用户名: 密码: 验证码:
蓝藻水华与2种藻食性水生动物的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在营养盐管理难以奏效的富营养化水体,运用生物操纵原理,通过水生生物群落控制管理来防治蓝藻水华被认为是一种安全、有效的替代方法。为此,藻食性动物与蓝藻水华之间的相互作用关系值得进一步关注。本文以铜锈环棱螺(Bellamya aeruginosa)和尼罗罗非鱼(Oreochromis niloticus)为主要研究对象,研究了微囊藻毒素(MC)在这2种藻食性动物体内的积累及清除规律,进行了产毒铜绿微囊藻(Microcystis aeruginosa)喂食暴露对螺肝脏几种主要酶的影响及对螺肝细胞DNA损伤的系列室内试验,采用微宇宙试验考察了环棱螺对藻华水体的短期生态效应。主要结果如下:
     1.在藻华池塘中,环棱螺体内MC含量有明显季节变化,螺体内MC含量与浮游植物细胞内毒素呈显著的正相关,而与溶解于水中的MC浓度无显著相关。尽管低温季节水体MC含量很低,但螺肝胰腺内仍保持较高的MC浓度(1.023-1.887μg/gDW)。螺体内不同组织MC含量有显著差异(P<0.01),依次为肝胰腺>消化道>鳃>腹足。室内喂食暴露试验表明,温度对螺肝胰腺MC的积累有显著影响(P<0.01),15℃时螺肝胰腺MC含量显著高于25℃的相同处理组;分别用单一产毒铜绿微囊藻(蓝藻组)和产毒铜绿微囊藻+栅藻(混合组)对环棱螺进行喂食暴露后发现,尽管混合组饵料中MC含量仅为蓝藻组的1/2左右,但25℃条件下,混合组螺肝胰腺MC含量显著高于蓝藻组(P<0.05)。将喂食暴露后的螺体移入不含藻毒素的栅藻悬浮液进行清除试验时发现,螺肝胰腺中的MC在前10天都得到快速清除,而10天后清除速率明显下降。15℃清除试验后期螺肝胰腺MC残留量要显著高于25℃的MC含量(P<0.05)。
     2.微囊藻喂食暴露及毒素清除期间,螺肝脏中酸性磷酸酶(ACP)、碱性磷酸酶(ALP)活性均随螺肝脏中MC含量变化发生相应变化,谷胱甘肽硫转移酶(GST)活性在混合组先被诱导后被抑制,在蓝藻组初期变化不明显后期则表现为诱导。MC清除过程中,ACP、ALP和GST活性均随MC含量下降表现出不同程度的降低。15℃水温条件下,微囊藻喂食暴露对螺肝脏抗氧化酶超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GPX)的活性影响在混合组均表现为抑制,在蓝藻组均表现为诱导;25℃时SOD和CAT活性在2个处理组中均表现为诱导,而GPX酶活性均表现为抑制。试验表明,几种螺肝脏抗氧化酶活性对MC暴露的响应与MC浓度、环境温度、暴露时间均有一定的关系。
     3.利用彗星试验研究了产毒微囊藻短期喂食暴露(24h)对螺肝细胞DNA的损伤效应。结果表明,混合组和蓝藻组均在暴露试验开始后6h螺肝脏中MC含量达到最高,而后MC含量下降;12h重复染毒(调整藻类密度)后,螺肝脏中MC含量又迅速回升。同期螺肝细胞DNA损伤指标彗星尾长(TL)、彗星尾距(TM)和彗星尾部DNA百分含量(Tail DNA%)也随螺肝脏中MC含量发生相应变化。实验期间,混合组和蓝藻组的DNA损伤指标均显著高于对照组,混合组显著高于蓝藻组。
     4.采用室外微宇宙试验研究了不同密度环棱螺(高密度组200ind./100L;中密度组100ind./100L;低密度组50ind./100L)对藻华水体的短期(10d)生态效应。结果表明,水体溶氧和pH均随螺投放密度的增加而下降,不同处理组之间的氮盐浓度没有显著差异,而正磷酸浓度存在极显著差异(p<0.01),螺类密度越高正磷酸浓度上升越多。中、高密度组水体内蓝藻水华被完全遏制,蓝藻和藻类总生物量显著下降,绿藻和隐藻比例上升;而藻类多样性指数呈现出随螺类密度增加而下降的趋势。螺的投放对浮游动物的群落结构也产生了显著的影响,试验结束时,中、高密度组轮虫数量显著低于对照组和低密度组,浮游动物多样性指数则与螺投放密度呈显著正相关(r=0.9834)。
     5.实验条件下,罗非鱼对铜绿微囊藻的摄食率随鱼体重及水温的升高而增加;25℃时罗非鱼对微囊藻的消化率变化于58.6%至78.1%之间,平均消化率达67.5±6.41%。微囊藻喂食暴露试验表明,蓝藻组和混合组罗非鱼体内的MC含量没有显著差异(P>0.05),两处理组均在喂食暴露第21天后,鱼体内MC含量基本达到稳定。MC在鱼不同组织的分布存在显著差异,鱼肝脏和肠道MC含量较为接近,但均极显著地高于肌肉中的含量(P<0.01)。MC清除试验表明,罗非鱼肠道MC的清除速率最大,肝脏其次,肌肉最小。
The prevention and treatment of cyanobacterial bloom by the principle of biomanipulation controlling aquatic community is considered as a safe and effective alternative method in water body that the management of nutrient would be difficult to prove effective. Therefore, more attention should be paid to the interaction between cyanobacterial bloom and phytoplanktivorous animal. This thesis, with Bellamya aeruginosa and Oreochromis niloticus as the main research object, researched the regulation of accumulation and degradation of microcystin in these two kinds of phytoplanktivorous animals. A series of laboratory tests are conducted to study the influence of toxic Microcystis aeruginosa on the six kinds of enzyme of lives and DNA damage in the hepatocellular of snail after feeding exposure. The microcosm experiment is employed to investigate the short-term ecological effect of Bellamya on the bloom water body. The main results are summarized as follows:
     1. In the bloom pond, MC in the body of Bellamya exhibited an obvious seasonal change, and a significant positive correlation was found between the contents of MC in snail and the intracellular microcystin (IMC) of phytoplankton, but there was no significant correlation between tissues and the extracellular Microcystin (EMC). Although the concentration of MC in water body was not high in low temperature season, the value of MC in hepatopancreas remained at 1.023-1.887μg/gDW. The contents of MC in various tissues of animals showed a significant difference (P<0.01), and the amount of MC accumulation was in sequence of hepatopancreas> digestive tract> branchia> abdominal foot. The feeding exposed experiment indicated that the temperature had a significant effect on the accumulation of MC in hepatopancreas (P<0.01): the concentration of MC in hepatopancreas at 15℃was higher than that at 25℃. It was found that, at 25℃, although MC in the mixed diet was about half of BG treatment, the value of MC in hepatopancreas of snails fed by toxic M. aeruginosa + Scenedesmus (mixed) was significantly higher than that fed by toxic M. aeruginosa (BG) (P<0.05). When the degradation experiment was carried out to probe into the dynamics of MC of the tissues in the suspension without MC after feeding exposure, it was found that MC in hepatopancreas had been cleared quickly in the first ten days after removal, but the clearance rate decreased obviously after that. At 15℃the residual amount of MC in hepatopancreas was significantly higher than it was 25℃at the later stage of the degradation experiment (P<0.05).
     2. According to the dynamics of MC in liver, the activities of acid phosphatases (ACP) and alkaline phosphatases (ALP) change correspondingly during the period of feeding exposure and clearance. The activities of glutathione-S-transferase (GST) was induced initially and then inhibited in the mixed treatment, the change of initial activity of GST was not obvious in the BG treatment, but increased remarkably at the late stage of the exposure. The activity of these enzymes decreased in different degrees with the concentration of MC lowering during the degradation of MC. The activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in liver of snail were inhibited in the mixed treatment and induced in BG treatment at 15℃, whereas the SOD and CAT activities were all induced but the GPX activities was inhibited in both treatments at 25℃. The tests indicate that the response of activities of antioxidant enzymes to MC exposure may have a correlation with the concentration of MC, ambient temperature and the duration of exposure.
     3. The single cell gel electrophoresis technique (Comet assay) was employed to study the damage effects of short-term feeding toxin Microcystis (24h) on DNA of hepatocyte from snail. The results showed that the MC content in the liver of B. aeruginosa all reached the maximum after 6h exposure in both experimental treatments, and the MCs content decreased afterwards. The MCs content rose again rapidly after 12h exposure (adjusting density of alga). Meanwhile, the comet tail length (TL), tail moment (TM) and tail DNA% in tissues showed a time-dependent and a dose-dependent change in response to the MC content. In the mixed treatment, the parameters of DNA damage were significantly higher than that in BG treatment, both experimental treatments higher than that in the controlled group during the experimental period.
     4. The microcosm experiment was conducted to investigate the short-term (10d) ecological effect of different densities Bellamya (Higher-density: 200ind./100L, Middle-density: 100ind./100L, Lower-density: 50ind./100L) on the bloom water body. The results showed that dissolved oxygen (DO) and pH decreased with the increasing density of animal, the concentration of nitrogen had no significant difference among the different treatments, there was a significant difference in the concentration of (PO43+) among the three groups (p<0.01), and the higher the concentration of PO43+ was, the faster the density of orthophosphoric acid increased. The cyanobacterial bloom were completely controlled in the higher- and middle-density treatments, the biomass of cyanophyta and phytoplankton decreased significantly, the proportion of chlorophyta and cryptophyta increased, the index of phytoplankton diversity showed a decreasing trend with the increasing density of animal. The occurrence of Bellamya also produced a prodigious influence on the community structure of zooplankton. The quantity of rotifer in the high- and middle-density treatments was significantly lower than in the controlled and low-density treatments at the later stage of the experiment. A significant positive correlation was found between the index of zooplankton diversity and the density of animal (r=0.9834).
     5. The feeding rate of tilapia on M. aeruginosa increased with the increase of body weight and the water temperature under the experimental condition. At 25℃, the digestibility of tilapia varied from 58.6% to 78.1%, and the mean digestibility was 67.5±6.41%. The feeding exposure indicated that there was no significant difference between BG and mixed treatment in the content of MC in fish body (P>0.05), the MC content in both treatments reached stability after 21d exposure basically. There were significant differences in the distribution of MC in different fish tissues. Although the liver and the intestine have the similar MC, they have a significantly higher content than the muscle (P<0.01). The MC degradation experiment indicated that the clearance rate of MC was in the sequence of in intestine >in liver>in muscle.
引文
[1] Adamovsky O, Radovan K, Hilscherova K, et al. Microcystin kinetics (bioaccumulation and elimination) and biochemical responses in common carp (Cyprinus carpio) and silver carp (Hypophthalmichthys molitrix) exposed to toxic cyanobacterial blooms [J]. Environ. Toxicol. Chem., 2007, 26: 2687~2693
    [2] Agusti S, Phlips E J. Light absorption by cyanobacteria: Implications of the colonial growth form [J]. Limnol. Oceanogr., 1991, 37: 434~441
    [3] Amorim A, Vasconcelos V. Dynamics of microcystins in the mussel Mytilus galloprovincialis [J]. Toxicon., 1999, 37: 1041~1052
    [4] An K G, Jones J R. Factors regulating bluegreen dominance in a reservoir directly influenced by the Asian monsoon [J]. Hydrobiologia, 2000, 432: 37~48
    [5] Andrzej S W, Malgorzata G, Tadeusz P. The relationship between the spatial distribution of fish, zooplankton and otherenvironmental parameters in the Solina reservoir, Poland [J]. Aquat. Living Resour., 2000, 13: 373~377
    [6] Atencio L, Moreno I, Jos A, et al. Dose-dependent antioxidant responses and pathological changes in tenca (Tinca tinca) after acute oral exposure to Microcystis under laboratory conditions [J]. Toxicon, 2008, 52(1): 1~12
    [7] Australian and New Zealand Environment and Conservation Council(ANZECC). Australian Water Quality Guidelines for Fresh and Marine Waters, National Water Quality Management Strategy, Australian and New Zealand Environment and Conservation Council, 1992,Canberra
    [8] Azevedo S M F O, Carmichael W W, Jochimsen E M, et al. Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil [J]. Toxicology, 2002, 181/182:441~446
    [9] Baganz M, Staaks G, Steinberg C. Impact of the cyanobacteria toxin, microcystin-LR on behaviour of zebrafish, Danio rerio [J]. Wat. Res., 1998, 32(3):948~952
    [10] Ball A S, Williams M, Vincent D, et al. Algal growth control by a barley straw extract [J]. Bioresour Technol, 2001, 7: 171 ~ 181
    [11] Bayne B. L. The physiology of suspension feeding by bivalve molluscs: An introduction to the Plymouth TROPHEE workshop [J]. Journal of Experimental Marine Biology and Ecology, 1998, 219:1~19
    [12] Benndorf J. Conditions for effective biomanipulation: conclusions derived from whole lake experiments in Europe [J] .Hydrobiologia, 1990, 200/201:187~ 203
    [13] Berger C. In situ primary production, biomass and light regime in the wolde wild, the most stable Oscillatoria agardhii lake in the Netherlands [J]. Hydrobiologia,1989,185: 233~244
    [14] Best J H, Plugmacher S, Wiegand C, et al. Effects of enteric bacterial and cyanobacterial lipolysaccharides, and of microcystin-LR, on glutathione S-transferase activities in zebra fish (Danio rerio) [J]. Aquatic Toxicol., 2003, 60:223~231
    [15] Beveridge M C M, Baird D J, Chapter three: diet, feeding and digestive physiology. In: Beveridge M C M and McAndrew B J. Tilapias: biology and exploitation. 2000, 59~87
    [16] Bhavan P S, Geraldine P. Profiles of acid and alkaline phosphatases in the prawnMacrobrachium malcolmsonii exposed to endosulfan [J]. Environ. Biol., 2004, 25: 213~219
    [17] Bishop C T, Anet E F L, et al. Isolation and identification of the fast-death factor in Microcystis aeruginosa NRC-1[J]. Can. J. Biochem. Physiol. 1959, 37: 453~471
    [18] Bojan S, Gorazd K, Jana B, et al. The role of microcystins in heavy cyanobacterial bloom formation [J]. Plankton Res., 1998, 20(6): 691~708
    [19] Bowen S H. Feeding, digestion and growth, qualitative considerations. In The biology and culture of tilapias [M]. Pullin R S V, Lowen-McConnell RH, 1983. 141~156
    [20] Burkert U, Hyenstrand P, Drakare S, et al. Effects of the mixotrophic flagellate Ochromonas sp.on colony formation in Microcystis aeruginosa [J].Aqua. Ecol., 2001, 35: 9~17
    [21] Cajaraville M P, Bebianno M J, Blasco J, et al. The use of biomarkers to assess the impact of pollution in coastal environments of the Iberian Peninsula: a practical approach [J]. Sci. Total Environ., 2000, 247: 295~311
    [22] Carbis C R, Rawlin G T, Mitchell G F, et al. The histopathology of carp, Cyprinus carpio L., exposed to microcystins by gavage, immersion and intraperitoneal adminidtration [J]. Journal of Fish Diseases, 1996,19:199~207
    [23] Carmichael W W. The toxins of cyanobacteria [J]. Sci. Am., 1994, 270: 78~86
    [24] Cazenave J, Bistoni M A, Pesce S F, et al. Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR [J]. Aquat. Toxicol., 2006, 76 (1): 1~12
    [25] Chen F Z, Mie P, 2004. The toxicities of single-celled Microcystis aeruginosa PCC7820 and liberated M. aeruginosa to Daphnia carinata in the absence and presence of the green alga Scenedesmus obliquus [J]. Journal of Freshwater Ecology, 2004, 19: 539~545
    [26] Chen F Z, Xie P. The effects of fresh and decomposed Microcystis aeruginosa on cladocerans from a subtropic Chinese lake [J]. J. Freshw. Ecol., 2003, 18: 97~104
    [27] Chen J, Xie P, Guo L G, et al. Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and -RR in a freshwater snail (Bellamya aeruginosa) from a large shallow, eutrophic lake of the subtropical China [J]. Environmental Pollution, 2005, 134: 423~430
    [28] Chen J, Xie P. Seasonal dynamics of the hepatotoxic microcystins in various organs of four freshwater bivalves from the large eutrophic lake Taihu of the subtropical China and the risk to human consumption [J]. Environ. Toxicol., 2005, 20: 572~ 584
    [29] Chen W, Song L R, Ou D Y, et al. Chronic toxicity and responses of several important enzymes in Daphnia magna on exposure to sublethal microcystin-LR [J]. Environ. Toxicol., 2005, 20(3):323~330
    [30] Chen Y W, Gao X Y. Study on variations in spatial and temporal distribution of Microcystis in Northwest Taihu. Lake and its relations with light and temperature. In: CAI Qiming [J]. Ecology of Taihu Lake. China Meteorological Press, 1998. 142~148
    [31] Chorus I, Bartram J. Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management [M]. Londn, E FN Spon on behalf of WHO,1999,p. 416
    [32] Collins A R, Dobson V L, Du?inska M, et al. The comet assay: what can it really tell us? [J] Mutat. Res., 1997, 375: 183~193
    [33] Cousins I T, Bealing D J. Sutton A, et al. Biodegradation of microcystin-LR by indigenous mixed bacterial populations [J]. Wat. Res., 1996, 30(3): 481~485
    [34] Cremer M C, Smitherman R O. Food habits and growth of silver and bighead in cages and ponds [J].Aquaculture, 1980,20:57~ 64
    [35] Daft M G, Pellegrini S. Lysis of Microcystis aeruginosa by Bdelbvibriolike bacteria [J]. J. Phycol., 1975, 5: 577~ 596
    [36] Datta S, Jana B B. Control of bloom in a tropical lake: grazing efficiency of some herbivorous fishes [J].J. Fish. Biol., 1998, 53: 12~ 24
    [37] Demott W R, Zhang Q X, Carmichael W W. Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia [J]. Limnol. Oceanogr., 1991, 36: 1 346~1357
    [38] Ding W X, Shen H M, Zhu H G, et a1. Genotoxicity of microcystic cyanobacteria extract of a water source in China [J]. Murat. Res., 1999, 442(2): 69~77
    [39] Ding W, Ong C. Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity [J]. FEMS Microbiol. Lett., 2003, 220: 1~7
    [40] Dionisio Pires L M, Karlsson K, Meriluoto J A O, et al. Assimilation and depuration of microcystin-LR by the zebra mussel, Dreissena polymorpha [J]. Aquat. Toxicol., 2004, 69: 385~396
    [41] Dionisio Pires L M, Van Donk E. Comparing grazing by Dreissena polymorpha on phytoplankton in the presence of toxic and non-toxic cyanobacteria [J]. Freshwater Biol. 2002, 47: 1855~1865
    [42] Dionisio Pires L M, Jonker R R, Van Donk E, et al. Selective grazing by adults and larvae of the zebra mussel (Dreissena polymorpha): application of flow cytometry to natural seston [J]. Freshwat. Biol., 2004a, 49, 116~126
    [43] DionisioPires L M, Karlsson K M, Meriluoto J A O, et al. Assimilation and depuration of microcystin-LR by the zebra mussel, Dreissena polymorpha [J]. Aquat. Toxicol., 2004b, 69, 385~396
    [44] Dittmann E, Neilan B A, Erhard M, et al. Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobactrium Microcystis aeruginosa PCC7806 [J]. Mol. Microbiol., 1997, 26:779~787
    [45] Duy T N, Lam P K S, Shaw G R. Toxicology and risk assessment of fresh water cyanobacterial (Blue-green algae) toxins in water [J]. Rev. Environ. Contam. Toxicol., 2000, 163:113~186.
    [46] Ekpo I, Bender J. Digestibility of a commercial fish feed, wet algae, and dried algae by Tilapia nilotica and silver carp [J]. Pro. Fishculturist. 1989,51:83~86
    [47] Emilie L, Luc B, Myriam B. Interactions between cyanobacteria and Gastropods I. Ingestion of toxic Planktothrix agardhii by Lymnaea stagnalis and the kinetics of microcystin bioaccumulation and detoxification [J]. Aquatic Toxicology, 2006, 79: 140~148
    [48] Eriksson J E, Meriluoto J A O, Lindholm T. Accumulation of a peptide toxin from the cyanobacterium Oscillatoria agardhii in the freshwater mussel Anodonta cygnea [J]. Hydrobiologia, 1989, 183: 211~216
    [49] Falconer I R. Toxic cyanobacterial bloom problem in Australia waters: risks and impacts on human health [J]. Phycologia, 2001, 40(3):228~233.
    [50] Faverney C R, Devaux A, Lafaurie M, et al. Toxic effects of wastewaters collected at upstream and downstreamsite of a purification station in cultures of rainbow trout hepatocytes [J]. Archives of Environmental Contamination and Toxicology, 2001, 41(2): 129~141
    [51] Feitz A, Lawton L A, Maagd G, et al. Photocatalytic degradation of the blue green algae toxin microcystin-LR in a natural organic-aqueous matrix [J]. Environ. Sci. Technol., 1999, 33(2):243~248
    [52] Fischer W J, Hitzfeld B C, Tencalla F, et al. Microcystin-LR toxicodynamics, induced pathology, and immuohistochemical location in livers of blue-green algae exposed rainbow trout (Oncorhynchus mykiss) [J].Toxicol. Sci., 2000, 54:365~ 373
    [53] Fitzpatrick P J, O Halloran J, Sheehan D, et al. Assessment of a glutathione S-transferase and related proteins in the gill and digestive gland of Mytilus edulis L., as potential organic pollution biomarkers [J]. Biomarkers, 1997, 2:51~56
    [54] Francesca G T, Daniel R D, Christian S. Toxicity of Microcystis aeruginosa peptide toxin to yealing rainbow trout (Oncorhynchus mykiss) [J]. Aquatic Toxicology, 1994, 30: 215~ 224
    [55] Francis G.. Poisonous Australian lake [J]. Nature, 1878, l8: 11~12
    [56] Frankenberg-Schwager M. Review of repair kinetics for DNA damage induced in eucaryotic cells in vitro by ionizing radiation [J]. Radiother. Oncol., 1989, 14: 307~320
    [57] Fu J, Xie P. The acute effects of microcystin-LR on the transcription of nine glutathione S-transferase genes in common carp (Cyprinus carpio L.) [J]. Aquat. Toxicol., 2005, 80(3): 261~266
    [58] Fuhrman J A. Marine viruses and their biogeochemial and ecological effects [J]. Nature, 1999, 399: 541~548
    [59] Fujimoto N. Sudo R. Sugiura N. et al. Nutrient-limited growth of Microcystis aeruginosa and Phormidium tenue and competition under various N:P supply ratios and temperatures [J]. Limnol. Oceanogr. 1997,42: 250~256
    [60] Fulton R S S, Paerl H W. Toxic and inhibitory effects of the blue-green alga Microcystis aeruginosa on herbivorous zooplankton [J]. J. Plankt. Res., 1987, 9: 837~ 855
    [61] Gabryelak T, Klekot J. The effects of paraquat on the peroxide metabolism enzymes in erythrocytes of freshwater fish species [J]. Comp. Biochem. Physiol. C, 1985, 81:415~418
    [62] Ganf G G, Oliver R L. Vertical separation of light and available nutrients as a factor causing replacement of green algae in the plankton f stratified lake [J]. Ecol., 1982, 70: 829~844
    [63] Gehringer M M. Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response [J]. FEBS Lett., 2004, 557(3): 1~8
    [64] Geller W, Muller H. The filtration apparatus of Cladocera: filter mesh-sizes and their implications of food selectivity [J]. Oecologia, 1981, 49:316~321
    [65] Gérard C, Poullain V, Lance E, et al. Influence of toxic cyanobacteria on community structure and microcystin accumulation of freshwater mollusks [J]. Environmental Pollution, 2009, 157: 609~617
    [66] Ghorpade N, Mehta V, Khare M, et al. Toxicity study of diethyl phthalate on freshwater fishCirrhina mrigala[J]. Ecotox. Environ. Saf., 2002, 53: 255~258
    [67] Goerin P L. Handbook of experimental phermarolgy [M]. New York: Spring verlag, 1995, 187-213
    [68] Gross E M. Allelopathy of aquatic autotrophs [J]. Crit.Rev.Plant Sci., 2003,22:313~39
    [69] Habdija I, Latjner J,Belinic I. The contribution of gastropod biomass in macrobenthic communities of a karstic river[J]. Int. Rev. Ges. Hydrobiol, 1995, 80:103~110
    [70] Hansson L A, Gustafsson S, Rengefors K, et al. Cyanobacterial chemical warfare affects zooplankton community composition [J]. Freshw. Biol., 2007, 52: 1290~1301
    [71] Heath R T, Fahnenstiel G L, Gardner W S, et al. Ecosystem-level effects of zebra mussels (Dreissena polymorpha): an enclosure experiment in Saginaw Bay, Lake Huron [J]. J. Great Lakes Res., 1995, 21, 501~516
    [72] Hilscnhoff W L. Rapid field assessment of organic pollution with a family-level biotic index [J]. J. North Am. Benthol. Soc., 1988, 73: 65~68
    [73] Hogetsu K, Okanishi R, Sugawara H. Studies on the antagonistic relationship between phytoplankton and rooted aquatic plants [J]. Jap. J. Limnol.,1960, 21:124:130
    [74] Horppila J, Peltonen H, Malinen T, et al . Top-down or bottom-up effects by fish: issues of concern in biomanipulation of lakes [J] . Restoration Ecology, 1998, 6 (1): 20~ 28
    [75] Hosper S H. Biomanipulation, new perspective for restoring shallow eutrophic lakes in the Netherlands [J]. Hydrobiology Bulletin, 1989, 23(1): 5~10
    [76] Ibeings B W, Bruning K, Jonge J De, et al. Distribution of misrocystins in a lake foodweb: no evidence for biomanipulation [J]. Microb. Ecol., 2005, 49: 487~500
    [77] Inoue T, Yamamuro M. Respiration and ingestion rates of the filter-feeding bivalve Musculista senloousia: implications for water-quality control [J]. Journal of Marine Systems, 2000, 26: 183~192
    [78] Jang M H, Ha K, Joo G J, et al. Toxin production of cyanobacteria is increased by exposure to zooplankton [J]. Freshwater Biol., 2003,48(9):1540~1550
    [79] Josá, Pichardo S, Prieto A I, et al. Toxic cyanobacterial cells containing microcystins induce oxidative stress in exposed tilapia fish (Oreochromis sp.) under laboratory conditions [J]. Aquat. Toxicol., 2005, 72:261~271
    [80] Juliette L S, James F H. Foodweb transfer, accumulation, and depuration of microcystins, a cyanobacterial toxin, in pumpkinseed sunfish (Lepomis gibbosus)[J]. Toxicon, 2006, 48:580–589.
    [81] Kankaanpaa H T, Holliday J, Schroder H, et al. Cyanobacteria and prawn fanning in northern New South Wales, Australiada case study on cyanobacteria diversity and hepatotoxin bioaccumulation [J]. Toxicology Applied Pharmacology, 2005, 203: 243~ 256
    [82] Karuppasamy R. Effect of phenyl mercuric acetate (PMA) on acid and alkaline phosphatase activities in the selected tissue of fish [J]. Environ. Ecol., 2000, 18: 643~650
    [83] Kotak B G, Zurawell R W, Prepas E E, Holmes C F B. Microcystin-LR concentrations in aquatic food web compartments from lakes of varying trophic status [J]. Can. J. Fish. Aquat. Sci. 1996, 53, 1974~1985
    [84] Kuiper-Goodman T, Falconer I, Fitzgerald J. Human health aspects. In Chorus I and Bartram J. Toxic Cyanobacteria in Water, A Guide to Their Public Health Consequences, Monitoring and Management [M].E & FN Spon, Lonton and NewYork.1999,113~153
    [85] Lakshmana R P V, Bhattacharya R. The cyanobacterial toxin microcystin-LR induces DNA damage in mouse liver in vivo [J]. Toxicology, 1996, 114(1): 29~36
    [86] Lam A, Fedorak P. Biotransformation of the cyanobacterial hepatotoxin microcystin-LR, as determined by HPLC and protein phosphatase bioassay [J]. Environ. Sci. Technol., 1995, 29(2): 242~246
    [87] Lance E, Brient L, Bormans M, et al. Interactions between cyanobacteria and Gastropods. I. Ingestion of toxic Planktothrix agardhii by Lymnaea stagnalis and the kinetics of microcystin bioaccumulation and detoxification [J]. Aquat. Toxicol., 2006, 79, 140~148
    [88] Lance E, Paty C, Bormans M, et al. Interactions between cyanobacteria and Gastropods. II. Impact of toxic Planktothrix agardhii on the life-history traits of Lymnaea stagnalis [J]. Aquat. Toxicol., 2007, 81, 389~396
    [89] Landsberg J H. The effects of harmful algae blooms on aquatic organisms [J]. Rev. fisher. Sci., 2002, 10:113~390
    [90] Larno V, Laroche J, Launey S, et al. Responses of Chub(Lerciscus cephalus) population to chemical stress, assessed by genetic markers, DNA damage and cytochrome P450IA Induction [J]. Ecotoxicol., 2000, 10: 145~158
    [91] Laws S. Use of silver carp to control algae biomass in aquaculture ponds [J]. Progr Fish Cult., 1990, 52 :1~ 8
    [92] Li X Y, Chung I K, Kim J I, et al. Subchronic oral toxicity of microcystin in common carp (Cyprinus carpio L.) exposed to Microcystis under laboratory conditions [J]. Toxicon, 2004, 44: 82- 827
    [93] Li X Y, Chung I K, Kim J I, Lee J. Oral exposure to Microcystis increases activity-augmented antioxidant enzymes in the liver of loach (Misgurnus mizolepis) and has no effect on lipid peroxidation [J]. Comp. Biochem. Physiol. C.: Toxicol Pharmacol, 2005, 141(3):292~296
    [94] Li X Y, Liu Y D, Song L R, et al, Responses of antioxidant systems in the hepatocytes of common carp (Cyprinus carpio L.) to the toxicity of microcystin-LR [J]. Toxicon, 2003, 42: 85~ 89
    [95] Li X Y, Liu Y D, Song L R, et al. Responses of antioxidant systems in the hepatocytes of common carp (Cyprinus carpio L.) to the toxicity of microcystin-LR [J]. Toxicon, 2003, 42:85~89
    [96] Li X Y, Wang J, Liang J B, et al. Toxicity of microcystins in the isolated hepatocytes of common carp (Cyprinus carpio L.) [J]. Ecotoxicology and Environmental Safety, 2007, 67: 447~ 451.
    [97] Liu Y, Xie P, Wu X P. Grazing on toxic and non-toxic Microcystis aeruginosa PCC7820 by Unio douglasiae and Corbicula fluminea [J]. Limnology,2009(in press)
    [98] López-Archilla A I, Moreira D, López-García P, et al. Phytoplankton diversity and cyanobacterial dominance in a hypereutrophic shallow lake with biologically produced alkaline pH [J]. Extremophiles, 2004, 8:109–115
    [99] Lürling M, Beekman W. Influence of food-type on the population growth rate of the rotifer Brachionus calyciflorus in shortchronic assays [J]. Acta. Zool. Sinica., 2006, 52(1): 70~78
    [100] Magalh?se V F, Soares P M, Azevedo S M F O. Microcystin contamination in fish from theJacarepaguáLagoon (Rio de Janeiro, Brazil):ecological implication and human health rish [J]. Toxicon, 2001, 39:1077~ 1108
    [101] Maidana M, Carlis V, Galhardi F G, et al. Effects of microcystins over short- and long-term memory and oxidative stress generation in hippocampus of rats [J]. Chemico-Biological Interactions. 2006, 159: 223~234
    [102] Malbrouck C, Kestemont P. Effects of microcystins on fish [J]. Environ. Toxicol. Chem., 2006, 25:72~86
    [103] Malbrouck C, Trausch G, Devos P, et al. Hepatic accumulation and effects of MC-LR on juvenile goldfish Carassius auratus L. [J]. Comp. Biochem. Physiol. C., 2003, 135: 39~48
    [104] Marzin D. New approaches to estimating the mutagenic potential of chemicals [J]. Cell Bio Toxicol, 1999, 15: 359~365
    [105] Matkovics B L, Szabo S I, Varga K. Effects of a herbicide on the peroxide metabolism enzymes and lipid peroxidation in carp fish (Hypophthalmichthys molitrix) [J]. Acta. Biol. Hung., 1984, 35:91~96
    [106] Mazorra M T, Rubio J A, Blasco J. Acid and alkaline phosphatase activities in the clam Scrobicularia plana: kinetic characteristics and effects of heavy metals [J]. Comp. Biochem. Physiol. B, 2002, 131:241~249
    [107] Mitchelmore C L, Chipman J K. DNA strand breakage in aquatic organisms and the potential value of comet assay in environmental monitoring [J]. Mutat. Res., 1998, 399(2): 135~147
    [108] Mohamed Z A, Carmichael W W, Hussein A A. Estimation of microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom [J]. Environ. Toxicol., 2003,18:137~ 141
    [109] Molina R, Moreno I, Pichardo S, et al. Acid and alkaline phosphatase activities and pathological changes induced in Tilapia fish (Oreochromis sp.) exposed subchronically to microcystins from toxic cyanobacterial blooms under laboratory conditions [J]. Toxicon, 2005, 46: 725~735
    [110] Montiel Y A, Chaparro O R, Segura C J. Changes in feeding mechanisms during early ontogeny in juveniles of Crepidula fecunda (Gastropods, Calyptraeidae) [J]. Marine Biology, 2005,147: 1333~1342
    [111] Moo Y H, Kim W. A theoretical consideration of algae removal with clays [J]. Miercehemical Journal, 2001. 68: 157~161
    [112] Moreno I, Pichardo S, Jos A, et al. Antioxidant enzyme activity and lipid peroxidation in liver and kidney of rats exposed to microcystin-LR administered intraperitoneally [J]. Toxicon, 2005, 45 (4): 395~402
    [113] Moriarty D J W, The physiology of digestion of bluE-green algae in the Cichlid fish, Tilapia nilotica [J]. Journal of Zoology, 1973, 171:25~39
    [114] Mulderij G., Mooij W M, Smolders A J P, et al, Allelopathic inhibition of phytoplankton by exudates from Stratiotes aloides [J].Aquat.Bot., 2005, 82: 284~ 296
    [115] Mur L R, Skulberg O M, Utkilen H. Chapter 2. Cyanobacteria in the envioronment. In: Chorus I and Bartram J. Toxic Cyanobacteria in water, a Guide to Their Public Health Consequences, Monitoring and Management [M]. E & EN Spon, 1999, London and New York,pp:15~ 40.
    [116] Murphy T O, Lean D R S, Nalewajko C. Blue-green algae: their excretion of selectivechelators enables them to dominate other algae [J]. Science, 1976, 192:900~902
    [117] Nishiwaki R, Ohta, Sueoka E, et al. Two significant aspects of microcystin LR specific blind in gand liver specificity [J]. Cancer Lett., 1994, 83:283~289
    [118] Oberemm A, Fastner J, Steinberg C E W. Effects of microcystin-LR and cyanobacterial crude extracts on embryo-larval development of zebrafish (Danio Rerio) [J]. Wat. Res., 1997, 31(11):2918~2921
    [119] Ozawa K, Yokoyama A, Ishikawa K, et.al. Accumulation and depuration of microcystin produced by the cyanobacterium Microcystis in a freshwater snail [J]. Limnology. 2003. 4, 131~138
    [120] Paerl H W, Fulton R S, Moisander P H, et al. Harmful freshwater algae blooms, with an emphasis on cyanobacteria [J]. The Scientific World Journal, 2001.1:76~113
    [121] Paerl H W, Tucker J, Bland P T. Carotenoid enhancement and its role in maintaining blue-green (Microcystis aeruginosa) surface blooms [J]. Limnol. Oceanogr., 1983, 28: 847~ 857
    [122] Paerl H W. A comparison of cyanobacterial bloom dynamics in freshwater, estuarine and marine environments [J]. Phycologia, 1996, 35:25~35
    [123] Paerl W, Fulton R S, Moisander P H, et al. Harmful freshwater algal blooms, with an emphasis on cyanobacteria [J]. Sci. World, 2001, 1:76~113
    [124] Pandey S, Parvez S, Sayeed I, et al. Biomarkers of oxidative stress: a comparative study of river Yamuna fish Wallago attu (Bl & Schn.) [J]. Sci. Total Environ., 2003, 309, 105~115
    [125] Pereira P, Dias E, Franca S, et al. Accumulation and depuration of cyanobacterial paralytic shellfish toxins by the freshwater mussel Anodonta cygnea [J]. Aquatic Toxicology, 2004, 68: 339~350
    [126] Perrow M R, Meijer M, Dawidowicz P, et a . Biomanipulation in shallow lake: state of the art [J]. Hydrobiologia, 1997, 342/343:355~365
    [127] Pflugmacher S, Ame V, Wiegand C, et al. Cyanobacterial toxins and endotoxins-their origin and their ecophysiological effects in aquatic organisms [J]. Wasser Boden, 2001, 53:15~20
    [128] Pflugmacher S, Wiegand C, Oberemm A L, et al. Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of detoxication [J]. Biochim. Biophys. Acta., 1998, 1425:527~533
    [129] Phillips M J, Roberts R J, Stewart J A. The toxicity of the cyanobacterium Microcystis aeruginosa to rainbow trout, Salmo gairdneri [J]. Journal of Fish Diseases, 1985, 8: 339~ 344
    [130] Pichardo S, Jos A, Zurita J L, et al. The use of the fish cell lines RTG-2 and PLHC-1 to compare the toxic effects produced by microcystins LR and RR [J]. Toxicol. in vitro, 2005, 19(7): 865~873
    [131] Pietsch C, Wiegand C, Ame M V, et al. The effects of a cyanobacterial crude extract on different aquatic organisms: evidence for cyanobacterial toxin modulating factors [J]. Environ. Toxicol., 2001, 16(6):535~542
    [132] Pinho G L L, Rosa M C, Maciel F E, et al. Antioxidant responses and oxidative stress after microcystin exposure in the hepatopancreas of an estuarine crab specie [J]. Ecotox. Environ. Saf, 2005, 61, 353~360
    [133] Pires L M D, Bontes B M, Donk E V,et al. Grazing on colonial and filamentous, toxic andnon-toxic cyanobacteria by the zebra mussel Dreissena polymorpha [J]. J. Plankton Res., 2005, 27:331~339
    [134] Pires L M D, Karlsson K M, Meriluoto J A O, et al. Assimilation and depuration of microcystin-LR by the zebra mussel, Dreissena polymorpha [J]. Aquat. Toxicol., 2004, 69(4): 385~ 396
    [135] Porter K G. The plant-animal interface in freshwater ecosystems [J]. Am. Sci., 1977, 65: 159~170
    [136] Pouria S A. Fatal microcystin intoxication in haemodialysis unit in Caruaru [J]. Brazil Lancet, 1998, 352(2):21~26
    [137] Prepas E E, Kotak B G, Campbell L M, et al. Accumulation and elimination of cyanobacterial hepatotoxins by the freshwater clam Anodonta grandis simpsoniana [J]. Can. J. Fish. Aquat. Sci.,1997, 54:41~ 46
    [138] Prieto A I, Jos A, Pichardo S, et al. Differential oxidative stress responses to microcystins LR and RR in intraperitoneally exposed tilapia fish (Oreochromis sp.) [J]. Aquat. Toxicol, 2006, 77:314~321
    [139] Prieto A I, Pichardo S, Jos A, et al. Time dependent oxidative stress responses after acute exposure to toxic cyanobacterial cells containing microcystins in tilapia fish (Oreochromis niloticus) under laboratory conditions [J]. Aquat.Toxicol, 2007, 84, 337~345
    [140] Proctor L M, Fuimnan J A. Viral mortality of marine bacteria and cyanobacteria [J]. Nature, 1989, 340: 60~62
    [141] Qiu T, Xie P, Ke Z, et al. In situ studies on physiological and biochemical responses of four fishes with different trophic levels to toxic cyanobacterial blooms in a large Chinese lake [J]. Toxicon, 2007, 50, 365~376
    [142] Rabergh C M I, Bylund G, Ericksson J E. Histopathological effects of microcystin-LR, a cyclic peptide toxin from the cyanobacterium (blue-green) Microcystis aeruginosa, on common carp (Cyprinus carpio L.) [J]. Aquatic Toxicology,1991,20:131~146
    [143] Reeders H H, Der Vaate B A. Zebra mussels ( Dreissena polymorpha) :A new perspective for water quality management [J]. Hydrobiologia , 1990.200/201:437~450
    [144] Reynolds C S, Walsby A E. Water blooms[M].Biol.Rev.1975,50:.437~ 481
    [145] Reynolds C S. Growth and buoyancy of Microcystis aeruginosa Kütz [J]. Emend. Elenkin in a shallow eutrophic lake.Proceeding of the Royal Society of London.1973,B,184:29~ 50
    [146] Richard A H. Mussels as biomonitors of lake water microcystin: a final report for the summer 2000 microcystin monitoring study [J]. Center for freshwater biology, 2001, 5: 1~ 15
    [147] Richard J W, Pleter G T. Environmental factors affecting the production of peptide toxins in floating scums of the cyanobacterium Microcystis aeruginosa in a hypertrophic African reservoir [J].Environ. Sci. Technol., 1990, 24:1413~1418
    [148] Rosa C E, da Souza M S, de Yunes J S, et al. Cyanobacterial blooms in estuarine ecosystems: characteristics and effects on Laeonereis acuta (Polychaeta, Nereididae) [J]. Mar. Pollut. Bull., 2005, 50(9):956~964
    [149] Rothhaupt K O. Differences in particle size-dependent feeding efficiencies of closely related rotifer species [J]. Limnol. Oceanogr., 1990, 35: 16~ 23
    [150] Sahin A, Tencalla F G, Dietrich D R, et al. Excretion of biochemically active cyanobacteria (blue-green algae) Hepatotoxins in fish [J].Toxicology, 1996, 106: 123~130
    [151] Sarnelle O, Wilson A E, Hamilton S K, et al. Complex interactions between the zebra mussel, Dreissena polymorpha, and the harmful phytoplankter, Microcystis aeruginosa [J]. Limnol. Oceanogr., 2005, 50(3): 896–904
    [152] Sas H. Lake restoration and reduction of nutrient loading: expectations, experiences, extrapolations [M]. St Augustin: A cademia Verlag Richarz, 1989
    [153] Seip K L. Phosphorus and nitrogen limitation of algae biomass across trophic gradients [J]. Aquatic Sciences, 1994, 56 (1) :16~28
    [154] Shapiro J . Biomanipulation: the next phase-making it stable[J]. Hydrobiologia, 1990, 200/ 201: 13~27
    [155] Shapiro J, Lamarra V, Lynch M. Biomanipulation: an ecosystem approach to lake restoration. In: Brezonik D L, Fox J L eds .Water quality management through ways [M] . Gainesville: University Press of Florida, 1975. 85~86
    [156] Shpigel M, Blaylock R A. The pacific oyster as a biological filter for a marine fish aquaculture pond [J]. Aquaculture, 1991, 92(2-3):187~197
    [157] Singh N P, MoCoy M T, Tice R R, et al. A simple technique for quantitation of low levels of DNA damage in individual cells [J]. Exp. Cell Res., 1988, 175: 184~191
    [158] Sipi? V O, Kankaanp?? H T, Pflugmacher S, et al. Bioaccumulation and detoxication of nodularin in tissues of flounder (Platichthys flesus), mussels (Mytilus edulis, Dreissena polymorpha), and clams (Macoma balthica) from the northern Baltic Sea [J]. Ecotoxicology and Environmental Safety, 2002, 53: 305~311
    [159] Sivonen K. Effects of light temperature, nitrate, or thophosphate, and bacteria on growth of and hepatotoxin production by Oscillatori agardhii strains [J]. Appl. Environ. Microbil., 1990, 56: 2658~2666
    [160] Smith D W. Biological control of excessive phytoplankton growth the enhancement of aquacultural production [J]. Can. J. Fish. Quat. Sci., 1985, 42: 1940~1945
    [161] Smith V H. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton [J]. Science, 1983, 221: 669~671
    [162] Soares R M, Magalh?es V F, Azevedo S M F O. Accumulation and depuration of microcystins (cyanobacteria hepatotoxins) in Tilapia rendalli (Cichlidae) under laboratory conditions [J]. Aquat. Toxicol., 2004, 70: 1~10
    [163] SoléM, Peters L D, Magnusson K, et al. Responses of the cytochrome P450-dependent monooxygenase and other protective enzyme systems in digestive gland of transplanted common mussel (Mytilus edulis L.) to organic contaminants in the Skagerrak and Kattegat (North Sea) [J]. Biomarkers, 1998, 3: 49~62
    [164] Song L, Sano T, Li R, et al. Microcystin production of Microcystis viridis (cyanobacteria) under different culture conditions [J]. Phycol. Res., 1998, 46: 19~23
    [165] Stal L J, Moezelaar R. Fermentation in cyanobacteria [J]. FEMS Microbiol. Rev., 1997, 21: 179~211
    [166] Starling F L R M. Control of eutrophication by silver carp (Hypophthalmichthys molitrix) in the tropical Paranoa Reservoir (Brasilia, Brazil): a mesocosm experiment [J]. Hydrobiologia,1993, 257:143~152
    [167] Stegeman J J, Brouver M, Di-Giulio R T. Molecular responses to environmental contamination: Enzyme and protein systems as indicatorsof chemical exposure and effect In: Huggett R J, Kimerly R A, Mehrle P M, Biomarkers: Biochemical, Physiological andHistological Markers of Anthropogenic Stress [M]. Lewis Publishers, Chelsea, M I, USA ,1992, 1235~1335
    [168] Svensen C, Strogyloud E, Wexels Riser C, et al. Reduction of cyanobacterial toxins through coprophagy in Mytilus edulis [J]. Harmful Algae. 2005, 4: 329~336
    [169] Tencalla F, Dietrich D. Biochemical characterization of microcystin toxicity in rainbow trout (Oncorhynchus Mykiss) [J]. Toxicon, 1997, 35:583~595
    [170] Thostrup L, Christoffersen K. Accumulation of microcystin in Daphnia magna feeding on toxic Microcystis [J]. Arch. Hydrobiol. 1999, 145, 447~467
    [171] Ticc R R, Agurell E, Anderson D, et al. Single cell gel/comet assay: guidelines for in vitro and in vivo gentic toxicology testing [J]. Environ. Mol. Mutagen., 2000, 35(3): 206~221
    [172] Trabeau M, Bruha-Keup R, McDerMott C, et al. Midsummer decline of a Daphnia population attributed in part to cyanobacterial capsule production [J]. J. Plankt. Res., 2004, 26: 949~961
    [173] Tsuji K T, Watanuki F. Stability of microcystins from cyanobacteria IV. Effect of chlorination on decomposition [J]. Toxicon, 1997, 35(7): 1033~1041
    [174] Tsuji K T, Watanuki T, Kondo F, et al. Stability of microcystins from cyanobacteria II: effect of UV light on decomposition and isomerization [J].Toxicon, 1995, 33:1619~1631
    [175] Ueno Y, Nagata S, Hasegawa A, et al. Detection of microcystins, a blue-green algal hepatotoxin, in drinking water samples in Haimen and Fusui, endemic area of primary liver cancer in China, by highly sensitive immunoassay [J]. Carcinonen, 1996, 17: 1317~ 1321
    [176] Valeria F M, Raquel M S. Microcystin contamination in fish from the JacarepaguàLagoon (Rio de Janeiro, Brazil): ecological implication and human health risk [J]. Toxicon, 2001,39: 1077~1085
    [177] Van Vierssen W. The influence of human activities on the functioning of macrophyte-dominate aquatic ecosystems in the coastal area of Western Europe [A]. International Symposium Aquatic Macrophytes [C], Nijmegen, The Netherlands, 1983: 273281.
    [178] Vanderploeg H A, Liebig J R, Carmichael W W, et al. Zebra mussel (Dreissena polymorpha) selective filtration promoted toxic Microcystis blooms in Saginaw Bay (Lake Huron) and Lake Erie [J]. Can. J. Fish. Aquat. Sci., 2001, 58:1208 T 1221
    [179] Vasconcelos V M. Uptake and depuration of the heptapeptide toxin microcystin-LR in Mytilus galloprovincialis [J]. Aquatic Toxicology. 1995, 32: 227~ 237
    [180] Weng D, Lu Y, Wei Y, et al. The role of ROS in microcystin-LR-induced hepatocyte apoptosis and liver injury in mice [J]. Toxicology, 2007, 232, 15~23
    [181] Williams D E, Dawe S C, Kent M L, et al. Bioaccumulation and clearance of microcystins from salt water mussels, Mytilus edulis, and in vivo evidence for covalently bound microcystins in mussel tissues [J]. Toxion, 1997, 35(11): 1617~1625
    [182] Woods J A , O’Leary K A , McCarthy R P, et al. Preservation of comet assay slides : comparison with fresh slides [J]. Mutat. Res., 1999, 429(2): 181~187
    [183] Xie L Q, Xie P, Guo L G, et al. Organ distribution and bioaccumulation of microcystins in freshwater fish at different trophic levels from the eutrophic lake Chaohu, China [J]. Environ Toxicol, 2005, 20: 293~300
    [184] Xie L Q, Xie P,Ozawa K, et al. Dynamics of microcystins-LR and -RR in the phytoplanktivorous silver carp in a subchronic toxicity experiment [J]. Environ. Pollu.,2004, 127: 431~439
    [185] Xie P. Gut contents of silver carp, Hypopthalmichthys molitrix, and the disruption of a centric diatom, Cyclotella, on passage through the esophagus and intestine [J]. Aquaculture, 1999, 180: 295~305
    [186] Yokoyama A, Park H D. Depuration kinetics and persistence of the cyanobacterial toxin, microcystin-LR in the freshwater bivalve Unio douglasiae [J]. Environ. Toxicol., 2003, 18 (1),61~67
    [187] Zegura B, Sedmak B, Filipic M. Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2 [J]. Toxicon., 2003, 41: 41~48
    [188] Zegura B, Tamara T L, FilipiěM. The role of reactive oxygen species in microcystin-LR-induced DNA damage [J]. Toxicology, 2004, 200: 59~68
    [189] Zimba P V, Khoo L, Gaunt P S, et al. Confirmation of catfish, Ictalurua Punctatus (Rafinesque), mortality from Microcystis toxins [J]. J. Fish. Dis., 2001, 24(1): 41~ 47
    [190] Zurawell R W , Kotak B G , Prepas E E. Influence of lake trophic status on the occurrence of microcystin-LR in the tissue of pulmonate snails [J]. Freshwater Biol., 1999, 42: 707~718
    [191] Zurawell R W, Holmes C F B, Prepas E E. Elimination of the cyanobacterial hepatotoxin microcystin from the freshwater pulmonate snail Lymnaea stagnalis juguralis (Say) [J]. J. Toxicol. Environ. Health, 2006. 69: 303~318
    [192]白秀玲,谷孝鸿,张钰.太湖螺类的实验生态学研究——以环棱螺为例[J].湖泊科学,2006,18(6):649~654
    [193]曹旭静,藻食性生物对富营养化水体藻类控制及其机理的研究[D].南京:南京理工大学,2005.
    [194]陈德辉,刘永定,宋立荣.蓖齿眼子菜对栅藻和微囊藻的他感作用及其参数[J].水生生物学报,2004, 28(2):163~168
    [195]陈莉,李学彬,杨光涛,等.邻苯二甲酸二乙基己酯(DEHP)对金鲫鱼脑细胞DNA的损伤[J].生态毒理学报, 2008,3(2):144~148
    [196]陈少莲,刘肖芳,胡传林,等.论鲢、鳙对微囊藻的消化利用[J].水生生物学报, 1990,14(1):49~59
    [197]陈艳,王金秋,王阳,等.微囊藻毒素对褶皱臂尾轮虫的毒性效应和种群增长影响[J].中国环境科学,2002,22(3):198~201
    [198]成永旭.生物饵料培养学[M].北京:中国农业出版社,2005
    [199]费志良,吴军,赵钦,等.三角帆蚌对藻类滤食及消化的研究[J].淡水渔业,2006,36(5):24~27
    [200]费志良,严维辉,赵沐子,等.三角帆蚌清除富营养化水体中叶绿素a的研究[J].南京师大学报(自然科学版),2006,29(3):99~102
    [201]高红婷,柴夏,刘从玉.罗非鱼对浅水型湖泊生态系统营养水平的影响[J].江苏环境科技,2008,21(1):29~ 31
    [202]耿红.水体富营养化和蓝藻对轮虫影响的生态毒理学研究[D].武汉:中国科学院水生生物研究所,2006
    [203]何家莞,何振荣,俞家禄.有毒铜绿微囊藻对鱼和蚤的毒性[J].湖泊科学, 1997, 9: 49~57
    [204]胡鸿钧,魏印心.中国淡水藻类——系统、分类及生态[M] .北京:科学出版社,2006.
    [205]胡晓磐,周建华,时夕金.利用单细胞凝胶电泳技术研究镉对鲫鱼淋巴细胞DNA的损伤[J].农业环境科学学报,2005,24(1):43~45
    [206]胡智泉,李敦海,刘永定等.微囊藻毒素对水生生物的生态毒理学研究进展[J].自然科学进展,2006,16(1):14~20
    [207]季遥,沈盎绿,平仙隐,等.废电池浸出液对鲫鱼红细胞DNA损伤的研究[J].农业环境科学学报,2007,26(3):1178~1182
    [208]金丽娜,徐小清.微囊藻毒素对鱼类毒性影响的研究进展[J].水生生物学报, 2003,27(6):644~647
    [209]金相灿,屠清瑛.湖泊富营养化调查规范(第二版)[M] .北京:中国环境科学出版社, 1990
    [210]孔繁翔,高飞.大型浅水富营养化湖泊中蓝藻水华形成机理的思考[J].生态学报,2005,25:589~595
    [211]李康,周忠良.苯并(a)芘对鲫鱼(Carassius auratus)肝脏抗氧化酶的影响[J].应用与环境生物学报,2003,10( 1):88~91
    [212]李莉.微囊藻毒素对滤食性鱼类影响的毒理学实验和野外研究[D],武汉:中国科学院水生生物研究所,2006
    [213]李琪,李德尚,熊邦喜.放养鲢鱼对水库围隔浮游生物群落的影响[J].生态学报,1993,3,1(13):30~37
    [214]李世杰,窦鸿身,舒金华,等.我国湖泊水环境问题与水生态系统修复的探讨[J].中国水利,2006,13:14~17
    [215]李效宇,刘永定,宋立荣,等.微囊藻毒素对大鳞副泥鳅胚胎和幼鱼的毒性效应[J].水生生物学报,2003,27(3):318~319
    [216]李效宇,刘永定,张榜军.微囊藻毒素对澳洲水泡螺的毒性效应[J].河南师范大学学报(自然科学版),2005,33(4):106~109
    [217]李效宇,张进忠.有毒铜绿微囊藻对大型溞生长和繁殖的影响研究[J].水产科学,2006,25(12):632~ 634
    [218]连玉武,王艳丽,郑天凌.赤潮科学中藻菌关系研究的若干问题[J].海洋科学,1999,10(1):35~ 38
    [219]刘光钊.水体富营养及其藻害[M].北京:中国环境科学出版社. 2005
    [220]刘建康,谢平.揭开武汉东湖蓝藻水华消失之谜[J].长江流域资源与环境,1999,8(3):312~ 319
    [221]刘莹.铜绿微囊藻对枝角类及双壳类毒性影响的实验研究[D].南昌:南昌大学, 2006
    [222]卢敬让,李德尚,杨红生,等.海水池塘鱼贝施肥混养生态系中贝类与浮游生物的相互影响[J].水产学报,1997,21 (2):158~164
    [223]卢晓明,金承翔,黄民生,等.底栖软体动物净化富营养化河水实验研究[J].环境科学与技术,2007,307:7~9
    [224]陆开宏,金春华,王杨才.罗非鱼对蓝藻的摄食消化及对富营养化水体水华的控制[J].水产学报,2005,29(6):811~818
    [225]陆开宏,王扬才,蔡惠凤,等. 2种摄藻鱼消化酶活性及其消化器官组织形态比较研究[J].水利渔业,2005,25(5):42~44
    [226]陆开宏,晏维金,苏尚安.富营养水体治理与修复的环境生态工程——利用明矾浆和鱼类控制桥墩水库蓝藻水华[J].环境科学学报,2002,2(6):732~737
    [227]孟红明,张振克.我国主要水库富营养化现状评价[J].河南师范大学学报(自然科学版),2007,35(2):133~141
    [228]农清清,张志勇,何敏,等.微囊藻毒素-LR对HL60细胞遗传毒作用的研究[J].中国热带医学, 2008, 8(6):898~899
    [229]潘建林,徐在宽,唐建清,等.湖泊大型贝类控藻与净化水质的研究[J].海洋湖沼通报,2007,02:69~79
    [230]潘洁慧,陆开宏.铜锈环棱螺对微囊藻的摄食及其毒素积累研究[J].宁波大学学报(理工版),2008,21(4):479~484
    [231]钱志萍,冯燕,孙莉,等.金鱼藻对铜绿微囊藻生长的抑制作用研究[J].植物研究,2006,26(1):79~83
    [232]邱保胜,高坤山.蓝藻浓缩二氧化碳的机制[J].植物生理学通讯,2001,37(5):385~ 392
    [233]阮景荣,刘衢霞,王少梅,等.罗非鱼对微生态系统营养物水平的影响[J].应用生态学报,1993,4(4):404~409
    [234]阮景荣,戎克文,王少梅,型生态系统中鲢_鳙下行影响的实验研究~ ~ ~ 2.营养物水平,湖泊科学,1995,7(4):334~ 340
    [235]阮景荣,戎克文,王少梅,等.罗非鱼对微生态系统浮游生物群落和初级生产力的影响[J].应用生态学报,1993,4(1):65~73
    [236]史顺玉,刘永定,沈银武.细菌溶藻的初步研究[J].水生生物学报,2004,28(2):219~ 221
    [237]宋瑞霞,刘征涛,沈萍萍.太湖微囊藻毒素对细胞染色体及DNA损伤效应[J].中国公共卫生,2004,20(12):1446~1447
    [238]孙儒.动物生态学原理(第三版)[M] .北京:北京师范大学出版社,2001
    [239]孙文浩,吴厚铭.凤眼莲根系分泌物中的克藻化合物[J].植物生理学报,1993,19(1):92~96
    [240]王朝晖,林秋奇,胡韧,等.广东省水库的蓝藻污染状况与水质评价[J].热带亚热带植物学报,2004,12(2):117~123
    [241]王俊,姜祖辉,董双林.滤食性贝类对浮游植物群落增值作用的研究[J].应用生态学报,2001,12(5):765~768
    [242]王立新,张玲,张余霞,等.黑藻养殖水对铜绿微囊藻的抑制效应及其机制[J].植物生理与分子生物学学报,2006,32(6):672~678
    [243]王岩,张鸿雁,齐振雄.海水实验围隔中放养罗非鱼的生态学效应[J].海洋学报,2000,22,(6):81~87
    [244]王扬才,陆开宏,周杰.罗非鱼对微囊藻消化率的初步研究[J].水利渔业,2003,23(4) :15~16
    [245]王扬才,陆开宏.蓝藻水华的危害及治理动态[J].水产学杂志,2004,17(1):90~ 94
    [246]魏阳春,濮培民.太湖铜锈环棱螺对氮磷的降解作用[J].长江流域资源与环境,1999,8(1):88~93
    [247]吴刚,席宇,赵以军.溶藻细菌研究的最新进展[J].环境科学研究,2002,15(5):46~ 50
    [248]吴庆龙,谢平,杨柳燕,等.湖泊蓝藻水华生态灾害形成机理及防治的基础研究[J].地球科学进展,2008,23(11):1115~1123
    [249]吴为中,安成才,刘新尧,等.溶藻细菌(B-5)的溶藻效果与溶藻特性的初步研究[J].北京大学学报(自然科学版),2003,39(4):489~493
    [250]夏璐,丘冠英. DNA链断裂检测技术的进展[J].生物化学与生物物理进展,1997,24(1):31~35
    [251]谢平.鲢、鳙与藻类水华控制[M]. 2003,北京:科学出版社
    [252]谢平.论蓝藻水华的发生机制――从生物进化、生物地球化学和生态学视点[M]. 2007,北京:科学出版社
    [253]谢平.水生动物体内的微囊藻毒素及其对人类健康的潜在威胁[M]. 2006,北京:科学出版社
    [254]徐立红,张甬元,陈宜瑜.分子生态毒理学研究进展及其在水环境保护中的意义[J].水生生物学报,1995,19 ( 2 ):171~185
    [255]徐立红,张甬元,王德铭.用草鱼组织ATPase作为生态毒理学指标的研究[J].水生生物学报,1987,11:194~201
    [256]徐立红,周炳升,张甬元,等.微囊藻毒素环境行为的初步研究[J].水生生物学报,1997,21(1):85~ 89
    [257]徐宁,陈菊芳,王朝晖,等.广东大亚湾藻类水华的动力学研究.Ⅰ.藻类水华的生消过程及其与环境因子的关系[J].海洋环境科学,2001,2(20):2~ 6
    [258]徐兆礼.东海亚强真哲水蚤种群生态特征[J].生态学报,2006,26(4):1151~1158
    [259]杨东妹,陈宇炜,刘正文,等.背角无齿蚌滤食对营养盐和浮游藻类结构影响的模拟[J].湖泊科学,2008,20(2):228~234
    [260]杨松芹.微囊藻毒素遗传毒性研究进展[J].卫生研究,2007,36(1):117~119
    [261]虞功亮,宋立荣,李仁辉.中国淡水微囊藻属常见种类的分类学讨论——以滇池为例[J].植物分类学报,2007,45 (5): 727~741
    [262]张维昊,金丽娜,徐小清.鱼肉中微囊藻毒素的高效液相色谱法分析[J].分析科学学报,2001,17(2):117~119
    [263]张雅燕,吴志旭,朱溆君.千岛湖藻类及相关环境因子多元线性回归和鱼腥藻预测模型的建立[J].中国环境监测,2002,18(3):37~ 41
    [264]张占英,连民,刘颖,等.微囊藻毒素LR对胎鼠的致畸和损伤作用[J].中华医学杂志,2002,82:345~347
    [265]章宗涉,黄祥飞.淡水浮游生物研究方法[M].北京:科学出版社,1991.
    [266]赵沐子,费志良,郝忱,等.不同贝类对水质净化效果的比较[J] .水产科学,2006,25(3):133~135
    [267]赵以军,刘永定.有害藻类及其微生物防治的基础——藻菌关系的研究动态[J].水生生物学报,1996,20(2):173~181
    [268]郑朔方,杨苏文,金相灿.铜绿微囊藻生长的营养动力学[J].环境科学, 2005, 26(2):152~ 156
    [269]周炳升,徐立红,张甬元,等.微囊藻毒素LR对草鱼肝脏超微结构影响的研究[J].水生生物学报,1998,22(1):90~92
    [270]周珏平,沈建国,童建.微囊藻毒素LR对小鼠肝脏和淋巴细胞的损伤效应[J].环境与职业医学,2003,20(1):41~42
    [271]朱津永,陆开宏,潘洁慧.微囊藻水华对淡水浮游动物轮虫和枝角类影响的研究进展[J].中国水产科学,2008,15(2):361~369
    [272]朱苗骏,柏如法,张彤晴,等.不同密度铜锈环棱螺对水体环境影响效果的研究[J].淡水渔业,2004,34(6):31~33
    [273]朱生博,王岩,王小冬,等.不同放养和管理模式下三角帆蚌养殖水体中的浮游生物和初级生产力[J].生态学杂志,2008,2008,27 (3):401~403
    [274]邹华,潘纲,陈灏.壳聚糖改性粘土对水华优势藻铜绿微囊藻的絮凝去除[J].环境科学,2004,25(6):40~43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700