用户名: 密码: 验证码:
黄颡鱼(Pelteobagrus fulvidraco)遗传图谱构建及生长相关性状的QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究采用拟测交策略,以野生(♂)和人工养殖(♀)黄颡鱼人工授精产生的100个F1个体为作图群体,用SSR、SRAP和TRAP三种DNA分子标记技术构建了黄颡鱼的遗传连锁图谱,并对5个与生长相关的性状进行了QTL分析。
     从50对SSR引物中扩增得到13个在双亲间呈现多态性并在子代分离的标记,其中母本标记4个,父本标记3个,母本和父本共有标记6个。卡方检验显示,13个微卫星标记在子代中的分离全部符合其期望比例。
     从196对SRAP引物中扩增得到89个标记,平均每对引物产生1.3个标记,其中母本标记38个,父本标记46个,母本和父本共有标记5个。卡方检验显示,母本标记中有8个发生偏分离,父本标记中有11个发生偏分离。子代分离符合期望比的标记占构图SRAP标记的比例为78.6%。
     从56对TRAP引物中扩增得到26个标记,平均每对引物产生1.2个标记,其中母本标记9个,父本标记8个,母本和父本共有标记9个。卡方检验显示,母本标记中有2个发生偏分离,父本标记中有3个发生偏分离。子代分离符合期望比的标记占构图TRAP标记的比例为80.8%。
     利用这些标记构建了黄颡鱼遗传连锁图谱。其中雌性图谱整合了51个标记,图谱的长度为585.5 cM;包括16个连锁群,连锁群的长度从8.2-127.4 cM,每个连锁的标记个数为2-8个;雌性图谱连锁群6的平均间隔最大为32.1 cM,连锁群14的平均间隔最小为4.6 cM,图谱整体平均间隔为16.3 cM。雄性图谱共有56个标记,图谱的长度为752.3 cM;包括15个连锁群,连锁群的长度从3.0-205.2 cM,每个连锁的标记个数为2-11个;雄性图谱连锁群6的平均间隔最大为28.8cM,连锁群14的平均间隔最小为5.0cM,图谱整体平均间隔为17.7 cM。共有图谱有20个标记,图谱的长度为231.3 cM;包括5个连锁群,连锁群的长度从5.3-84.7cM,每个连锁的标记个数为2-6个;共有图谱连锁群5的平均间隔最大为20.3cM,连锁群1的平均间隔最小为5.3cM,共有图谱整体平均间隔为13.8cM。估算的雌雄图谱的覆盖率分别为52.6%和58.7%。
     用黄颡鱼雌雄连锁图谱对5个与其生长相关的性状进行了QTL扫描,在雌性图谱上检测到1个头宽的QTL,定位于第7连锁群上,LOD值为3.2,可解释的表性变异为13%。在雄性图谱上分别检测到1个体高和体长的QTL,均定位于第1连锁群上。体高QTL的LOD值为2.4,可解释的表性变异为12%。全长QTL的LOD值为2.1,可解释的表性变异为11%。本研究获得的3个QTL均可尝试用于黄颡鱼的生长性状标记辅助育种。
     黄颡鱼遗传图谱的构建及生长相关性状的QTL定位为下一步进行黄颡鱼的分子标记辅助选择育种打下基础,并最终推动黄颡鱼的遗传改良。
A segregating population including 100 progenies from the cross between wild ((?)) and breeding (♀) yellow catfish was obtained based on a pseudo-testcross mapping strategy. Genetic linkage maps of yellow catfish (Pelteobagrus fulvidraco) were constructed by using SSR、SRAP and TRAP markers. In addition, QTLs related to five growth traits were analyzed.
     Polymorphic markers segregated in one of the parents were amplified by using thirteen pairs of primers detected within totally fifty pairs of SSR primers, of which four markers derived from female parent, three markers derived from male parent and six markers from combined parents. All SSR markers segregated according to the expected Mendelian ratio.
     Eighty-nine markers were amplified by using 196 pairs of SRAP primers. The average amplify amount of marker was 1.3 by each pair of primer. Thirty-eight markers were detected in female parent and forty-six markers in male parent, meanwhile five markers from combined parents. Chi-square Test shows that eight and eleven markers appear segregation distortion in female and male parent respectively. Totally markers segregated according to the expected Mendelian ratio are 78.6% in all SRAP markers.
     Twenty-six markers were amplified by using 56 pairs of TRAP primers. The average amplify amount of marker was 1.2 by each pair of primer. Nine markers were detected in female parent and eight markers in male parent, meanwhile nine markers from combined parents. Chi-square Test shows that two and three markers appear segregation distortion in female and male parent respectively. Totally markers segregated according to the expected Mendelian ratio are 80.8% in all TRAP markers.
     These markers were used to construct genetic map of yellow catfish. Fifty-one markers were involved in female map. It was covering a total of 585.5 cM in length and included sixteen linkage groups, the length skip from 8.2 to 127.4 cM, the average amount of marker in single linkage group skip from 2 to 8. The longest average gap distance was 32.1 cM located in the sixth linkage group and the shortest average gap distance was 4.6 cM located in the 14th linkage group. The average gap distance was 16.3 cM in the whole female map. Fifty-six markers were involved in male map. It was covering a total of 752.3 cM in length and included fifteen linkage groups, the length skip from 3.0 to 205.2 cM, the average amount of marker in single linkage group skip from 1 to 11. The longest average gap distance was 28.8 cM located in the sixth linkage group and the shortest average gap distance is 5 cM located in the 14th linkage group. The average gap distance was 17.7 cM in the whole male map. Twenty markers were involved in combined map. It was covering a total of 231.3 cM in length and included five linkage groups, the length skip from 5.3 to 84.7cM, the average amount of marker in one linkage group skip from 2 to 6. The longest average gap distance was 20.3cM located in the fifth linkage group and the shortest average gap distance was 5.3 cM located in the first linkage group. The average gap distance was 13.8 cM in the whole combined map. The coverage scale was 52.6% and 58.7% on female and male map respectively.
     These maps were used to scan QTLs related to five growth traits of yellow catfish. One Head length QTL was identified in female map that located in LG7, LOD value is 3.2 and explains 13% of phenotypic variation. A Body width and a Body length QTL were identified in male map that all located in LG1, LOD value is 2.4 and 2.1 respectively, while explains 12% and 11% of phenotypic variation respectively. These QTL could be considered to apply in marker-assisted selection for growth-related traits breeding of yellow catfish.
     The construction of genetic linkage maps of yellow catfish and QTL sites related to growth traits will lay foundations for Marker-assisted selection breeding of yellow catfish. It will alter the genetic improvement of yellow catfish.
引文
[1]张觉民.黑龙江省鱼类志.哈尔滨:黑龙江科技出版社,1995:200~202
    [2]孔令杰.黄颗鱼人工繁殖技术研究.哈尔滨:东北农业大学农业推广硕士学位论文.2003:7~8
    [3]尹洪滨,姚道霞,孙中武,等.黑龙江鲶形目鱼类的肌肉营养组成分析.营养学报,2006,28(5):438~441
    [4]黄峰,严安生.黄颡鱼的含肉率及鱼肉营养评价.淡水渔业,1999,29(10):3~6
    [5]黄钧,陈琴,陈意明,等.黄颡鱼的含肉率及肌肉营养价值研究.广西农业生物科学,2001,20(1):32~36
    [6]杨兴丽,周晓林,常东洲,等.池养与野生黄颡鱼肌肉营养成分分析.水利渔业,2004,24(5):17~18
    [7]温小波,库夭梅,李伟国.4种优质底栖淡水鱼类肌肉营养成分的比较.大连水产学院学报,2003,18(2):99~103
    [8]韩庆,李丽立,黄春红,等.不同剂型的微量元素及不同水平的氨基酸螯合物对黄颡鱼(Pelteobagrus fulyvidraco)生长及体组成的影响.海洋与湖沼,2008,39(5):482~487
    [9]蒋蓉,叶元土,蔡春芳,等.铜、铁、锰、锌组合对黄颡鱼部分生理机能的影响.饲料博览,2009,9:31~35
    [10]薛淑群,尹洪滨.黄颡染色体组型的初步分析.水产学杂志,2006,19(1):11~13
    [11]陈伟兴,范兆廷,杨洁.黄颡鱼性腺的组织学观察.东北农业大学学报,2006,37(2):194~198
    [12]王永玲,杨彩根,宋学宏,等.黄颡鱼精子入卵的扫描电镜观察.淡水渔业,2007,37(4):41~44
    [13]程晓春,林丹军,尤永隆.温度对江黄颡鱼性分化的影响.动物学研究,2007,28(1):73~80
    [14]童芳芳,汤明量,杨星.用RAPD和SCAR复合分子标记对黄颡鱼属进行种质鉴定.水生生物学报,2005,29(3):465~468
    [15]周秋白,李风波,周莉,等.黄颡鱼与长须黄颡鱼种间的RAPD标记.水生生物学报,2006,30(4):482~485
    [16]宋平,胡珈瑞.黄颡鱼RAPD标记及其遗传多样性的初步分析.武汉大学学报:自然科学版,2001,47(2):233~237
    [17]赵文学,杨星,彭智,等.黄颡鱼属物种的RAPD分子鉴定及杂种遗传分析.水生生物学报,2006,30(1):101~106
    [18]Xiying Ku ,Zuogang Peng,Rui Diogo, et al. MtDNA phylogeny provides evidence of generic polyphyleticism for East Asian bagrid catfishes. Hydrobiologia,2007,579:147~159
    [19]Zhongwei Wang, Qingjiang Wu, Jianfeng Zhou, et al. Geographic Distribution of Pelteobagrus fulvidraco and Pelteobagrus vachelli in the Yangtze River Based on Mitochondrial DNA Markers. Biochemical Genetics,2005,(42)11:391~400
    [20]方耀林,汪登强,刘绍平,等.长江中游湖泊中黄颡鱼线粒体DNA的遗传变异.中国水产科学,2005,(12)1:56~61
    [21]郭金峰,王玉,马洪雨,等.三个黄颡鱼群体遗传多样性及亲缘关系的微卫星标记分析.氨基酸和生物资源,2006,28(3):5~8
    [22]李大宇,殷倩茜,侯宁,等.黄颡鱼(Pelteobagrus eupogon)不同生态地理分布群体遗传多样性的微卫星分析.海洋与湖沼,2009,4:460~469
    [23]马洪雨,姜运良,郭金峰,等.利用微卫星标记分析东平湖黄颡鱼的遗传多样性.激光生物学报,2006,15(2):136~139
    [24]鲁翠云,孙效文,梁利群.分析黄颗鱼雌雄个体的遗传差异.水产学杂志,2007,20(2):24~34
    [25]孙玉华,谢从新.黄颡鱼生长激素cDNA序列克隆及其序列分析.水利渔业,2006,26(3):10~13
    [26]徐跑,俞菊华,唐永凯,等.黄颡鱼卵巢P-450arom基因的克隆及组织表达.中国水产科学,2005,12(5):541~548
    [27]宋伟,王晓琳,严维辉,等.黄颡鱼β-肌动蛋白基因的克隆及表达分析.江苏农业学报,2008,24(3):263~268
    [28]唐永凯,俞菊华,徐跑,等.黄颡鱼LRH-1基因的分离和表达.中国水产科学,2009,5:649~659
    [29]杨治国,杨东辉,叶新.八种药物对黄颡鱼种的急性毒性.淡水渔业,2004,34(5):20~22
    [30]吴萍,曹振华.pH对黄颡鱼生存和生长的影响.水利渔业,2001,21(6):3~4
    [31]杨帆,邹容.3种重金属对瓦氏黄颡鱼的急性毒性试验.水产科学,2008,27(7):368~369
    [32]柏世军,许梓荣.镉对黄颡鱼鳃线粒体结构和能量代谢的影响.应用生态学报,2006,17(7):1213~1217
    [33]李波,樊启学,张磊,等.不同溶氧水平下氨氮和亚硝酸盐对黄颡鱼的急性毒性研究.淡水渔业,2009,39(3):31~35
    [34]陈晓阳,沈熙环.林木育种学.北京:高等教育出版社,2005:23-105
    [35]杨彩卿,韩烁.黄颡鱼三倍体的诱导.安徽农业科学,2008,36(19):8118~8119
    [36]王卫民.黄颡鱼与瓦氏黄颡鱼杂交育种初步研究.武汉:华中农业大学博士学位论文,2003:10~27
    [37]宋立民,袁立来,刘肖莲,等.2种鉴定黄颡鱼三倍体个体方法的比较.华中农业大学学报,2009,2:207~209
    [38]T. J. Pandian, S. G Sheela. Hormonal Induction of Sex Reversal in Fish. Aquaculture. 1995,138:1~22
    [39]姚道霞.黄颡鱼性分化及激素诱导性转化研究.哈尔滨:东北林业大学硕士学位论文,2007:21~66
    [40]刘汉勤,崔书勤,侯昌春,等.从XY雌鱼雌核发育产生YY超雄黄颡鱼.水生生物学报,2007,31(5):718~725
    [41]杨学明,张立,蒋和生.转基因鱼的研究及其发展前景.广西科学,2006,3(1):76~80
    [42]李莉.太平洋牡蛎分子标记筛选和遗传图谱构建.北京:中国科学院博士研究生学位论文,2003:10~13
    [43]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001:1~105
    [44]徐云碧,朱立煌.分子数量遗传学.北京:中国农业出版社,1994:23~45
    [45]童金苟,朱嘉濠,吴清江.鱼类和水生动物基因组作图研究的现状及前景.水产学报,2001,25(3):270~278
    [46]续九如.林木数量遗传学.北京:高等教育出版社,2006:44~98
    [47]高泽霞,王卫民,周小云.DNA分子标记技术及其在水产动物遗传上的应用研究.生物技术通报,2007,2:108~113
    [48]周延清.遗传标记的发展.生物学通报,2000,35(5):17~18
    [49]王明庥.林木遗传育种学.北京:中国林业出版社,2001:34~54
    [50]王中仁.植物等位酶分析.北京:科学出版社,1996:1~78
    [51]K. R. TORRISSEN, R. MALE, G NVDAL. Trypsin isozymes in Atlantic salmon, Salmo salar L.:studies of heredity, egg quality and effect on growth of three different populations.Aquaculture Research,2008,24(3):407~415
    [52]章丽平,周自玮.同工酶与植物亲缘关系.云南农业大学学报,2006,21(4):531~533
    [53]Avise J. C. Molecular markers, Natural History and Evolution. New York:Chapman & Hall.1994,96~125
    [54]C.J. Kyle, C.C. Wilson.Mitochondrial DNA identification of game and harvested freshwater fish species .Forensic Science International,2007,166(1):68~76.
    [55]Yoichiro Kojima, Kaworu Ebanal, Shuichi Fukuokal, et al. Development of an RFLP-based Rice Diversity Research Set of Germplasm.Breeding Science,2005,55(4):431~440
    [56]A. A., Tian H. H., Da N. Q.. A review of random amplified polymorphic DNA (RAPD) markers in fish research. Reviews in Fish Biology and Fisheries,2004,14(4):443~453
    [57]张俊玲,施志仪.几种DNA分子标记技术及其在水产动物中的应用.现代渔业信息,2006,21(8):7~10
    [58]Marnik Vuylsteke, Johan D Peleman, Michiel JT van Eijk. AFLP-based transcript profiling (cDNA-AFLP) for genome-wide expression analysis. Nature Protocols, 2007,2:1399~1413
    [59]Vos P., Hogers R., Bleeker M., et al. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Res,1995,23:4407~4414
    [60]Rajeev K. Varshneya, Andreas Granera, Mark E. Sorrellsb. Genic microsatellite markers in plants:features and applications. Trends in Biotechnology,2005,23(1):48~55
    [61]O Reilly P, Wright J M. The evolving technology of DNA finger printing and its application to fisheries and aquaculture. Journal of Fish Biology,1995,47(Supp A):29~35
    [62]Tautz D. Hypervariability of simple sequence as a general source for polymorphic DNA markers. Nucleic Acid Res,1987,17:6463~6471
    [63]Goldstein D. B., Roemer G. W., Smith D. A.. The use of Microsatellite Variation to Infer Population Structure and Demographic History in a Natural Model System. Genetics,1999, 151:791~801
    [64]Nichols K.M., Bartholomew J., Thorgaard GH.. Mapping multiple genetic loci associated with Ceratomyxa shasta resistance in Oncorhynchus mykiss. Dis.Aquat.Organ.,2003c, 56:145~154
    [65]Wang J., Xia D.. Studies on fish heterosis with DNA fingerprinting. Aquaculture Research, 2002,33:941~947
    [66]赵谦,杜虹,庄东红.ISSR分子标记及其在植物研究中的应用,2007,5(6):123~129
    [67]Dan Wei Chena, Long Qing Chen. The first intraspecific genetic linkage maps of wintersweet [Chimonanthus praecox (L.)Link] based on AFLP and ISSR markers.Scientia Horticulturae,2010,124(1):88~94
    [68]Bahattin Tanyolac, Sehnaz Ozatay, Abdullah Kahraman, et al.Linkage mapping of lentil (Lens culinaris L.) genome using recombinant inbred lines revealed by AFLP, ISSR, RAPD and some morphologic markers. Journal of Agricultural Biotechnology and Sustainable Development,2010,2(1):1~6
    [69]张媛,胡则辉,周志刚,等.利用RAPD-PCR与ISSR-PCR标记技术分析长江口刀鲚的群体遗传结构.上海水产大学学报,2006,15(4):390~397
    [70]何斌,杨爱国,王清印,等.栉孔扇贝♀×虾夷扇贝♂单对杂交子一代的ISSR分析.大连水产学院学报,2007,22(4):273~277
    [71]LI G., QUIROS CF. Sequence related amplified polymorphism(SRAP), A new marker system based on a simple PCR reaction:its application to mappingand gene tagging in Brossica.Theoretical and Applied Genetics,2001,103:455~461
    [72]FerriolM, Pico B, Nuez F. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers. Genetic Resources and Crop Evolution,2003, 50(3):227~238.
    [73]柳李旺,龚义勤,黄浩,等.新型分子标记SRAP与TRAP及其应用.遗传,2004,26(5):777~781
    [74]Dao Hua He, Zhong Xu Lin, Xian Long Zhang, et al. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum×Gossypium barbadense. Euphytica,2007,153:181~197
    [75]Zudong Sun, Zining Wang, Jinxing Tu. An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor Appl Genet,2007,114: 1305~1317
    [76]王刚,潘俊松,李效尊,等.黄瓜SRAP遗传连锁图的构建及侧枝基因定位.生命科学(中国科学C辑),2004,34(6):510~516.
    [77]吴洁,谭文芳,何俊蓉,等.甘薯SRAP连锁图构建淀粉含量QTL检测.分子植物育种,2005,6(3):841~845.
    [78]张志伟,韩曜平,仲霞铭,等.草鱼野生群体和人工繁殖群体遗传结构的比较研究.中国水产科学,2007,14(5):720~725
    [79]周劲松,曹哲明,杨国梁,等.罗氏沼虾缅甸引进种和浙江本地种及其杂交种的生长性能与SRAP分析.中国水产科学,2006,13(4):667~673
    [80]Hu, J., G.J. Seiler, C.C. Jan, et al.2003. Assessing genetic variability among sixteen perennial Helianthus species using PCR based TRAP markers. Proc.25th Sunflower Research Forum, Fargo, ND. http://www.sunflowernsa.com/research/research-workshop/documents/88.PDF;verified 21 November 2005
    [81]Hu, J., O.E. Ochoa, M.J. Truco, et al. Application of the TRAP technique to lettuce (Lactuca sativa L.) genotyping. Euphytica,2005,144:225~235.
    [82]金梦阳,刘列钊,付福友,等.甘蓝型油菜SRAP、SSR、AFLP和TRAP标记遗传图谱构建.分子植物育种,2006,4(4):520~526
    [83]Jiwen Yu, Shuxun Yu, Cairui Lu, et al.High-density Linkage Map of Cultivated Allotetraploid Cotton Based on SSR, TRAP, SRAP and AFLP Markers. Journal of Integrative Plant Biology,2007,49(5):716~724
    [84]张志伟,曹哲明,周劲松,等.不同种群草鱼遗传结构的TRAP分析.农业生物技术学报,2006,14(4):517~521
    [85]葛学亮,孙中武,尹洪滨.人工养殖鲶的TRAP遗传分析.大连水产学院学报,2010,25(1):1~4
    [86]杨昭庆,洪坤学.单核苷酸多态性的研究进展.国外医学:遗传学分册,2000,23(1):4~8
    [87]Anthony J. Brookes.The essence of SNPs.Gene,1999,234(2):77~186
    [88]Wei Jiang, Lijie Zhang, Bo Na, et al.Mapping and characterization of two relevance networks from SNP next term and gene levels .Progress in Natural Science, 2009,19(5):653~657
    [89]Kenneth H. Buetow, Michael Edmonson, Richard MacDonald, et al. High-throughput development and characterization of a genomewide collection of gene-based single nucleotide polymorphism markers by chip-based matrix-assisted laser desorption ionization time of flight mass spectrometry. PNAS,2001,98 (2):581~584
    [90]S.Lorenz., S.Brenna Hansen, T.Moen, et al.BAC-based upgrading and physical integration of a genetic SNP map in Atlantic salmon. Animal Genetics,2009,41(1):48~54
    [91]Smith, C.T., Elfstrom, C.M., Seeb L.W., et al..Use of sequence data from rainbow trout and Atlantic salmon for SNP detection in Pacific salmon. Molecular Ecology,2005,14: 4193~4203
    [92]Shaolin Wang, Eric Peatman, Jason Abernathy,et al. Assembly of 500,000 inter-specific catfish expressed sequence tags and large scale gene-associated marker development for whole genome association studies.Genome Biology,2010,11:R8
    [93]Nguyen Minh Thanha, Andrew C. Barnesa, Peter B. Mathe, et al. Single nucleotide polymorphisms in the actin and crustacean hyperglycemic hormone genes and their correlation with individual growth performance in giant freshwater prawn Macrobrachium rosenbergii.Aquaculture, Article in Press.doi:10.1016/j.aquaculture.2010.02.001
    [94]Digang Zeng, Xiaohan Chen, Yongmei Li, ea al. Analysis of Hsp70 in Litopenaeus vannamei and detection of SNPS.Journal of Crustacean Biology,2008,28(4):727~730.
    [95]施季森,童春发.林木遗传图谱构建和QTL定位统计分析.北京:科学技术出版社,2006:12~77.
    [96]李照海,覃红,张洪.遗传学中的统计方法.北京:科学技术出版社,2006:34~78.
    [97]刘祖洞.遗传学(第二版).北京:高等教育出版社,1990:45~99
    [98]刘贤德.皱纹盘鲍遗传图谱构建及生长相关性状的QTL定位.北京:中国科学院研究生院博士学位论文.2005:16~17
    [99]Yin, T.M., DiFazio., et al.Large scale heterospecific segregation distortion in Populus revealed by a dense genetic map.Theor Appl Genet,2004,109:451~463
    [100]王永飞,马三梅,刘翠萍,等.分子标记在植物遗传育种中的应用原理及现状.西北农林科技大学学报(自然科学版)(增刊).2001,9:106~113.
    [101]王泽立,戴景瑞.植物基因的图位克隆.生物技术通报,2000,4:21~27
    [102]覃瑞,宋发军,宋运淳.植物基因组比较作图研究进展.细胞生物学杂志,2004,26(2):157~161.
    [103]Woods I.G., Wilson C., Friedlander B., et al. The zebrafish gene map defines ancestral vertebrate chromosomes.Genome Res.,2005,15:1307~1314
    [104]鲁绍雄,吴常信.动物遗传标记辅助选择研究及其应用.遗传,2002,24(3):359~362
    [105]李莉,郭希明.遗传图谱及其在主要水产动物的研究进展.海洋科学,2003,27(11):14~29
    [106]李明丽,鲁绍雄,刘学洪.畜禽遗传图谱及其在动物育种中的应用.畜牧兽医杂志,2008,27(4):33~35
    [107]冯建成.分子标记辅助选择技术在水稻育种上的应用.中国农学通报,2006,22(3):43~47
    [108]魏丕芳,王慧,李同树,等.标记辅助选择在动物育种中的应用.山东农业大学学报:自然科学版,2006,37(2):316~318
    [109]Sun XW, Chang YM. Current status of studies on genome in aquaculture species and application prospect in aquatic industry. J Fish Sci Chn,2003.10 (suppl):106~113.
    [110]Clark MS. Genomics and mapping of teleostei bony fish. Comp Fun Genom,2003,4: 182~193
    [111]Young W P, Wheeler P A, Coryell V H, et al. A detailed linkage map of rainbow trout produced using doubled haploids. Genetics,1998,148:839~850.
    [112]Nichols KM, Young W P, Danzmann R G, et al. A consolidated linkage map for rainbow trout (Oncorhynchus mykiss). Anim Genet,2003,34:102~115
    [113]Kocher T D, Lee WJ, Sobolewska H, et al. A genetic linkage map of a cichlid fish, the tilapia (Oreochromis niloticus). Genetics,1998,148,1225~1232
    [114]Agresti J J, Seki S, Cnaani A,et al. Breeding new strains of tilapia:development of an artificial center of origin and linkage map based on AFLP and microsatellite loci. Aquaculture,2000,185:43~56.
    [115]McConnell S K, Beynon C, Leamon J, et al. Microsatellite marker based genetic linkage maps of Oreochromis aureus and O. niloticus (Cichlidae):extensive linkage group segment homologies revealed. Anim Genet,2000,31:214~218.
    [116]Xiaowen Sun, Liqun Liang. A genetic linkage map of common carp (Cyprinus carpio L.) And mapping of a locus associated with cold tolerance. Aquaculture,2004,238:165~172
    [117]Waldbieser G C, Bosworth B G, Nonneman D J, et al. A microsatellite based genetic linkage map for channel catfish, Ictalurus punctatus.Genetics,2001,158:727~734
    [118]Liu Z, Karsi A, Li P, et al. An AFLP based genetic linkage map of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family. Genetics, 2003,165:687~694
    [119]Liu Z.J., Karsi A., Li P., Cao D.F., et al. An AFLP-based genetic linkage map of channel catfish (Ictalurus punctatus) constructed by using an interspecific hybrid resource family. Genetics,2003,165:687~694
    [120]Yu Z., Guo X..Genetic linkage map of the eastern oyster Crassostrea virginica Gmelin. Biological Bulletin,2003,204:327~38
    [121]Yu,Z., Guo,X., Identification and mapping of disease resistance QTLs in the eastern oyster, Crassostrea virginica Gmelin.Aquaculture,2006,254:160~170.
    [122]Li Y, Byrne K, Miggiano E, Whan V, Moore S, et al. Genetic mapping of the kuruma prawn Penaeus japonicus using AFLP markers. Aquaculture,2003,219:143~156
    [123]Lingling Wang, Linsheng Song, Huan Zhang, et al. Genetic linkage map of bay scallop, Argopecten irradians irradians (Lamarck 1819). Aquaculture Research,2007,38:409~419
    [124]Thomas Moen, Ben Hayes, Matthew Baranski, et al. A linkage map of the Atlantic salmon (Salmo salar) based on EST-derived SNP markers. BMC Genomics,2008,9:223
    [125]DarrinP.Reid, Cheryl Anne Smith, Melissa Rommens, et al. A Genetic Linkage Map of Atlantic Halibut (Hippoglossushippoglossus L.).Genetics,2007,177:1193~1205
    [126]Carmen Bouza, Miguel Hermida, Belen G. Pardo, et al.A Microsatellite Genetic Map of the Turbot (Scophthalmus maximus).Genetics,2007,177:2457~2467
    [127]Ren Guyomard, Stephane Mauger, Kamila Tabet-Canale, et al.A Type Ⅰ and Type Ⅱ microsatellite linkage map of Rainbow trout (Oncorhynchus mykiss) with presumptive coverage of all chromosome arms.BMC Genomics,2006,7:302
    [128]Ren Guyomard, Stephane Mauger, Kamila Tabet-Canale, et al. Construction of a female microsatellite linkage map in rainbow trout (Oncorhynchus mykiss), a tetraploid species.Aquaculture,2007,272, Supplement 1,S264
    [129]T. Haraa, T. Nagasea, A. Ozakia, et al. A genetic linkage map of amago salmon (Oncorhynchus masou ishikawae) and mapping of quantitative trait loci associated with smoltification.Aquaculture,2007,272(1):266~267
    [130]Huseyin Kucuktas, Shaolin Wang, Ping Li, et al. Construction of Genetic Linkage Maps and Comparative Genome Analysis of Catfish Using Gene-associated Markers. Genetics, Published Articles Ahead of Print:February 25,2009
    [131]Namita Tripathi, Margarete Hoffmann, Eva-Maria illing, et al. Genetic linkage map of the guppy, Poecilia reticulata, and quantitative trait loci analysis of male size and colour variation.Proc.R.Soc.B, published online 18 March 2009
    [132]Dario Riccardo Valenzano, Jeanette Kirschner, Roarke A. Kamber, et al.Mapping Loci Associated with Tail Color and Sex Determination in the Short-Lived Fish Nothobranchius furzeri. Genetics:Published Articles Ahead of Print, published on September 28,2009 as 10.1534/genetics.109.10867
    [133]Matthias Sanetra, Frederico Henning, Shoji Fukamachi, et al.A Microsatellite-Based Genetic Linkage Map of the Cichlid Fish, Astatotilapia burtoni (Teleostei):a Comparison of Genetic Architectures Among Rapidly Speciating Cichlids.Genetics:Published Articles Ahead of Print, published on March 11,2009 as 10.1534/genetics.108.089367
    [134]Kagayaki Morishima, Ichiro Nakayama, Katsutoshi Arai. Genetic linkage map of the loach Misgurnus anguillicaudatus (Teleostei:Cobitidae). Genetica,2008,132:227~241
    [135]Zhou Zun Chun, Zou Lin lin, Dong Ying, et al. Characterization of 28 polymorphic microsatellites for Japanese sea urchin (Strongylocentrotus intermedius) via mining EST database of a related species (S. purpuratus). Ann. Zool. Fennici.2008,45(3):181~184
    [136]L. Bargellonia, R. Francha, T. Patarnello, et al.A genetic linkage map of the hermaphrodite teleost fish Sparus aurata L. Aquaculture,2007,272, Supplement 1, S243
    [137]Elena Sarropoulou, Rafaella Franch, Bruno Louro, et al.A gene-based radiation hybrid map of the gilthead sea bream Sparus aurata refines and exploits conserved synteny with Tetraodon nigroviridis. BMC Genomics 2007,8:44
    [138]Karim Gharbi, Angelique Gautier, Roy G.Danzmann, et al. A Linkage Map for Brown Trout(Salmotrutta):Chromosome Homeologies and Comparative Genome Organization With Other Salmonid Fish. Genetics,2006,172:2405~2419
    [139]Liusuo Zhang, Changjian Yang, Yang Zhang, et al. A genetic linkage map of Pacific white shrimp (Litopenaeus vannamei):sex-linked microsatellite markers and high recombination rates. Genetica,2007,131:37~49
    [140]Zhaoning Sun, Ping LiuC, Jian Li, et al. Construction of a genetic linkage map in Fenneropenaeus chinensis (Osbeck) using RAPD and SSR markers. Hydrobiologia,2007, 596(1):133~141
    [141]Chun Ming Wang, Ze Yuan Zhu, Loong Chueng Lo, et al. A Microsatellite Linkage Map of Barramundi, Latescalcarifer. Genetics,2007,175:907~915
    [142]K.C.STEMSHORN, A.W.NOLTE, D.TAUTZ.A. Genetic map of Cottusgobio (Pisces, Teleostei) basedon microsatellites can be linked to the physical map of Tetraodon nigroviridis. J.EVOL.BIOL.,2005,18:1619~1624
    [143]Okmoto N. Recent progress in genetic linkage maps and marker-ssisted breeding for quaculture.13th International congress n genes, gene families and isozymes forum on fishery sciences and technology, Shanghai, China.2005.
    [144]Lisa Haidle, Jennifer E. J., Karim Gharbi, et al. Determination of Quantitative Trait Loci (QTL) for Early Maturation in Rainbow Trout (Oncorhynchus mykiss). Mar Biotechnol,2008,10:579~592
    [145]Sakamoto T, Danzmann R G, Okamoto N,et al. Linkage analysis of quantitative trait loci associated with spawning time in rainbow trout (Oncorhynchus mykiss). Aquaculture, 1999,173:33~43.
    [146]O Malley K G, Sakamoto T, Danzmann R G, et al. Quantitative trait loci for spawning date and body weight in rainbow trout:testing for conserved effects acrsoo ancestrally duplicated chromosomes. Heredity,2003,94(4):273~284.
    [147]Robison B D, Wheeler P A, Sundian K, et al. Composite interval mapping reveals a major locus influencing embryonic development rate in rainbow trout (Oncorhynchus mykiss). J Hered,2001,92:6~22.
    [148]Ozaki A, Sakamoto T, Khoo S, et al. Quantitative trait loci (QTLs) associated with resistance/ susceptibility to infectious pancreatic necrosis virus(IPNV) in rainbow trout (Oncorhynchus mykiss). Mol Genet Genomics,2001,265 (1):23~31.
    [149]Akiyuki Ozaki, Sok-Kean Khoo, Yasutoshi Yoshiura, et al. Identification of Additional Quantitative Trait Loci (QTL) Responsible for usceptibility to Infectious Pancreatic Necrosis Virus in Rainbow Trout. Fish Pathology,2007,42(3):131~140
    [150]Rodriguez M F, LaPatra S, Williams S, et al. Genetic markers associated with resistance to infectious hematopoietic necrosis in rainbow and steelhead trout (Oncorhynchus mykiss) backcrosses. Aquaculture,2004,241:93~115.
    [151]ThomasMoen, MatthewBaranski, AnnaKSonesson. Confirmation and fine-mapping of a major QTL for resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar): population-level associations between markers and trait. BMC Genomics,2009,10:368
    [152]EG Boulding, M Culling, B Glebe, et al. Conservation genomics of Atlantic salmon:SNPs associated with QTLs for adaptive traits in parr from four trans-atlantic backcrosses. Heredity,2008,101:381~391
    [153]Shirak A, Palti Y, Cnaani A, et al. Association between loci with deleterious alleles and distorted sex ratios in an inbred line of tilapia (Oreochromis aureus). J Hered,2002,93 (4):270~276.
    [154]Agresti J J, Seki S, Cnaani A, et al. Breeding new strains of tilapia:development of an artificial center of origin and linkage map based on AFLP and microsatellite loci. Aquaculture,2000,185:43~56
    [155]Avner Cnaani, Eric M. Hallerman, Micha Ron, et al.Detection of a chromosomal region with two quantitative trait loci, affecting cold tolerance and fish size, in an F2 tilapia hybrid. Aquaculture,2003,223(1):117~128
    [156]C. Massault, B. Hellemans, B. Louro, et al. QTL for body weight, morphometric traits and stress response in European sea bass Dicentrarchus labrax.Animal Genetics,2009, 10.1111/j.1365-2052.2009.02010.x
    [157]Shirui Dong, Jie Kongb,Xianhong Meng, et al.Microsatellite DNA markers associated with resistance to WSSV in Penaeus (Fenneropenaeus) chinensis. Aquaculture,2008, 282:138~141
    [158]M.Baranski, M.Rourke, S.Loughnan. et al. Detection of QTL for growth rate in the blacklip abalone (Haliotis rubra Leach) using selective DNA pooling. AnimalGenetics, 2008,39:606~614
    [159]C. M. Wang, L. C. Lo, F. Feng, et al. Identification and verification of QTL associated with growth traits in two genetic backgrounds of Barramundi (Lates calcarifer).Animal Genetics,2007,39:34~39
    [160]T. Sakamoto, H. Koshio, M. Okochi, et al. QTL analysis for spawning date in ayu (Plecoglossus altivelis) on three-generation family. Abstracts/Aquaculture,272S1,2007, S238~S321
    [161]刘继红,张研,常玉梅,等.鲤鱼(Cyprinus carpio L.)头长、眼径、眼间距QTL的定位.遗传,2009,31(5):508~514
    [162]D. Lallias, A. R. Beaumont, C. S. Haley, et al. A first-generation genetic linkage map of the European flat oyster (Ostrea edulis L.) based on AFLP and microsatellite markers. Animal Genetics,2007,38:560~568
    [163]A. Doligez, A. F. Adam Blondon, G Cipriani, et al. An integrated SSR map of grapevine based on five mapping populations.Theoretical and Applied Genetics,2006, 13(3):369~382
    [164]Adam Blondon AF, Roux C, Claux D, et al. Mapping 245 SSR markers on the Vitis vinifera genome:a tool for grape genetics. Theor Appl Genet,2004,109:1017~1027
    [165]Atsushi Torada, Michiya Koike, Keiichi Mochida, et al.SSR-based linkage map with new markers using an intraspecific population of common wheat.Theor Appl Genet,2006, 112:1042~1051
    [166]Powell W., Morgante M., Andre C. et al. The comparison of RFLP, RAPD, AFLP and SSR markers for germplasm analysis. Mol Breed.1996b,2:225~238
    [167]B. Narasimhamoorthy, M. C. Saha, T. Swaller, et al.Genetic Diversity in Switchgrass Collections Assessed by EST-SSR Markers.Bioenerg. Res.,2008,1:136~146
    [168]Jianshe WANG, Jianchun YAO, Wei LI. Construction of a molecular map for melon (Cucumis melo L.) based on SRAP. Front. Agric. China,2008,2(4):451~455
    [169]Lixia Gao, Nian Liu, Banghai Huang, et al. Phylogenetic analysis and genetic mapping of Chinese Hedychium using SRAP markers. Scientia Horticulturae,2008,117(4):369~377
    [170]Jie Fu ZHANG, Cun Kou QI, Hui Ming PU, et al. QTL Identification for Fatty Acid Content in Rapeseed(Brassica napus L.).Acta Agronomica Sinica,2008,34(1):54~60
    [171]Zudong Sun, Zining Wang, Jinxing Tu, et al. An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theoretical and Applied Genetics, 2007,114(5):1305~1317
    [172]Postlethwait J.H., Johnson S.L., Midson C.N., et al. A Genetic linkage map for the zebrafish. Science,1994,264:699~703
    [173]Chakravarti, A., Lasher, L.K., Reefer, J.E.. A maximum likelihood for estimating genome length using genetic linkage data. Genetics,1991,128:175~182
    [174]Lespinasse D., Grivet L., Troispoux V., et al. Identification of QTLs involved in the resistance to South American leaf blight (Microcyclus ulei) in the rubber tree. Theor.Appl.Genet.,2000,100:975~984
    [175]Scalfi M., Troggio M., Piovani P., et al. A RAPD, AFLP and SSR linkage map, and QTL analysis in European beech Fagus sylvatica L.Theor.Appl.Genet.,2004,108:433~441
    [176]Li L., Xiang J., Liu X., Zhang, et al. Construction of AFLP based genetic linkage map for Zhikong scallop, Chlamys farreri Jones et Preston and mapping of sex linked markers. Aquaculture,2005,245:63~73
    [177]Wang L., Song L., Chang Y., et al. A preliminary genetic map of Zhikong scallop (Chlamys farreri Jones et Preston 1904). Aquaculture Research,2005,36:643~653.
    [178]Lu H, Romero-Severson J, Bernardo R. Chromosomal re-gions associated with segregation distortion in maize. Theoretical Applied Genetics,2002,105:622~628
    [179]Charlesworth B. Driving genes and chromosomes. Nature,1988,332:394~395
    [180]Kianian S F and Quiros C F. Generation of a Brassica oleracea composite RFLP map: Linkage arrangements among various populations and evolutionary implications Theoretical Applied Genetics,1992,84:544~554
    [181]Taylor D R, Ingvarsson P K. Common features of segregation distortion in plants and animals (J). Genetica,2003,117:27~35
    [182]Sibov S T, de Souza Jr C L, Garcia A A F, et al. Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers.1.Map construction and localization of locishowing distorted segregation. Hereditas,2003,139:96~106
    [183]Negi M.S., Devic M., Delseny M., et al. Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversation to a SCAR marker for rapid selection.Theor.Appl.Genet.,2000,101:146~152
    [184]Nikaido A., Yoshimaru H., Tsumura Y, et al. Segregation distortion for AFLP markers in Cryptomeria japonica. Genes.Genet.Syst.,1999,74:55~59
    [185]Sandbrink J M, Oijen J M Van, Purimahua C C, et al. Localization of genes for bacterialresistance in Lycopersicon peruvianum using RFLPs. Theoretical Applied Genetics,1995,90:444~450
    [186]Mingsheng Chen, Gernot Presting, W. Brad Barbazuk, et al. An Integrated Physical and Genetic Map of the Rice Genome. Plant Cell,2002,14:537~545
    [187]Piet Stam. Construction of integrated genetic linkage maps by means of a new computer package:Join Map. The Plant Journal,1993,3(5):739~744
    [188]Q. J. Song, L. F. Marek, R. C. Shoemaker, et al. A new integrated genetic linkage map of the soybean.Theor Appl Genet,2004,109:122~128
    [189]Edward Coe, Karen Cone, Michael McMullen, et al. Access to the Maize Genome:An Integrated Physical and Genetic Map.Plant Physiology,2002,128:9~12
    [190]Robison B.D., Wheeler P.A., Sundin K., et al. Composite interval mapping reveals a major locus influencing embryonic development rate in rainbow trout(Oncorhynchus mykiss). J.Hered,2001,92:16~22.
    [191]Somorjai I.M.L., Danzmann R.G., Ferguson M.M.. Distribution of Temperature Tolerance Quantitative Trait Loci in Arctic Charr(Salvelinus alpinus)and Inferred Homologies in Rainbow Trout (Oncorhynchus mykiss). Genetics,2003,165:1443~1456
    [192]Rodriguez M.F., LaPatra S., Williams S., et al. Genetic markers associated with resistance to infectious hematopoietic necrosis in rainbow and steelhead trout (Oncorhynchus mykiss) backcrosses. Aquaculture,2004,241:93~115
    [193]Manjit S. Kang. Quantitative genetics, genomics, and plant breeding. CABI Publishers, CAB International, Walling.ford, Oxon,2002.109~119
    [194]Cecile Massault, Henk Bovenhuis, Chris Haley, et al. QTL mapping designs for aquaculture.Aquaculture,2008,285:23~29
    [195]何小红,徐辰武,蒯建敏,等.数量性状基因作图精度的主要影响因子,全国动植物数量遗传与育种学术研讨会文集.中国遗传学会,扬州大学,2000,75~81
    [196]Martinez V., Hill W.G., Knott S.A. On the use of double haploids for detecting QTL in outbred population. Hered,2002,88:423~431
    [197]Martinez, V. Marker-assisted selection in fish and shellfish breeding schemes. Chapter in book:Marker-assisted selection-Current status and future perspectives in crops, livestock, forestry and fish. FAO,2007:329~362.
    [198]Smith C., Simpson S P.. The use of genetic polymorphism in livestock improvement. J Anim Breeding and Genet,1986,103:205~217
    [199]Kashi Y, Hallerman E., Soller M. Marker assisted selection of candidate bulls for progeny testing programs. Anim Prod,1990,51:63~74
    [200]Stuber C.W., Edwards M.D., Wendel J.F.. Molecular marker facilitated investigations of quantitative trait loci in maize.II.Factors influencing yield and its component traits. Crop Sci,1987,27:639~648.
    [201]薛庆中,张能义,熊兆飞,等.应用分子标记辅助选择培育抗白叶枯病水稻恢复系.浙江农业大学学报,1998,24:631~638.
    [202]Yong, N.D.. A cautiously optimistic vision for marker-assisted breeding Molecular Breeding,1999,5:505~510.
    [203]Yunbi Xu, Jonathan H. Crouch. Marker-Assisted Selection in Plant Breeding:From Publications to Practice. Crop Sci,2008,48:391~407
    [204]F. Guillaume, S. Fritz, D. Boichard, et al. Short Communication:Correlations of Marker-Assisted Breeding Values with Progeny-Test Breeding Values for Eight Hundred Ninety-Nine French Holstein Bulls, J. Dairy Sci,2008,91:2520~2522
    [205]Fran(?)ois Guillaume, Sebastien Fritz, Didier Boichard, et al.Estimation by simulation of the efficiency of the French marker-assisted selection program in dairy cattle. Genet. Sel. Evol.,2008,40:91~102
    [206]Mario PL Calus, Sander PW de Roos, Roel F Veerkamp.Estimating genomic breeding values from the QTL-MAS Workshop Data using a single SNP and haplotype/IBD approach. BMC Proceedings,2009,3(Suppl 1):S10
    [207]Sonesson A.K. Possibilities for marker-assisted selection in fish breeding schemes. Paper presented at the workshop entitled "Msrker assisted selction:a fast track to incresse genetic map in plant and animal breeding?", held during a conference on "Molecular marker assisted slection as a potential tool for genetic improvement of crops, forest trees, livestock and fish in developing countries".17 November to 12 December 2003, Turin, Italy.
    [208]Supawadee Poompuang, Eric M. Hallerman.Toward detection of quantitative trait loci and marker-assisted selection in fish.Reviews in Fisheries Science,1997,5(3):253~277
    [209]Rossella Lo Presti, Claudio Lisa, Liliana Di Stasio. Molecular genetics in aquaculture. Ital.J.anIm.ScI.,2009,8:299~313

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700