用户名: 密码: 验证码:
转PeDREB2a、HhERF2和CP4EPSPS基因棉花新材料的获得与抗性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花属于双子叶植物纲(Dicotylwdoneae),锦葵目(Malvaceae),棉属(Gossypium L.)植物,属世界性的经济作物。近年来,受气候变化的影响,全球水资源短缺、土壤盐渍化导致可利用耕地面积逐年减少,有限的可耕地面积与棉花供求之间的矛盾日益突出。因此,培育抗逆转基因棉花新品种,提高棉花抗胁迫能力的需要越来越迫切。随着生物技术的快速发展,从分子水平上研究棉花与非生物逆境之间的关系,利用基因工程技术创制棉花新材料,有望大大加速棉花抗逆新品种的培育进程。本试验通过将来自于新疆戈壁沙生植物胡杨(Populus euphratica)和铃铛刺(Halimodendron halodendron (Pall.)Voss.)的耐旱耐盐转录因子基因PeDREB2a、HhERF2及抗除草剂基因CP4EPSPS转化陆地棉栽培品种WJ、WSH、WY,以期提高棉花耐旱耐盐抗除草剂的能力。主要研究结果如下:
     (1)构建了含有PeDREB2a、HhERF2、CP4EPSPS的三价基因表达载体pCAMBIA2301-Kanamycin-CP4EPSPS-HhERF2:PeDREB2a。利用非组培农杆菌介导法将表达载体转化棉花品种WJ、WSH和WY。
     (2)建立了棉花室内生长系统。室内每株转基因棉花平均结桃数可达8-10个,每株棉花平均结籽50粒左右,解决了室内棉花发芽率低的问题。
     (3)经过大田筛选及分子检测,获得7株T1代转基因植株。经过严格自交及筛选、淘汰,获得T2代转基因株系2个,分别命名为WJ17-24和WJ17-25-2。并于2012年4月向农业部提交了《转HhERF2、PeDREB2a和CP4EPSPS基因抗逆耐除草剂棉花WJS-1等在北京市的中间试验安全评价报告书》,获农业部批准(农基安办字2012-T159)。
     (4)对所获得的转基因棉花新株系进行田间农艺性状的观测,发现转基因植株较对照具有显著的矮化及高产性状:平均株高由122.13厘米矮化至88.3厘米;节间长由10.74厘米缩短至8.61厘米;铃数由19个增加至25个。
     (5)对转基因植株进行干旱、盐胁迫发现,转基因植株的耐旱性有所提高;对干旱、盐胁迫下对叶片相对含水量、组织丙二醛含量、可溶性糖含量等生理指标综合分析发现,转基因植株耐盐性得到增强;对RNA表达上平上进行分析发现,干旱、盐诱导下PeDREB2a、HhERF2转录因子基因在不同时期内根和叶中均有表达。
     (6)通过除草剂试验,确立了0.4%的草甘膦浓度为大田棉花的抗性筛选浓度;0.8%的草甘膦浓度为对照植株的致死浓度;确定了1.0%的草甘膦浓度为转基因植株的致死浓度。
Cotton is a crop plant belongs to the mallow family (Malvaceae) Gossypium of (Gossypium). Cotton is a colossal special commodity related to the agriculture and textile industry, also is original material for defense, medicine, and other aspects of the automotive industry. With the increasingly serious environmental problems in human society, global cotton production is seriously decreased. The main results are listed as follows:
     (1) The target gene HhERF2and PeDREB2a were inserted into the pCAMBLA2301-muti cloning site, and other elements such as omega、Poly4and NOS were also included in this vector, thus a trivalent vector pCAMBLA2301-Kanamycin-CP4-HhERF2:PeDREB2a was obtained. The Trivalent vector was transformed into Agrobacterium tumefaciens LBA4404using the heat shock method. The trivalent expression vector was transformed into cotton varieties WJ. WSH and WY using the non-tissue culture Agrobacterium-mediated method.
     (2) In order to effectively transform and screen the transgenic cotton, green house growing system was established, the conditions of the cultural temperature, humidity, light, cotton potted soil ratio were characterized. The herbicide resistance experiment was also performed in green house, by spraying different concentrations of glyphosate to cotton. The wilting index was determined based on the damage symptoms.
     (3) The TO generation seeds were sown in field. The seeds were harvested from7Tl transgenic plants which confirmed by PCR and glyphosate resistance assay. Tl transgenic plants were self-pollinated strictly, and finally two genetically modified cotton plants were obtained, named WJ17-24and WJ17-25-2.respectively.
     (4) Observations of the agronomic traits of WJ17-24-2and WJ17-25-2. the results showed that the plant height of transgenic plant was significantly lower than the control plant. And the stem was also shorter as compared to the control stem was also shorter compared the wild type.
     (5) The transgenic plants performed higher salt-tolerant As compared to the control. The gene expression levels of PeDREB2a and HhERF2were higher under the salt and drought stress condition Comparing to to the control, and the expression levels in flowering and boll stage were higher than in the seedling and boll opening stage.
     (6) Transgenic and control plants sprayed with different concentrations of herbicides found that the transgenic plants compared with the control has significant herbicide-resistant traits0.4%glyphosate concentration was confirmed to screen the transgenic cotton through statistic analysis by SPSS16.0software one-way ANOVA..Identified by the lethal concentration of1.0%glyphosate concentration of the transgenic plants, glyphosate concentration of0.8%lethal concentration control plants.
引文
[1]Malcolm E, Sumner R N. Sodic soils-distribution, properties, management, and envir onmental consequences[M].New York:Oxford University Press,1998.
    [2]张建锋.盐碱地生态修复原理与技术[M].第一版.北京:中国林业出版社,2008,15-17
    [3]路文静.植物生理学[M].第一版.北京:中国林业出版社,2011
    [4]陈晓亚,汤章城.植物生理与分子生物学[M].第三版.北京:高等教育出版社,2007
    [5]林纬,潘一展,杨卫韵.植物与植物生理[M].第一版.北京:化学工业出版社,2009
    [6]王文斌.植物活性氧代谢及其利用.[M].第一版.北京:中国农业科学技术出版社,2011
    [7]Sairam R K..Tyagi A. Physiology and molecular biology of salinity stress tolerance in plants[J].Current Science,2004.86(3):407-421
    [8]王宝增,脯氨酸与植物的抗逆性[J].生物学教学,2011.11(2):106-108.
    [9]Lin c c. Hsu Y T, Kao C H. The effect of NaCl on proline accumulation in rice leaves [J]. Plant Growth Regul.2002,36:275-285.
    [10]Khatkar D. Kuhad M. Short-term salinity induced changes in two wheat cultivars at different growth stages [J]. Biol Plant.2000.43:629-632.
    [11]Singh N K. Handa A K. Hasegawa P M et al. In vitro growth and leaf composition of gragevine cultivars as affected by sodium chloride [J]. Biol Plant,2000.43:283-286.
    [12]Hariadi Y, Marandon K.. Tian Y., et al. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels [J]. Journal of Experimental Botany,2011.62 (1):195-193.
    [13]杨少辉,季静,王罡.盐胁迫对植物的影响及植物的抗盐机理[J].世界科技研究与发展,2006,28(4):70-77.
    [14]李新梅,孙丙耀,谈建中.甜菜碱与植物抗逆性关系的研究进展[J].农业科学研究,2006,927(3):52-55.
    [15]Hariadi Y. Marandon K., Tian Y., et al. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels [J]. Journal of Experimental Botany.2011.62 (1):195-193.
    [16]王昭唐.作物抗旱生理机理[J].植物生理生化进展,1983(2):120-132.
    [17]张原根,程林梅,阎继耀等.棉属种间杂交抗旱材料生理特性的研究[J].棉花学报,1995,7(1):27-30.
    [18]杜传丽,黄国勤.棉花主要抗旱鉴定指标研究进展[J].中国农学通报2011.27(9):17-20.
    [19]SINGHD, SALLAYR K.Proline accumulation in relation to yield reduction and biomass recovery under stress conditions in cotton[J].IndianJ AgrSci.1990,60(11):739- 741.
    [20]李玲,余光辉.水分胁迫下植物脯氨酸累积的分子机理[J].华南师范大学学报,自然科学版,2003(1):126-134.
    [21]李玉全.张海燕.作物耐盐性的分子生物学研究进展[J].山东科学,2002(2):8-14.
    [22]郭学民,东方阳,孙耀中等.旱作转BADH基因水稻茎的解剖结构特征与产量的关系[J].华北农学报,2005(3):38-41.
    [23]姜立智,梁宗锁.干旱胁迫对植物基因的诱导及基因产物的变化[J].干旱地区农业研究,2001(3):47-51.
    [24]赵恢武,陈杨坚,胡鸢雷等.干旱诱导性启动子驱动的海藻糖-6-磷酸合酶基因载体的构建及转基因烟草的耐旱性[J].植物学报,2000(6):23-26.
    [25]罗克明,郭余龙.棉花Lea蛋白D-113基因启动子的克隆及序列分析[J].遗传学报,2002(2):161-165.
    [26]俞嘉宁,山仑.LEA蛋白与植物的抗旱性[J].中国生物工程杂志,2002(2):34-37.
    [27]陈红兵,郭继虎,王金胜等.水分胁迫时小麦生化指标与抗旱性的关系[J].山西农业大学学报.2000(2):41-44.
    [28]李楠,赵玉锦,赵琦等.大麦HVA1基因和LEA蛋白与植物抗旱性的研究[J].生物技术通报.2006(4):36-39.
    [29]Cheng X G. HouYX含有AP2结构域的一个陆地棉GhDREB转录因子的特性及体外表达[J].棉花学报2002(1):23-26.
    [30]张慧军.董合忠,石跃进等.山菠菜胆碱单加氧酶基因对棉花的遗传转化和耐盐性表达[J].作物学报,2007(7):1073-1078.
    [31]黄波,金龙国,刘进元等.棉花中一个类DREB1/CBF基因(Gh-DREBIL)的分子克隆及其功能分析[J].中国科学,2006(5):210-216.
    [32]陈峰,李洁.酵母单杂交的原理与实例[J].生物工程进展,2001(4):57-62.
    [33]谢得意.棉花品种耐盐性鉴定指标可靠性的检验[J].作物学报.2009(3):43-44
    [34]孙小芳,郑青松,刘友良等.盐胁迫下不同基因型棉花萌发生长和离子吸收特性[J].棉花学报,2000.22(6):26-29
    [35]Gianess L.Reigner N. The value ofherbicides in U.S.crop production [J].Weed Technol.2007.21:559-566.
    [36]Twyman R,Herbide resistance [A].In:Brian T(Ed).Encyclopedia of Applied Plant Sciences [M].Elsevier Press.2003.1516-1521.
    [37]孙丙耀.倪不冲,沈桂芳等.农作物抗除草剂基因工程[J].生物技术通报.2002.6.5-10.
    [38]赵彬.抗除草剂基因的研究和利用[J].世界农业,1998,3:32-35.
    [39]Powles S, Yu Q.Evolution in action plants resistant to herbicides [J].Annu. Rev. Plant Biol.2010.61:317-347.
    [40]Lancaster C,Michel H.Refined crystal sreuctures of reaction centres from Rhodopseudomonas viridis in complexes with the herbicide atrazine and two chiral atrazine derivatives also lead to a new model of the bound carotenoid [J]J.Mol.Biol.1999.286:883-898.
    [41]Park K,Mallory-Smith C.psbA mutation(Asn266-Thr) in Senecio vulgaris L. confers resistance to several PS-inhibiting herbicides[J].Pest Manag. Sci.2006.62:880-885.
    [42]Perez-Jones A, Intanon S,Mallory-Smith C.psbA mutation (Phe255 to ile) in Capsella bursa-pastoris confers resistance to triazinone herbicides[J].Weed Sci.2009,57:574-578.
    [43]Fitzgibbon J,Braymer H, Cloning of a gene from Pseudomonassp.strain PG2982 conferring increased glyphosate resistance[J].Appl,Environ.Microbiol,1990.56:23-26
    [44]Priestman M.Funke T,Singh l,etal.5-Enolpyruvyshiki-mate-3-phosphate synthase from Staphyloccus aureus is insensitive to glyphosate[J].FEBS Lett,2005,579:728-732
    [45]Pollegioni L,Schonbrunn E,siehl D.Molecular basis of glyphosate resistance-different approaches through protein engineering[J].FEBS J.2011,278:2753-2766.
    [46]Thompson C,Movva N,Tizard R,etal.Characterization of the herbicide-resistance gene bar from[J].EMBOJ.1987.6:2519-2523.
    [47]Pollegioni L,Schonbrunn E,siehl D.Molecular basis of glyphosate resistance-different approaches through protein engineering[J].FEBS J.2011.278:2753-2766.
    [48]Pedotti M,Ghisla S,Motteran L,etal.Catalytic and redox properties of glycine oxidase from Bacillus subtilis[J].Biochimie,2009,91:604-612.
    [49]Siehl D.Castle L.Gorton R.etal.The molecular basis of glyphosare resistance by an optimized microbial acetyltransferase[J]. J. Biol.Chem.2007,282:11446-11455.
    [50]闫广为.抗草甘磷基因转化烟草的研究[D].兰州大学硕-士学位论文,2009.
    [51]Padgette. R., etal. Aplication to the united kingdom Advisory Committee on Novel Foods and Processes for Review of the Safety of Glyphosate Tolerant soybeans. The Agricultural Group of Monsato Company, Monsanto Europ, Brussels, Belgium,1994:130
    [52]Zhou H., Arrowsmith J.W., Fromm, M.E., etal.Glyphosate-tolerant CP4 and GOX genes as a selectable Marker in wheat transformation [J]. Plant cell Reporter,1995. (15):159-163.
    [53]贾云超.转抗虫、抗除草剂基因烟草和棉花的研究[D].新疆农业大学硕十学位论文,2008.
    [54]邢珍娟,李匕武,刘娜等.转EPSPS基因大豆植株中蛋白的表达[J].大豆科学,2009.28(6):981-989.
    [55]刘东军,张锐,郭三堆等.棉花品系Y18在草甘膦胁迫下的epsps基因表达分析研究[J].中国生物工程杂志,200828(10):55-59.
    [56]闫广为.抗草甘磷基因转化烟草的研究[D].兰州大学硕十学位论文,2009.
    [57]楚宗艳.棉花抗草甘膦基因的表达及功能鉴定[D].中国农业科学院硕十学位论文.2008.
    [58]李燕.转EPSPS基因棉花的筛选及草甘麟对其育性的影响[D].山东农业大学硕士学位论文,2010.
    [59]臧宁,翟红,王玉萍等.表达bar基因的抗除草剂转基因甘薯的获得[J].分子植物育种,2007.5(4):475-479.
    [60]唐微.转Bar基因抗除草剂水稻的培育[J].湖北农业科学,2007,46(4):488-490.
    [61]Yamaguchi K, Kasuga M, Liu Q, etal.Biological mecha2nisms of drought stress response [J]. J IRCAS Working Report,2002:1-8.
    [62]Wang W, Vinocur B, Alt man A. Plant responses to drought, salinity and ext remetemperat ures:towards geneticengineering for stress tolerance [J]. Planta, 2003.218:1-14.
    [63]Liu Q, Kasuga M. Sakuma Y, etal. Two t ranscription factors, DREB1 and DREB2, wit han ER EB P/AP2DNA binding domain separate two cellular signal t ransduction path waysin drought2 and Iow2temperat ure2responsive gene expression,respectively, in Arabidop sis [J]. Plant Cell,1998,10:1391-1406.
    [64]Yamaguchi K, Shinozaki K. Transcriptional regulatory networks in cellular response and t he tolerance to dehydration and cold st resses [J]. The Annual Review of Plant Biology.2006.57:781-803.
    [65]Wei G, Pan Y, Lei J, etal. Molecular cloning. phylogenetic analysic expressional profiling and in vitro studies of TINY2 from Arabidop sis thaliana[J]. Journal of Biochemistry and Molecular Biology.2005.38:440-446.
    [66]Chen M, Wang Q Y. Cheng X G, etal. GmDREB2, a soybean DRE-inding transcription factor, conferred drought and high2salt tolerance in transgenic plants[J]. Biochemical and Biop hysical Research Communications,2007.353:299-305.
    [67]Huang B, Liu J Y. Acotton dehydration responsive element binding protein functions as a transcriptional repressor of DRE-mediated gene expression [J]. Biochemical and Biophysical Research Communications,2006,343:1023-1031.
    [68]Kizis D, Pages M. Maize DRE-binding proteins DBF1 and DBF2 are involved in rabl7 regulation through the drought responsive element in an ABA2dependent pat hway [J]. PlantJournal,2002,30:679-689.
    [69]Liu Q. Kasuga M. Sakuma Y. etal. Two t ranscription factors. DREB1 and DREB2, with an EREB P/AP2 DNA binding domain separate two cellular signal transduction pathwaysin drought and Iow2temperat ure2responsive gene expression.respectively. in Arabidop sis [J]. Plant Cell.1998.10:1391-1406.
    [70]Haake V, Cook D. Riechmann J L, etal. Transcription factor CB F4 is a regulator of drought adaptation in Arabidopsis[J]. Plant Physiology.2002.13:639-648.
    [71]Dubouzet J G. Sakuma Y.1 to Y, etal. OsDREB genes in rice. Oryzasativa L encode transcription activators that function in drought2, high salt and cold responsive gene expression [J]. Plant Journal.2003,33:751-763.
    [72]Shen Y G. Zhang W K. He S J. etal. An EREBP/AP2 type protein in Triticum aestivum was a DRE binding transcription factor induced by cold.dehydration andABA stress[J].Theoretical and Applied Genetics,2003,106:923-930.
    [73]Kim Y H, Yang K S, Ryu SH, etal, Molecular characterization of a cDNA encoding DRE2binding transcription factorfrom dehydration2t reated fibrous roots of sweetpotato [J].Plant Physiology et Biochemist ry,2008,46:196-204.
    [74]Liu L, Zhu K, Yang Y, etal. Molecular cloning, expression profiling and trans2activation property studies of a DREB2 like gene from chrysant hemum (Dendrant hema vestium) [J]. Journal of Plant Research,2008,121:215-226
    [75]Shen Y G, Zhang W K, Yan DQ, etal. Characterization of a DRE2inding transcription factor from a halophyte At ripexhortensis [J]. Theoretical and Applied Genetics,2003,107:155-161.
    [76]LiXP,Tian A G, L uo G Z, etal. Soybean DRE2indingtranscription factors that are responsive to abiotic stresses[J]. Theoretical and Applied Genetics,2005,110:1355-1362.
    [77]Agarwal P K, Agarwal P, Reddy M K, etal. Role of DREB transcription factors in abiotic and biotic stress toler2ance in plant s [J]. Plant Cell Report s.2006.25:1263-1274.
    [78]Dubouzet J G, Sakuma Y, I to Y, etal. OsDREB genes in rice. Oryzasativa L encode transcription activators that function in drought2, high salt and cold responsive gene expression [J]. Plant Journal,2003.33:751-763.
    [79]Qin F, Sakuma Y. Li J, etal. Cloning and functional analysis of a novel DREB1/ CBF transcription factor involved incold2responsive gene expression in Zea mays L [J]. Plant and Cell Physiology,2004,45:1042-1052.
    [80]OhSJ, Song SI, Kim Y S, etal. Arabidop sis CB F3/DR EB1 A and AB F3 in t ransgenic rice increased tolerance toabiotic st ress without stunting growth [J] Plant Physiology 2005,138:341-351.
    [81]Liu N, Zhong N Q. Wang G L, etal. Cloning and f unctional characterization of PpDBl gene encoding a DRE2binding transcription factor from Physcomit rella patens [J]. Planta,2007,226:827-838
    [82]Shan D P, Huang J G, Yang Y T, etal. Cotton GhDREB 1 increases plant tolerance to low temperat ure and is negatively regulated by gibberellic acid [J]. New Phytologist, 2007,176(1):70-81.
    [83]Kasuga M, Liu Q. Miura S, etal. Improving plantdrought. salt. and freezing tolerance by gene transfer of a single stress induciblet ranscription factor [J]. National Bio2technology,1999.17:287-291.
    [84]Fujimoto SY. Ohta M. Usui A, etallA rabidop sisethylene-respon2sive element binding factors act astranscrip tional activators or rep ress2ors of GCC box-mediated gene exp ression[J]1 Plant Cell.2000.12:393-404
    [85]Choi DW, Rodriguez E M. Close TJ1 Barley Cbgene identification,expression pattern, and map location [J] Plant Physio 11,2002.129 (4):1781-1787
    [86]DubouzetJG,Sakuma Y. Ito Y, etal lOsDREBgenes in rice. OryzasativaLl.encode transcrip tionactivators that function in droughthigh、salt、and cold responsive gene exp ression[J] 1 Plant J12003,33 (4):751-763
    [87]Wu K, Tian L, Hollingworth J, etalFunctionalanalysis of tomatoPti4 in Arabidop sis[J]Plant Physio 11,2002,128:30—37
    [88]R iechmann J L, Meyerowitz E Ml The AP/EREBP fam ily of p lanttranscrip tion factor[J]lB iological Chem istry,1998,379:633-646
    [89]Q IN J, Zhao K J, et al 1 Isolation and characterization of an ERF-like gene from Gossyp ium barbadense [J] Trends Plant Science.2004,167:1383-1389
    [90]刘文奇,陈旭君,徐晓晖等.ERF类转录因子OPBP1基因的超表达提高烟草的耐盐能力J ournal of Plant Physiology and Molecular B iology 2002,28 (6):473-478
    [91]SHINR. Park J M, An J M, etal COTOP 1C Expression of Tsil in transgenic hot pepperpants 1 enhances hos tresistance to viral, bacteral, and oomycete pathogens[J].Molecular PlantM icrobe Interaction,2002.15:983-989
    [92]ShenH.W ang ZYlExp ressional Analysis of an EREBP Transcrip tionFactor Gene O sEBP-89inRice lActaB iophysica Sinicca,2004,36(1):21-26.
    [93]Huang JG, Yang M, Liu P. etal. GhDREBl enhances abiotic stresstolerance, delays GA2mediated development and rep resses cytokinin signalling in transgenic A rabidopsis. Plant Cell and Environment.2009,32 (8):1132-1145.
    [94]Dubouzet JG. Sakuma Y, Ito Y. et al. O sDREB genes in rice. O ryza sativa L. encode transcrip tion activators that function in drought2.high2 salt2 and cold2responsive gene exp ression. Plant Journal,2003,33 (4):751-763.
    [95]Agarwal P,Agarwal P K,Joshi A J,etal. Overexpression of PgDREB2Atranscription factor enhances abiotic stress tolerance and activates downstreamstress2responsive genes [J]. Mol Biol Rep,2010,37(2):1125-1135.
    [96]Gilmour S J.Sebolt A M.Salazar M P,et al. Overexpression of Arabi2 dopsis CBF3 transcriptional activator mimics multiple biochemical changes as2 sociated with cold acclimation[J].Plant Physiol,2000,124:1854-1865.
    [97]庄静,周熙荣,孙超才等.甘蓝型油菜中一类AP2/ERF专录因子的克隆和生物信息学分析[J].中国生物工程杂志,2008.28(5):29-40.
    [98]Gu Y.Q., Wildermuth M.C., Chakravarthy S., Loh Y.T., Yang C.,He X., Han Y., and Martin G.B.,2002. Tomato transcriptionfactors Pti4. Pti5. and Pti6 activate defense responses whenexpressed in Arabidopsis. Plant Cell,14(4):817-831.
    [99]Zuo K.J.Qin J.Zhao J.Y.Ling H. Zhang L.D. Cao Y.F.andTang K.X.2007. Over-expression GbERF2 transcriptionfactor in tobacco enhances brown spots disease resistance byactivating expression of downstream genes. Gene.391(1-2):80-90.
    [100]杨宇红,尹丽蓉,葛红等.ERF转录因子新成员JERF3提高百合的耐盐性[J].园艺学 报,2007.34(6):1485-1490.
    [101]Jeong Mee Park, Chang-Jin, et al. Overexpression of the Tobacco Tsil Gene Encoding an EREBP/AP2 Type Transcription Factor Enhances Resistance against Pathogen Attack and Osmotic Stress in Tobacco[J]. Plant Cell,2001.13(5):1035-1046.
    [102]Seo Y J, Park J B, Cho Y J, et al. Overexpression of the ethylene-responsive factor gene BrERF4 from Brassica rapa increases tolerance to salt and drought in Arabidop-sis plants[J]. Mol Cells.2010 Sep;30(3):271-277
    [103]党尉,卫志明.根癌农杆菌介导的高效大豆遗传转化体系的建立[J].分子细胞生物学报,2007,,40(3):185-195.
    [104]王萍,殷春燕,盈磊.不同方法转化大肠杆菌和农杆菌转化效率的研究[J].淮海工学院学报(自然科学版),2007,2(16):56-58
    [105]吕金殿,甘莉,阎龙飞.棉花黄萎病菌毒素的纯化与特性研究[J].植物病理学报,1991,21(2):129-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700