proposed. The distance moving rate and Doppler frequency shifting are gathered to correct the dim speed to decrease the speed error. After scaling, the scale of a target can be estimated correctly for targets resolution or target recognition.
    Chapter 4 proposes the idea of ISAR dynamic across 1D imaging. The calculation method and display mode of the imaging are introduced. The method of resolving targets based on the imaging and its relative problems are introduced too.
    Chapter 5 studies ISAR imaging in real time and image post-processing, and discusses the idea of ISAR imaging in real time and the difference with SAR imaging in real time. It introduces the method of non-overlapping ISAR imaging in real time based on software. The image post-processing includes image connectivity processing, interference stripe suppression and centroid normalization. The results are advantageous to the
    
    
    
    extraction features, and look as if optical imaging.
    Chapter 6 studies ATR based on ISAR imaging. The content includes explanation of four features of a target image, the algorithms of extraction features, and recognition target based on artificial neural network algorithm. The experimental results with field data verify that the methods of recognition target are efficient.
    Chapter 7 summrizes the whole work of this thesis and show the researches to be carried out further.
    Appendix introduces the field data acquisition scheme of 384 radar which is coherent and narrow-band. It introduces the calculation of the coherence error, direct shift, interference and noise of the system. The analyzing results of field data are given out.
引文
1. M. J. Prickect and C. C. Chen, Principle of Inverse Synthetic Aperture Radar (ISAR) Imaging, EASCON record, 1980, 340-345,
    2. C. C. Chen and H. C. Andrews, Target-motion-induced Radar Imaging, IEEE Trans, AES, 1980, 16(1): 2-14
    3.张直中,“合成孔径、逆合成孔径和成像雷达”《现代雷达》,1985,7(5、6),1986,8(1)
    4.张直中,《微波成像术》,科学出版社,1990
    5.张澄波,(综合孔径雷达》,科学出版社,1989
    6. W. M. Brown, Synthetic Aperture Radar," IEEE Trans, AES, 1967, 3(2): 217-229
    7. W. M. Brown and Porcello, An Introduction to Synthetic Aperture Radar," IEEE Spectrum, 1969, 4:52-62
    8.丁鹭飞,耿富录.雷达原理.西安电子科技大学出版社 1995,7-8
    9. W. M. Brown and R. J. Fredericks, "Range-Doppler imaging with motion through resolution cells," IEEE Trans, AES, 1969, 5(1): 98-102
    10. D. L. Mensa, High Resolution Radar imaging, Artech House, 1982
    11. C. W. Sherwin, A. Kozma, J. L. Walker, et al. Developments in Synthetic Aperture Radar Systems, IRE Trans. On military Electronics, 1962, MIL-6(2): 111-115
    12. D. A. Ausherman, A. Kozma, J. L. Walker, et al. Development in Radar Imaging, IEEE Trans. Aes, 1984, 20(4): 363-399
    13. R. Volses, Resolving Revolutions:Imaging and Mapping by Modern Radar. Proc. IEE-F. 1993, 140(1): 1-11
    14. T. Itoh, H. Sueda, Y. Watanabe: A Compensation Method of Tagret Dadial Motion in ISAR. Proc. Japan. 1994, 133-138
    15. F. Berizzi, G. Corsini, M. E. Dalle, et al; Experimental Results in Ship Radar Imaging, Proc. International Conference on Radar. Paris. 1994, 111-114
    16. K. K. Eerland, Application of ISAR on Aircraft, IEEE int. Radar Conf., Paris, 1984, 618-623
    17. B. D. Steinberg, Microwave Imaging of Aircraft," Proc. IEEE, 1988, 76(12): 1578-1592
    18. B. D. Steinberg, Experimental Localized Radar Cross Section of Aircraft, Proc. IEEE, 1989, 77(5):663-669
    19. R. Voles, Resolving Revolutions: Imaging and Mapping by Modern radar," IEE. Proc. -F, 1980, 140(1): 23-52
    20.曹志道,刘永坦,宿富林等,“实验ISAR外场实验及数据处理,”《逆合成孔径雷达论文集》,信息获取与处理技术主题十周年汇报,1996,56-64
    21.保铮,朱兆达,曹志道,“ISAR的进展和发展前景,”《逆合成孔径雷达论文集》,信息获取与处理技术主题十周年汇报,1996,1-19,
    22.邱晓晖,“运动目标雷达成像研究,”南京航空航天大学博士论文,1995年12月
    23.朱兆达,邱晓晖,佘志舜,“用改进的多普勒中心跟踪法进行ISAR运动补偿,”电子学报,1997,25(3):65-69
    24.保铮、邓文彪、杨军,“散射‘重心’跟踪的ISAR运动补偿方法”,《西安电子科技大学学报》,1990,17(3)
    25. Daiyin Zhu, Zhaoda Zhu. Identifying the Number of Aircraft in Formation Flight Using ISAR Technique. Chinese Journal of Aeronautics. 1999. 8
    
    
    26. J. Tsao and B. D. Steinberg, Reduction of Sidelobe and Speckle Artifacts in Microwave Imaging: the Clean Technique, IEEE Trans. AP, 1988, 36(4): 543-556
    27. Yang Jun, Wang Minsheng and Bao Zheng, A Real Time Implementation Technique of Multi-Target ISAR Imaging, Chinese Journal of Electronics, 1994, 3(4): 62-66
    28.朱兆达、殷军、邬小青等,基于信号时间—频率分析的多运动目标ISAR成像,现代雷达,1993,34(5):33-37
    29. Minsheng Wan and Zheng Bao, Modified short time Fourier transform, Optical Engineering, 1995, 34(5)
    30. S. Barbarossa and A. Farina, Space-Time-Frequency Processing of Synthetic Aperture Radar Signals, IEEE Trans. AES, 1994, 30(2): 341-358
    31.王根原,保铮.逆合成孔径雷达运动补偿中包络对齐的新方法.电子学报.1998.26(6):5-8
    32.卢光跃,保铮.基于瞬时谱估计的 ISAR 距离瞬时多普勒成像算法.西安电子科技大学学报.1998.
    33.张涛,马长征,张守宏.一种新的 ISAR-FS 成像运动补偿方法.西安电子科大学报.2000.27(1):65-69
    34.李玺,倪首麟,刘国岁.一种提高ISAR成像质量的新方法.电子学报.2000.28(2):139-141
    35.李玺,刘国岁,单荣光等.舰船的混合SAR-ISAR成像研究.现代雷达.1998.20(4):18-25
    36. B. D. Steinberg, Radar Imaging from a Distorted Array: the Radio Camera Algorithm and Experiment," IEEE Trans. AP, 1981, 29(5): 740-748
    37. D. E. Wahl, P. H. Eichel, D. C. Chiglia, et al., Phase Gradient Autofocus a Robust Tool for High Resolution SAR Phase Correction, IEEE Trans. AES, 1994, 30(3): 827-834
    38. S. Barbarossa. New Autofocusing Technique for SAR Images Based on the Wigner-Ville Distribution, Electronics Letters, 1990, 26(18): 1533-1534
    39.朱兆达,邬小青,叶蓁如.逆合成孔径雷达信号处理技术.信息获取与处理技术情报交流中心,洛阳,1991
    40. J. L. Walker, Range-Doppler imaging of rotating objects, IEEE Trans. AES, 1980, 16:23-52
    41. D. L. Mensa, S. Halevy and G. Wade, "Coherent doppler tomography for microwave imaging," Proc. IEEE, 1983, 71(2): 254-261
    42. D. C. Muson, et al., "A tomographic formulation of spotlight-mode synthetic aperture radar," Proc. IEEE, 1983, 7(8): 917-925
    43. W. F. Ggabriel, Superresolution Technique and Imaging, IEEE National Radar Conf. 1989, 48-85
    44. R. M. Nuthalapati, High Resolution Reconstruction of ISAR Imaging, IEEE Trans, AES, 1992. 28(2): 462-472
    45. Z. D. Zhu, Z. R. Ye, X. Q. Wu, et al. Super-Resolution Range-Doppler Imaging, lEE Proc. -F, 1995, 142(1): 25-32
    46.朱兆达、叶蓁如、邬小青.一种超分辨距离多普勒成像方法.电子学报.1991,20(7):1-6
    47. S. Barbarossa and A. Farina, A Novel Procedure for Detecting and Focusing Moving Obejects with SAR Based on the Wigner-Vile Distribution. IEEE Int. Radar Conf., Arlington., 1990:40-50
    48. D. L. Mensa, et al, Bistatic Synthetic-aperture Imaging of Rotating Objects. IEEE Trans. AES, 1982, 18(4):423-431
    49. B. D. Steinberg, Microwave Imaging with Large Antenna Arrays: Radio Camera Principles and Techniques, New York: John Wiley and sons, 1983
    50. B. Kang, H. M. Subbaram and B. D. Steinberg, Improved Adaptive-beamforming Target for Self-Calibrating a Destorted Phased array, IEEE Trans. AP, 1990, 38(2):186-194
    51. K. D. Ward, R. J. A. Tough and B. Hayward, Hybrid SAR/ISAR Imaging of Ships, Proc. IEEE Int.
    
    Radar conf, 1990,64-69
    52. N.J. Porter, R.J.A. Tough and K.D. Ward, SAR,ISAR and Hybrid SAR/ISAR-a Unified treatment of Radar Imaging, Record of the IEEE National Radar Conference, 1993
    53. E.H. Attia, Self-Cohering Airborne Distributed Arrays Using the Robust Minimum Variance Algorithm, IEEEAPS Int. Symp, Philadephia ,1986,2(6) :603-606
    54. E.H. Attia, et al, Self-Cohering Large Antenna Arrays Using the Spatial Correlation Properties of Radar Clutter, IEEE AP,1989,37()):30-38
    55. N.H. Farhat, Microwave Diversity Imaging and Automated Target Identification Based on Models of Neural Networks, Proc. of IEEE, 1989,77(5) ;670-681
    56. W.D. Brown and D.C. Ghiglia, Some Methods for Reducing Propagation-induced Phase Errors in Coherent Imaging System. Ⅰ. Formalism, Journal of the Optical Society of America A, 1988,5(6) :924-941
    57. D.C. Ghiglia and D.C. Brown, Some Methods for Reducing Propagation-induced Phase Errors in Coherent Imaging System. Ⅱ. Numerical Results , Journal of the Optical Society of America A, 1988,5(6) :942-957
    58. B. Boashash, O.P. Kenny and H.J. Whitehouse, Radar Imaging Using the Wigner-Ville Distribution, SPIE Vol. 1154, Real-Time Signal Processing XIII, 1989,282-294
    59. O.P. Kenny and B. Boashash, Time-Frequency Analysis of Backscattered Signals from Diffuse Radar Targets, IEEE Proc.-F, 1993,140(3) , 198-208
    60. D. Blacknell , A.P. Blake, C.J. Oliver, et al., A Comparison of SAR Multilook Registration and Contrast Optimization Autofocus Algorithms Applied to SAR Data, IEEE Int. Radar Conf. Brighton, UK 1992,363-366
    61. E. Yadin, SAR autofocusing Viewed as Adaptive Beamforming in Prominent Scatters, IEEE National Radar Conf. 1994, 138-143
    62. B. Borden .Maximum Entropy Regularization in ISAR Imagery, IEEE Trans. SP, 1992,40(4) :969-973
    63. H.W. Lammers, et al, Doppler Imaging Based on Radar Target Procession, IEEE Trans. AES,1993,29(1) :166-173
    64. Rongqing Xu, Zhidao Cao and Yongtan Liu, A new Method of Motion Compensation for ISAR, Proc. IEEE Int. Radar Conf., 1990
    65. Rongqing Xu, Zhidao Cao and Liu Yongtan, Motion Compensation for Range-Doppler Microwave Imaging ,ICCAS'89,China
    66. Rongqing Xu, Zhidao Cao and Liu Yongtan, Motion Compensation for ISAR and Noise Effect,ISNCR'89,Japan
    67. Zhu. Z. D and She Z. S., One-Dimensional ISAR Imaging of Multiple Moving Targets Proc. NAECON, 1994
    68. Zhu. Z. D., Yin J. and Wu X. Q., et al., ISAR Imaging of Multiple Moving Targets Using Time-Frequency Representations, Proc. ISNCR, 1994,139-144,Japan
    69. Zhu Z. D. , She Z. S. and Zhou J. J., Multiple Moving Target Resolution and Imaging Based on ISAR Principle, Proc. NAECON, 1995
    70. J. Dupas. ISAR Polarimetric Aircraft Images. Proc. International Conference on Radar. Paris. 1994. 576-581
    71. T. Itoh, H. Sueda, Y. Watanabe. A Compensation Menthod of Target Radial Motion in ISAR. Proc. ISNCR. Japan. 1994. 133-138
    72. 王振荣.微波转台成像中微波系统的设计与实验.北京航空航天大学科学研究报告.1992
    
    
    73.许小剑.高分辨率微波成像:处理性能与发展.航空航天部二院207所科学研究报告.1989
    74.孟静,张直中.有孤立源存在时ISAR成像运动补偿.电子学报.1992,20(6):21-37
    75.孟静,张直中.一种用相位曲线拟合作运动补偿的ISAR二维成像.现代雷达.1990.3.1-4
    76.孟静,张直中.一种利用多普勒频率和相位进行ISAR成像运动补偿的方法.现代雷达.1989.4.6-11
    77.保铮,邓文彪,杨军.ISAR成像处理中的一种运动补偿方法.电子学报.1992.20(6):1—6
    78.毛引芳,吴一戎,张永军等.以散射中心为基准的ISAR成像的运动补偿,电子科学学刊.1992.14(5):532-536
    79.杨军,保铮.用转台数据模拟运动目标成像的ISAR研究.西安电子科技大学学报.1992.19(1):1-7
    80. S. Simmons, R. Evans. A New Approach to Motion Compensation for ISAR Imaging. ICASSP. 1994. V201-204
    81. S. Simmons, R. Evans. Maximun Likelihood Autofocusing of Radar Images. IEEE Internationa Conference Record. U.S.A. 1995. 410-415
    82. D. C. Munson, J. D. Brien, W. K. Jenkins. A Tomography for Microwave Imaging. Proc. IEEE. 1983. 71(2): 254-261
    83. D. C. Munson, L. C. Sanz J. Image Reconstruction from Frequency-offset Fourier Data. Proc. IEEE. 1984. 72(6): 661-669
    84. M. Soumekh, A System Model and Inversion for Synthetic Aperture Radar Imaging. IEEE Trans. On Image Processing. 1992. 1(1): 64-76
    85. H. J. Li, F. L. Lin. Near-Field Imaging for Conducting Objects. IEEE Trans. AP. 1991. 39(5):600-605
    86. N. Osumi, K. Ueno. Microwave Holographic SAR Imaging Formation by Coherent Summation of Impulse Response Derivatives. IEEE Trans. AP. 1993. 41(5): 620-624
    87. S. E. Assad, I. Lakkis, J. Saillard. Comparative Study of Diverse Methods of Radar Imaging. Radar Imaging. Radar 1992. 477-480
    88. J. Bauck, W. Tomographic Processing of Sportlifgt-Mode Synthetic Aperture Radar Signals with Compensation for Wavefront Curvature. Proc. ICA SSP. New York. 1988. 1192-1195
    89. D. C. Benson. Digital Processing of SEASAT-A SAR Data Using Linear Approximation to the Verge Migration Curves. IEEE International Conference. 1980
    90. A. J. Devaney, G. A. Tsihrintzis. Maximum Likelihood Estimation of Object Location in Diffraction Tomography. IEEE Trans. SP. 1991. 39(3): 672-682
    91. Zhu Z D, Wu X Q. Performance Evaluation of Motion Compensation Methods in ISAR by Computer Simulation. Proc. NAECON. 1990. 120-124
    92. Robertson B. L., Munson D. C. Jr. Motion Errors in ISAR Imaging of Approching Targets. IEEE Proc. Of ICASSP. 1993. V449-452.
    93. Zhu Zhaoda, She Zhishun, et al. Multiple Moving Target Resolution and Imaging by ISAR. Chinese Journal of Electronics. 1995. 4(3)
    94.卢光跃,保铮.逆合成孔径雷达成象中散射点走动的校正.电子科学学刊.1999.21(4):488-493
    95. E. M. Kennaugh & D. L. Moffat. Transient and Impulse Response Approximations. Proc. IEEE, August 1965, V.53:893-901
    96. C. E. Baum. On the Singularity Expansion Method for the Solution of Electromagnetic Interaction Ploblems. AFWL Interaction Notes. Note 88. 1971
    97. Philip E. Z. wicke, Imre Kiss. A New Implementation of the Mellin Transform and Its Application to Radar Classification of Ships. Ieee Trans on Pattern Analysis and Machine Intelligence. 1983,PAMI-5(2): 598-606
    
    
    98. Anthony Zyweck, R. E. Bogner. Radar Target Classification of Commerical Aircraft. IEEE Trans. AES. 1996, 32(2): 598-606
    99.赵群,保铮,叶炜.基于神经网络的雷达目标识别.电子科学学刊.1995,17(6):591-598
    100.陈大庆,保铮.基于多层前向网络的雷达目标一维距离像识别.西安电子科技大学学报.1997,24(1):1-7
    101.高兴斌,刘永坦.ISAR目标像的特征提取和特征选择.哈尔滨工业大学学报.1994.26(5):77-81
    102.高兴斌.ISAR目标识别的仿真.哈尔滨工业大学博士学位论文,1994.9
    103.唐劲松.高分辨雷达目标检测与识别.南京航空航天大学博士学位论文.1996.1
    104.唐国良,荆仁杰,姚庆栋.基于矩特征的三维飞机目标识别.电子学报.1995.23(4):88-90
    105.何松华.高距离分辨率毫米波雷达目标识别的理论与应用.国防科技大学博士学位论文.1993
    106.黄培康、许小剑:“宽带雷达目标特征信号的表达与处理”,中国电子学会雷达分会,“雷达目标成像技术交流研讨会论文集”,北京,1995.11(57)
    107. E. M. Kennaugh & D. L. Moffat, "Transient and Impulse Response Approximations", Proc. IEEE, August 1965. V.53:893~901
    108. C. E. Baum, "On the Singularity Expansion Method for the Solution of Electromagnetic Interaction Problems" , AFWL Interaction Notes, Note 88, DEC. 1971
    109. M. L. Van Blaricum & R. Mittra, "A Technique for Extracting the Poles and Residues of a System Directly from Its Transient Response", IEEE T-AP, 1975.23(6): 777-781
    110. E. M. Kennaugh. The K-Pulse Concept. IEEE T-AP. 1981, 29(2): 327-331
    111. C Alexandrov, A Draganov, N Kolev. An Application of Automatic Recognition in Marine Navigtion', IEEE Int. Radar Conf., 1995, 250-255
    112. H J Li nd S H Yang. Using Range Profiles as Feature Vectors to Identify Aerospace Objects', IEEE Trans-AP, 1993. 41(3): 261-268
    113. A Zyweck, R E Bogner. Radar Target Classification of Commercial Aircraft', IEEE Trans-AES, 1996. 32(2): 598~606
    114. K Rosenbanch, J Shiller. Identification of Aircraft on the Basis of 2-D Radar Images', IEEE Int. Radar Conf., 1995. 405~409
    115. S Abrahamsom et al. Aspect Dependence of Time-Frequency Signatures of a Complex Target Extracted by Impulse radar. IEEE Int. Radar Conf., 1995. 444-447
    116. X Yao and Y Liu. A New Evolutionary System for Evolving Artificial Neural Networks. IEEE Trans-Neural Networks,, 1997. 8(3): 694-713
    117. Kh. Rosenbach, J. Shiller. Identification of Aircraft on the Basis of 2-D-Radar Images. IEEE International Radar Conference, 1995. 405-409,
    118. Hideyuki Kimura et al. Pattern Recognition of Radar Targets by Means of Neural Networks. ISNCR 1994. 437-442
    119. Philip E. Zwicke, Imre Kiss. A New Implementation of the Mellin Transform and Its Application to Radar Classification of Ships. IEEE Trans on Pattern Analysis and Machine Intelligence, Vol. PAMI-5, No.2, March 1983. 191-198
    120. Anthony Zyweck, Robert E. Bogner. Radar Target Classification of Commercial Aircraft. IEEE Trans-AES. 1996. 32(2): 598-606
    121.戚飞虎,沈定刚.基于边缘方向信息的主动轮廓算法.红外与毫米波学报.1996.15(4):593-597
    
    
    123.李盾,肖顺平,王雪松.基于回波趋向伪本征极化特征的目标识别研究.电子学报.1999.27(9):12-15
    124.姜卫东,庄钊文,陈曾平.基于一维距离像的目标识别方法.现代雷达.1999.21(1):19-22, 27
    125.郭飚.浅析低分辨率雷达目标识别的可行性.中国雷达.1999(1):19-24
    126.陈小民,陈毓,丁大勇等.贝叶斯假设方法在目标识别中的应用.空军雷达学院学报1999.13(1):50-52
    127.鲜明,庄钊文,肖顺平等.基于混沌、多重分形理论的雷达信号分析和目标识别.电子科学学刊.1998.20(4):433-439
    129.陈明奇,娄国保,李兴国.小波变换在毫米波雷达目标识别中的应用.红外与毫米波学报.1998.17(4):308-312
    130.姜文利,邹燕明,柯有安.谐振区雷达目标识别的模块化神经网络方法.电子科学学刊.1988.20(4):440-444
    131.万里青,赵荣椿,孙隆和.不变性目标识别方法研究.信号处理.1996.12(2):125-128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700