用户名: 密码: 验证码:
高含硫气田集输系统泄漏控制与应急方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合“大型油气田及煤层气开发”国家科技重大专项“高含硫气藏安全高效开发技术”及中国石油化工集团2005年度“十条龙”科技攻关项目“普光气田产能建设关键技术研究”外协课题“普光气田集输系统应急体系建设研究”和“普光气田集输站场安全控制技术研究”,系统开展高含硫气田集输系统设备泄漏事故控制措施和应急方法体系的研究,在集输系统设备天然气泄漏机理认识、复杂地形含硫天然气扩散模拟、降雨对含硫天然气扩散硫化氢毒害的影响作用、含硫天然气点火放空二氧化硫危害评价及事故控制有效性分析、复杂地形集输系统设备应急计划区域划分、高含硫气田集输系统泄漏事故应急救援体系框架建设等方面取得了较大的研究成果。研究进展归纳如下:
     1高含硫气田集输系统设备泄漏机理分析
     分析集输系统工艺流程,将导致含硫天然气大量释放和硫化氢广泛扩散的高含硫气田集输系统设备归类为生产井、集气管道和压力容器。针对各类设备泄漏具有的不同机理,分别建立考虑控制系统影响作用的含硫天然气动态泄漏计算模型,并确定控制系统在响应设备泄漏、抑制天然气泄漏量中的作用。通过简化模型分析泄漏口近场气体射流效应,确定含硫天然气在大空间范围扩散的初始条件。
     2复杂地形高含硫天然气扩散研究
     针对国内高含硫气田集输系统多位于川东北山区的环境特点,研究复杂地形条件下气体扩散建模方法。通过反演复杂地形、分析大气扩散条件和确定数值计算方案,建立集输系统设备泄漏,含硫天然气在复杂地形空间内扩散的数值模型。结合生产井、集气管道和压力容器的动态泄漏计算,预测扩散硫化氢危害区域,分析不同设备泄漏导致的硫化氢扩散事故特点。对影响气体扩散过程的大气扩散和地形条件进行分析,获得复杂地形条件下扩散硫化氢运动和分布规律。以此为基础,分析复杂地形条件下,集输系统设备泄漏含硫天然气扩散对事故控制工作造成的不利影响。
     3降雨条件下高含硫天然气扩散分析
     依据国内高含硫气田集输系统所在地区多降水的环境特点,模拟复杂地形条件下大空间范围内的降雨过程,耦合单个雨滴和扩散含硫天然气间的质量传递和化学平衡计算,在气体扩散模型的基础上,建立降雨条件下高含硫天然气扩散数值模型。分析降雨过程中的硫化氢动态清除速率和累积清除质量,并确定降雨强度、风速和地形的影响作用。将无雨和降雨条件下硫化氢危害区域进行对比,确定降雨在控制扩散硫化氢危害上的作用。根据分析结果,综合降雨清除硫化氢的有利因素和可导致的事故救援不利因素,确定降雨对集输系统设备泄漏含硫天然气扩散事故控制工作造成的影响。
     4高含硫天然气泄漏点火放空控制措施评价
     开展高含硫气田集输系统设备泄漏事故主要控制措施——点火放空的二氧化硫危害分析和抑制人员死亡后果效果评价。针对点火放空过程,分析含硫天然气燃烧热化学反应过程,耦合可燃物和助燃物的气体扩散计算,建立点火放空数值模型。确定点火放空动态过程中,硫化氢燃烧转化为二氧化硫的效率。基于急性中毒剂量-反应关系,明确二氧化硫动态扩散对集输系统设备周边公众产生的累积毒害作用,详细分析二氧化硫毒害区域的面积、影响距离和主要分布方向,获得在复杂地形条件下的分布规律。在理论上验证点火放空在抑制集输系统设备泄漏硫化氢扩散致人员死亡上的有效性,为事故控制和决策提供支持。
     5高含硫气田集输系统设备应急计划区域划分研究
     针对我国高含硫气田集输系统设备在应急计划区域划分上存在的不足,提出涵盖事故可造成的严重危害区域,全面保护事故条件下公众生命安全的应急计划区域划分原则,并以集输系统设备泄漏硫化氢扩散致人员死亡事故作为应急计划区域的建立基础。从集输系统设备泄漏条件、大气扩散条件、控制系统作用和复杂地形影响确定生产井、集气管道和压力容器可导致的严重事故后果,针对不同设备建立应急计划区域计算所需的参数和流程,并在综合考虑事故救援影响因素的基础上,形成一套复杂地形高含硫气田集输系统设备应急计划区域划分方案。
     6高含硫气田集输系统设备泄漏事故应急救援体系框架构建
     从功能上将高含硫气田集输系统设备泄漏事故应急救援体系分为7大模块:人员组织体系、预警和预防机制、应急预案体系、支持保障系统、培训演习、公众参与和文件管理系统。建立基于事故指令系统的人员组织体系,实现动态事故条件下应急救援人员的有效组织。将事故应急预案分为总体预案、专项预案和现场处置方案3级进行管理,制定基于风险的4级事故分级方案和相应的应急响应行动,在充分调动利用应急资源的基础上实现优化利用。分析事故条件下的公众保护措施,确定就地庇护防护特点,结合安全疏散条件,就不同设备事故特点提出公众保护措施实施决策方案。
This dissertation is based on the project of“Safe and Effective Exploitation of Highly Sour Gas Field”that is part of the National Key Science and Technology Programs for large oil and gas field exploitation, and the“Development of Emergency Response System for Gas Gathering System of Puguang Sour Gas Filed”and“Safety Control Technology for Gas Gathering Station of Puguang Sour Gas Filed”funded by the“Key Technology Projects for Puguang Gas Field Expolitation”that is part of 2005 "Shi Tiao Long" Science and Technology Programs of China Petrochemical Corporation, in which the leakage control measures and emergency response methods are investigated systemically, and the main research achievements include the analysis of dynamic leakage mechanism of gas gathering equipment, simulation of sour gas dispersion in complex terrain, influence on the hydrogen sulfide poisoning by the rain during sour gas dispersion, the sulfide dioxide hazard and control effectiveness assessment on flaring and venting of sour gas, calculation of emergency planning zone in complex terrain, development of emergency response system for leakage accident of gas gathering system in highly sour gas field, and so on. These works are summarized as follows:
     1 Analysis of dynamic leakage mechanism for gas gathering equipment
     By analyzing gas processing in the gas gathering system of highly sour gas field, the equipment of the gas gathering system that can result in huge amount of sour gas release and large-scale hydrogen sulfide dispersion, are classified into production well, gas gathering pipeline and pressure vessel. For each type of equipment, the calculation model for the dynamic leakage process is built based on the leakage mechanism and involving the effects of the control system equipped. Then the effectiveness of the control system is assessed on the response to the leakage and the reduction of the total leakage. A simple model is proposed to calculate the gas jet near to the orifice and the results are used as the initial condition for the large-scale gas dispersion.
     2 Study on highly sour gas dispersion in complex terrain
     The model building method of gas dispersion in complex terrain is founded according to the regional characteristics of the gas gathering system in the highly sour gas field, which distributes in the hills of the northeast Sichuan. The numerical model for sour gas dispersion in complex terrain is achieved through terrain retrieval, gas dispersion condition analysis and numerical scheme construction. And in association with the dynamic leakage calculation for the production well, gas gathering pipeline and pressure vessel, the hydrogen sulfide hazard region is predicted and the accident characteristics of the sour gas dispersion is determined for each type of the equipment. The influences on the gas dispersion from the atmospheric conditions and complex terrain are systematically analyzed, and the transportation and distribution of hydrogen sulfide are obtained in complex terrain. Finally, the disadvantages deriving from the dispersed sour gas caused by the leakage of gas gathering system are analyzed in consideration of the complex terrain.
     3 Analysis of the highly sour gas dispersion in the rain
     There are lots of precipitation days and large amount of precipitation over the year in the region where the sour gas gathering system located in China. According to this environment characteristics, the numerical model used for the highly sour gas dispersion under the condition of rain is achieved, which is based on the gas dispersion model and by coupling the simulation of rainfall in large-scale complex terrain with the calculation of mass transfer and chemical equilibrium between the raindrops and dispersed sour gas. The dynamic scavenging rate and cumulative scavenging mass of hydrogen sulfide during the rain are analyzed, and the influences coming from the rainfall intensity, wind speed and complex terrain are evaluated. By comparing the hydrogen sulfide hazard region in the rain with those without the rain, the effects of rain on the control of hydrogen sulfide hazard are obtained. Based on the results, the rain effects on the accident of the sour gas dispersion caused by leakage of the gas gathering system are assessed in consideration of the advantage of hydrogen sulfide scavenging and disadvantage to the accident rescue.
     4 Assessment on the effctiveness of flaring and venting of the releasing sour gas
     With the purpose of assessment on the sulfide dioxide poisoning deriving from the combustion of hydrogen sulfide and the effectiveness in controlling the number of deaths, the study on the flaring and venting of the uncontrolled sour gas release is carried out, which is the most effective control measure to the sour gas gathering system leakage. By analyzing the accident process, the numerical model for the flaring and venting is built including the chemistry analysis involved in the combustion and the gas dispersion simulation of fuel and oxidizer. The conversion efficiency of the hydrogen sulfide into sulfide dioxide through combustion is analyzed. Based on the dose-response relationship for the acute poisoning, the cumulative effect of sulfide dioxide poisoning on the public surrounding the equipments of gas gathering system are assessed. And the hazard region with detailed analysis of its areas, maximal influence distances, and main trajectories are obtained and the distrinution trend in complex terrain is predicted. In theory, the effectiveness of controlling the number of deaths by employing flaring and venting of the leakage of gas gathering system is verified, which can be used to support the accident control and decision making.
     5 Study on the emergency planning zone for highly sour gas field
     According to the absence of determination method of emergency planning zone for gas gathering system in the highly sour gas field in China, the principle of coving the serious hazard zone and providing full protection for the public in case of the accident is proposed to establish the emergency planning zone, and the use of death accident caused by hydrogen sulfide dispersion deriving from the leakage of gas gathering system is suggested to determine the emergency planning zone. The combinations of conditions that result in serious accidents of production well, gas gathering pipeline and pressure vessel are achieved through the analysis of the influence factors of leakage condition, gas dispersion condition, effect of control system and complex terrain. For each type of equipment, the parameters and procedures are proposed to calculate the emergency planning zone. And in combination with the factors influencing the accident rescue, the determination method of emergency planning zone for gas gathering system of the highly sour gas field in complex terrain is provided.
     6 Development of emergency response system for leakage accident of gas gathering system in highly sour gas field
     The emergency response system for the leakage accident of gas gathering system in the highly sour gas field is divided into 7 functional modules, which includes rescuer organization, prevention and precaution, emergency response plan, support system, training and drilling, public involvement and document management. Based on incident command system, the rescuer organization is constructed to achieve effective allocation of responsibilities during dynamic accident process. The emergency response plans are classified into overall plan, special plan and onsite action plan. The severity of the accident is classified into 4-level and the corresponding actions are provided to fully and optimally use the resource. The public protection measures under accident are analyzed. According to the characteristics of the protection provided by the shelter-in-place and the safe condition of evacuation, the decision making for public protection is provided.
引文
[1]中国能源网. www.china5e.com.
    [2]张华东,陈新,潘仲刚,等.开县特大井喷事件灾害损失及社会影响分析[J].现代预防科学, 2007, 34 (10): 1845-1848.
    [3] ERCB. http://www.ercb.ca.
    [4] BC Oil & Gas Commission. http://www.ogc.gov.bc.ca/.
    [5] Railroad Commission of Texas. http://www.rrc.state.tx.us/[J].
    [6]张华东,陈新,徐少华,等.开县特大天然气井喷事件对灾区环境影响评估[J].现代预防科学, 2007, 34 (9): 1700-1701.
    [7]席学军,邓云峰.井喷硫化氢扩散分析[J].中国安全生产科学学报, 2007, 3 (4): 20-24.
    [8]周开吉,刘昕,郭昭学,等.井喷失控井喷流出口速度预测方法研究[J].天然气工业, 2006, 26 (9): 71-73.
    [9]郭再富,邓云峰,江田汉,等.含硫气井公众危害程度分级方法研究[J].中国安全生产科学学报, 2008, 4 (3): 18-21.
    [10]罗音宇,江田汉,邓云峰,等.含硫气井硫化氢扩散危险水平分级方法[J].石油学报, 2008, 29 (3): 447-450.
    [11] ERCB. Directive 071 Emergency preparedness and response requiremnts for the petroleum industry[S]. Calgary: ERCB, 2008.
    [12] Railroad Commission of Texas. Code 3.36 Oil gas or geothermal resoucre operation in hydrogen sulfide areas[S]. Austin: Railroad Commission of Texas, 2009.
    [13] ERCB. Directive 056 Energy development application and schedules[S]. Calgary: ERCB, 2008.
    [14] Daniel A.Crowl, Joseph F.Louvar. Chemical process safety: fundamental with applications[M]. 2nd ed. New Jersey: Prentice-Hall, 2002.
    [15] Montiel Helena, Vilchez Juan, Casal Joaquim. Mathematical modeling of accidental gas release[J]. Journal of Hazardous Materials, 1998, 59 (14): 211-233.
    [16]董玉华,周敬恩,高惠临,等.长输管道稳态气体泄漏率的计算[J].油气储运, 2002, 21 (8): 11-15.
    [17]霍春勇,董玉华,余大涛,等.长输管线气体泄漏率的计算方法研究[J].石油学报, 2004, 25 (1): 101-104.
    [18] Dong Yuhu, Gao Huilin, Zhou Jing'en, et. al. Mathematical modeling of gas release through holes in pipelines[J]. Chemical Engineering Journal, 2003, 92 (1-3): 237-241.
    [19] Mahgerefteh H., Adeyemi Oke, Olufemi Atti. Modelling outflow following rupture in pipeline networks[J]. Chemical Engineering Journal, 2006, 61 (6): 1811-1818.
    [20] J. R. Chen, S. M. Richardson, G. Saville. Modelling of two-phase blowdown from pipelines—I. A hyperbolic model based on variational principles[J]. Chemical Engineering Science, 1995, 50 (4): 695-713.
    [21] J. R. Chen, S. M. Richardson, G. Saville. Modelling of two-phase blowdown from pipelines—II. A simplified numerical method for multi-component mixtures[J]. Chemical Engineering Science, 1995, 50 (13): 2173-2187.
    [22] E. Lang. Gas flow in pipelines following a rupture computed by a spectral method[J]. Journal of Applied Mathematics and Physics (ZAMP), 1991, 42 (2): 183-197.
    [23] Kaveh Mohamed, Marius Paraschivoiu. Real gas simulation of hydrogen release from a high-pressure chamber[J]. International Journal of Hydrogen Energy, 2000, 2005 (8): 903-912.
    [24]杨毅峰,樊建春,张来斌.基于FLUENT的气罐泄漏仿真在油气安全中的应用[J].江汉大学学报(自然科学版), 2006, 34 (4): 65-68.
    [25] Hamburg University. http://www.uni-hamburg.de/index_e.html.
    [26]肖淑衡,梁栋.液化天然气站气体泄漏扩散的模拟实验[J].中山大学学报论丛, 2007, 27 (2): 92-95.
    [27] Phil Cleaver, Mike Johnson, Ben Ho. A summary of some experimental data on LNG safety[J]. Journal of Hazardous Materials, 2007, 140 (3): 429-438.
    [28] Atmospheric Studies Group (ASG). http://www.src.com/index.htm.
    [29] U.S. Environmental Protection Agency. http://www.epa.gov/.
    [30] Cambridge Environmental Research Consultants. http://www.cerc.co.uk/.
    [31] K. Hanjalic, S. Kenjeres. Dynamic simulation of pollutant dispersion over complex urban terrains: A tool for sustainable development, control and management[J]. Energy, 2005, 30 (8): 1481-1497.
    [32] Ellen S.P. So, Andy T.Y. Chan, Anton Y.T. Wong. Large-eddy simulations of wind flow and pollutant dispersion in a street canyon[J]. Atmospheric Environment, 2005, 39 (20): 3573-3582.
    [33]陈建国,潘思铭,刘奕,等.复杂地形下有害气体泄漏的模拟预测与输运规律[J].清华大学学报, 2007, 47 (3): 381-384.
    [34]章博,陈国明.化工装置硫化氢泄漏对周边居民影响的CFD评估[J].石油化工高等学校学报, 2009, 22 (4): 72-76.
    [35]章博,陈国明.毒气泄漏环境下人员暴露风险评估[J].石油化工高等学校学报, 2009, 22 (2): 73-76.
    [36]章博,陈国明.基于CFD的毒气泄漏中毒定量评估[J].安全与环境学报, 2009, 9 (2): 158-160.
    [37] Michigan Department of Environmental Quality. www.michigan.gov/deq.
    [38] Occupational Safety & Health Administration. http://www.osha.gov/SLTC/etools/ics/index.html.
    [39]全国人民代表大会常务委员会.中华人民共和国安全生产法. 2002.
    [40]全国人民代表大会常务委员会.中华人民共和国突发事件应对法. 2007.
    [41]迟娜娜.城市灾害应急能力评价指标体系研[D].北京:首都经济贸易大学, 2006.
    [42]杨静.应急预案管理中的分类分级技术研究[D].北京:中国科学院科技政策与管理科学研究所, 2005.
    [43]王文娟.突发公共卫生事件政府应急能力指标体系研究[D].大连:大连理工大学, 2006.
    [44]郭铁男.政府公共危机管理与消防综合应急救援力量建设[J].消防技术与产品信息, 2006, 12 (3): 3-10.
    [45]蒋宏,周以良.城市燃气安全事故应急救援与城市安全应急系统[J].城市燃气, 2006, 37 (1): 18-20.
    [46]邢娟娟.重大事故的应急救援预案编制技术[J].中国安全科学学报, 2004, 14 (1): 57-59.
    [47] ERCB. ERCBH2S A model for calculating for emergency response and planning zones for sour gas facilities, Volume 1: Technical reference document[M]. Calgary: ERCB, 2008.
    [48] D.J. Wilson. Release and dispersion of toxic gas torm pipeline ruptures[R]. Calgary: Alberta Environment Pollution Control Division Technical Report, 1979.
    [49]刘中良,罗志云,王皆腾,等.天然气管道泄漏速率的确定[J].化工学报, 2008, 59 (8): 2211-6112.
    [50]杨伟,顾明.高层建筑三维定常风场数值模拟[J].同济大学学报, 2003, 32 (6): 647-651.
    [51]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社, 2005.
    [52]陈国明,徐长航.安全工程信息化技术概论[M].东营:中国石油大学出版社, 2008.
    [53] Xian-Xiang Li, Chun-ho Liu, Dennis Y.C. Leung, et. al. Recent progress in CFD modeling of wind field and pollutant transport in street canyons[J]. Atmospheric Environment, 2006, 40 (29): 5640-5658.
    [54] A. Silva Lopes, J. M. L. M. Palma, F. A. Castro. Simulation of the Askervein flow. Part 2: Large-eddy simulations[J]. Boundary-Layer Meteorology, 2007, 125 (1): 85-108.
    [55]张兆顺,崔桂香,许春晓.湍流大涡数值模拟的理论和应用[M].北京:清华大学出版社, 2008.
    [56] Fluent Inc. Fluent 6.3 help document[M].
    [57]程雪玲,胡非.复杂地形网格生成研究[J].计算力学学报, 2006, 23 (3): 313-316.
    [58] United States Geological Survey. http://www.usgs.gov/.
    [59] European Process Safety Centre. Atmospheric Dispersion[M]. Rugby: Institution of Chemical Engineers (IChemE), 1999.
    [60] Marko Princevac, Akula Venkatram. Estimating micrometeorological inputs for modeling dispersion in urban areas during stable conditions[J]. Atmospheric Environment, 2007, 41 (26): 5345-5356.
    [61] Akula Venkatram, Marko Princevac. Using measurements in urban areas to estimate turbulent velocities for modeling dispersion[J]. Atmospheric Environment, 2008, 42 (16): 3833-3841.
    [62] Spyros Sklavounos, Fotis Rigas. Validation of turbulence models in heavy gas dispersion over obstacles[J]. Journal of Hazardous Materials, 2004, 108 (1-2): 9-20.
    [63]席学军,邓云峰.城市地区毒气扩散事故数值模拟[J].中国安全生产科学技术, 2006, 2 (6): 35-38.
    [64]中国标准化与信息分类编码研究所. GB 10000-1988中国成年人人体尺寸[S].北京:国家技术监督局, 1988.
    [65]石油工业标准化技术委员会. SY/T 6137-2005含硫化氢的油气生产和天然气处理装置作业的推荐作法[S].北京:国家发展和改革委员会, 2005.
    [66] Wei-Hsin Chen. An analysis of gas absorption by a liquid aerosol in a stationary environment[J]. Atmospheric Environment, 2002, 36 (22): 3671-3683.
    [67] Wei-Hsin Chen. Scavenging waves and influence distances of gas absorption around single liquid aerosols in clouds[J]. Atmospheric Environment, 2006, 40 (2): 500-511.
    [68] Wei-Hsin Chen. Atmospheric ammonia scavenging mechanisms around a liquid droplet in convective flow[J]. Atmospheric Environment, 2004, 38 (8): 1107-1116.
    [69]杨洪斌.硫化物的云下清除[J].辽宁气象, 1999, 16 (2): 29-32.
    [70] D.M. Chate. Acidity of raindrop by uptake of gases and aerosol pollutants[J]. Atmospheric Environment, 2009, 43 (8): 1571-1577.
    [71] Willen A.H. Asman. Parameterization of below-cloud scavenging of highly soluble gases under convective conditions[J]. Atmospheric Environment, 1995, 29 (12): 1359-1368.
    [72]中国气象局. http://www.cma.gov.cn/.
    [73]吴小平.低层房屋风雨作用效应的数值研究[D].杭州:浙江大学, 2008.
    [74] A. C. Best. The size distribution of raindrops[J]. Quarterly Journal of the Royal Meteorological Society, 1950, 76 (327): 16-36.
    [75] A. Haider, O. Levenspiel. Drag coefficient and terminal velocity of spherical and nonspherical particles[J]. Powder Technology, 1989, 58 (1): 63-70.
    [76]李阳初,王耀斌.石油化学工程基础[M].东营:石油大学出版社, 1997.
    [77] E. R. Altwicker, C. E. Lindhjem. Absorption of gases into drops[J]. AIChE Journal, 1988, 34 (2): 329-332.
    [78] David R. Lide. CRC Handbook of Chemistry and Physics[M]. 90th ed. Boca Raton: CRC press.
    [79]华彤文,杨骏英,陈景祖,等.普通化学原理[M].第二版.北京:北京大学出版社, 2004.
    [80] Arthur Kohl, Richard Nielsen. Gas gaspurification[M]. 5th ed. Houston: Gulf Publishing Company, 1997.
    [81]石油工业安全专业标准化技术委员会. SY/T 5087-2005含硫化氢油气井安全钻井推荐做法[S].北京:国家发展和改革委员会, 2005.
    [82]中国石油化工集团公司科技开发部. Q/SH 0033-2007川东北天然气井钻井与井下作业工程安全技术规范[S].北京:中国石油化工集团公司, 2007.
    [83] Paola Blotto, Michele Bonuccelli, Gianni Morale, et. al. Development of a Integrated Approach to the Risk Analysis of a Blow-out Accident, SPE 86704.
    [84] Lorenzo Borello, Michele Bonuccelli, Gianni Morale. The CFD Approach for the Risk Analysis of a Blowout Event, SPE 108619.
    [85] L.H. Hu, R. Huo, D. Yang. Large Eddy Simulation of Fire-induced Buoyancy Driven Plume Dispersion in an Urban Street Canyon under Perpendicular Wind Flow[J]. Journal of Hazardous Materials, 2009, 166 (1): 394-406.
    [86] Yanfu Wang, Juncheng Jiang, Dezhi Zhu. Diesel oil pool fire characteristic under natural ventilation conditions in tunnels with roof openings[J]. Journal of Hazardous Materials, 2009, 166 (1): 469-477.
    [87] Kevin Mcgrattan, Bryan Klein, Simo Hostikka, et. al. Fire Dynamics Simulator (Version 5) User's Guide[M]. Washington: NIST, 2008.
    [88] S.L. Brennan, D.V. Makarov, V. Molkov. LES of High Pressure Hydrogen Jet Fire[J]. Journal of Loss Prevention in the Process Industries, 2009, 22 (3): 353-359.
    [89] Thierry Poinsot, Denis Veynante. Theoretical and Numerical Combustion[M]. Philadelphia: Edwards, 2001.
    [90] Center for Chemical Process Safety of the American Institute of Chemical Engineers. Guidelines for Consequence Analysis of Chemical Releases[M]. New York: American Institute of Chemical Engineers, 1999.
    [91] Sam Mannan. Lee's Loss Prevention in the Process Industries: Volume 1 Hazard Identification, Assessment and Control[M]. 3rd ed. Burlington: Elsevier Butterworth-Heinemann Publications, 2005.
    [92] Emergency Response Planning (ERP) and Workplace Environmental Exposure Level (WEEL) Committees. AIHA 2008 Emergency Response Planning Guidelines (ERPG) & Workplace Environmental Exposure Levels (WEEL) Handbook[M]. Fairfax: American Industrial Hygiene Association, 2008.
    [93] National Advisory Committee for the Development of Acute Exposure Guideline Levels for Hazardous Substances. http://www.epa.gov/oppt/aegl/index.htm.
    [94] American Conference of Industrial Hygienists. http://www.acgih.org/tlv/.
    [95] National Institute for Occupational Safety and Health. http://www.cdc.gov/niosh/idlh/idlh-1.html.
    [96] U.S. Department of Defense. http://www.defense.gov/.
    [97] American Industrial Hygiene Association. http://www.aiha.org/.
    [98]全国安全生产标准化技术委员会. AQ 2018-2008含硫化氢天然气井公众安全防护距离[S].北京:国家安全生产监督管理总局, 2009.
    [99] ERCB. ERCBH2S A Model for Calculating Emergency Response and Planning Zones for Sour Gas Facilities. Volume 2: Emergency Response Planning Endpoints[M]. Calgary: ERCB, 2008.
    [100] American Petroleum Institute. API RP 581 Base Resource Document Risk-Based Inspection[S]. Washington: American Petroleum Institute, 2000.
    [101]中华人民共和国国务院.国家安全生产事故灾难应急预案. 2006.
    [102]国家安全生产监督管理总局.陆上石油天然气储运事故灾难应急预案. 2006.
    [103]国家安全生产监督管理总局.陆上石油天然气开采事故灾难应急预案. 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700