用户名: 密码: 验证码:
水旱轮作条件下根区与非根区土壤钾素变化及固定释放特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水旱轮作是我国南方主要耕作制度之一,在作物持续增产、维持地力和土壤改良中发挥着重要的作用。水旱轮作区一年两熟或多熟,随作物收获带走大量钾素;同时由于轮作区高温多雨,土壤钾素淋失严重,因此该种植制度下常出现土壤钾素亏缺的现象,并已严重制约着农业生产的发展。在我国钾资源相对短缺的现实条件下,开展水旱轮作条件下的土壤供钾能力研究具有重要意义。本论文采用分室根箱试验,研究了水旱轮作条件下根区与非根区土壤钾素动态变化特征,水旱轮作方式、外源钾、土壤粘土矿物组成与作物吸钾量的相互关系,轮作后的根区与非根区土壤的固钾和释钾规律,以揭示根际土壤供钾特性及对作物生长的意义,从而为不同性质土壤下的水旱轮作制中钾肥的合理施用提供依据。主要研究结果如下:
     1.土壤样品风干后测定低估了土壤对当季作物的供钾能力。不施钾(-K)条件下,不同含水量时(微湿、近饱和、淹水),红壤、黄褐土、潮土和灰潮土风干样速效钾含量与鲜样测定值相比均有所降低,平均降低幅度分别为11.5%、3.8%、12.1%和5.0%;施钾(+K)条件下,风干样速效钾含量与鲜样测定值相比降幅更大,4种土壤分别为15.1%、9.5%、21.0%和20.2%。-K条件下,红壤、黄褐土、潮土和灰潮土风干样缓效钾含量与鲜样相比也有所降低,平均降低幅度分别为8.7%、13.4%、18.4%和22.8%:+K条件下,红壤风干样缓效钾含量与鲜样相比显著增加,平均增幅为34.7%。黄褐土、潮土和灰潮土风干样缓效钾含量与鲜样相比则有所降低,平均降幅分别为8.7%、7.7%和9.9%。试验结果还显示,采用鲜样直接测定土壤速效钾和缓效钾时,同一土壤不同含水量间的钾素含量无显著差异。
     2.无论种植油菜还是水稻,作物吸收利用的钾主要来自于根区。根区钾含量降低时,非根区土壤钾向根区迁移。黄红壤非根区土壤水溶性钾和交换性钾含量(v)与距根区距离(x)线性拟合达显著相关,距根区越近,含量越小;黄褐土各形态钾素含量与距离的相关性不显著。
     3.水旱轮作条件下,作物首先吸收利用根区土壤水溶性钾,随着作物生长和吸钾强度的增大,根区土壤交换性钾和非交换性钾向水溶性钾转化。同时,非根区土壤水溶性钾向根区迁移;非根区交换性钾和非交换性钾向水溶性钾方向转化,也有一定程度降低,距根区越近对作物吸钾量贡献越大。一个水旱轮作期内,黄红壤主要供钾形态为交换性钾和水溶性钾,作物吸收利用的非交换性钾较少;黄褐土主要供钾形态为非交换性钾,其次是交换性钾和水溶性钾。
     4.油菜—水稻轮作(先旱后水)条件下,无论黄红壤还是黄褐土,施钾对前季作物油菜干物质量没有明显影响,但能显著提高轮作后季水稻干物质量。水稻—油菜轮作(先水后旱)条件下,对于黄红壤,施钾对前、后季作物干物质量均没有明显影响;而在黄褐土上,施钾对前季作物水稻增产显著。无论是先旱后水,还是先水后旱,施钾均可明显提高作物非籽粒部位的钾含量,且黄红壤上种植作物的各部位钾含量明显比黄褐土上的高。整个轮作期,+K处理作物吸钾量与-K处理相比显著提高。两种轮作方式下,黄红壤上种植作物的吸钾量明显高于黄褐土。
     5.水旱轮作条件下,外源钾的施用可以明显提高根区与非根区土壤各形态钾素含量。外源钾施入黄红壤后主要以水溶态和交换态钾存在,施入黄褐土后主要以交换态和非交换态钾存在。由于作物生长吸钾,根区土壤钾素与不种作物处理相比显著降低,施钾可以缓解根区土壤钾素的亏缺,并显著提高非根区土壤钾素含量,且当季施钾处理的效果更加明显。不同水旱轮作方式下,施钾对根区与非根区土壤钾素动态变化的影响不尽相同。
     6.水旱轮作条件下,作物生长吸钾改变了土壤粘土矿物组分。与基础土壤相比,轮作后黄红壤不施钾处理根区土壤绿泥石含量增加;黄褐土不施钾处理根区土壤蛭石、绿泥石和1.4 nm过度矿物均相对增加。距根区较近的非根区土壤粘土矿物组分也有相应改变。外源钾的施用在一定程度上缓解了土壤粘土矿物组分的变化。
     7.水旱轮作后,根区与非根区土壤的固钾和释钾能力不同。以1:1型高岭石为主要粘土矿物的黄红壤固钾能力较弱。以2:1型水云母和蛭石为主要粘土矿物的黄褐土固钾能力较强,且固钾量随着外源钾加入浓度的增加而增大。根区土壤固钾能力显著高于非根区土壤,释钾量则相反。土壤非交换性钾含量也是影响土壤钾素固定和释放能力的因素之一。外源钾的施用降低了土壤的固钾率,提高了轮作后土壤的供钾能力。
Paddy-upland rotation is one of the dominant cropping systems in the southern regions of China, which plays an important role in increasing crops yield, maintaining soil fertility and ameliorating soil. Soil potassium (K) deficiency in paddy fields is becoming one of the key limiting factors for sustainable agricultural production because of crops' removing enormous amounts of K and K leaching in the high temperature and rainy rotation regions. Therefore, it has important significance to carry out research works on K-supplying capacity in soils under the condition of being short of potash resources in China. This paper studied the dynamics of soil K in root zone and non-root zone under paddy-upland rotation, the relation of paddy-upland rotation patterns, external K, soil clay minerals and K uptake by crops, and the characteristics of K fixation-release in root-zone and non-root-zone soils after rotation using a rhizobox system. The special purpose was to find out the characteristics of soil K-supplying capacity in rhizosphere soil and provide evidence for reasonable application of K fertilizer in paddy-upland rotation system. The main results were as follows:
     1. It underestimated the soil K-supplying capacity to seasonal crop when soil samples were determined by air-drying. Air-dried soil available K concentration of red soil (RS), yellow cinnamon soil (YCS), fluvo-aquic soil (FAS) and grey fluvo-aquic soil (GFAS) decreased averagely by 11.5%, 3.8%, 12.1% and 5.0% respectively compared with that of fresh soil in different soil water content (slightly wet, close by saturation, waterlogging) in the treatment without K fertilizer (-K). In the treatment with K fertilizer (+K), the decrease of soil available K was greater, and four soils were 15.1%, 9.5%, 21.0% and 20.2%, respectively. Air-dried soil slowly available K concentration of RS, YCS, FAS and GFAS decreased averagely by 8.7%, 13.4%, 18.4% and 22.8% respectively compared with that of fresh soil in the -K treatment. In the +K treatment, air-dried soil slowly available K concentration of RS increased by 34.7% significantly compared with that of fresh soil, but that of YCS, FAS and GFAS decreased by 8.7%, 7.7% and 9.9%, respectively. It was also indicated that there was no significant difference in K concentration for the same soil with different water content when determined in fresh soil sample.
     2. Potassium uptake by crops mainly came from root zone irrespective of planting rapeseed or rice. Soil K in non-root zone transferred towards root zone when soil K concentration in root zone decreased. A significant positive linear relationship was observed between yellowish red soil (YRS) water soluble K and exchangeable K in non-root zone (y) and the distance to the root zone (x). The closer to the root zone, the concentration of soil K was lower. There was no significant linear relationship between soil K concentration and the distance to root zone in YCS.
     3. Under paddy-upland rotation, soil water soluble K in root zone was reduced first. Along with plants' growing and K uptake, soil exchangeable K and non-exchangeable K in root zone were transformed into water soluble K, thus decreasing gradually. Soil water soluble K in the non-root zone were moving towards the root zone, and exchangeable K and non-exchangeable K were transformed into water soluble K. The closer to the root zone, the greater the contribution to K uptake by plants. Within one rotation cycle, YRS exchangeable K and water soluble K were the main forms of potassium available to the plants, and little non-exchangeable K could be absorbed. For YCS, the main form of potassium available to the plants was non-exchangeable K, followed by exchangeable K and water soluble K.
     4. Potassium fertilizer application had no significant effect on the dry matter yield of rapeseed, but improved that of rice significantly with rapeseed-rice rotation (first upland and then paddy) no matter whether yellowish red soil (YRS) or yellow cinnamon soil (YCS). For rice-rapeseed rotation (first paddy and then upland), K fertilizer had no obvious effect on the dry matter yield of rice and rapeseed in YRS, but could improve that of rice in YCS significantly. Applying K fertilizer could improve K concentration of crops significantly except seed. K concentration of crops in YRS was higher than that in YCS. In the whole rotation, K uptake by crops in the +K treatment increased significantly compared to that in the -K treatment. K uptake by crops in YRS was higher than that in YCS under the two rotation patterns.
     5. Application of external K could improve the concentrations of different forms of K in root-zone and non-root-zone soils significantly. Applied external K mainly existed in water soluble K and exchangeable K in YRS, and in exchangeable K and non-exchangeable K in YCS. Soil K decreased significantly due to K uptake by crops, compared to that in the treatment without crops. K fertilizer application could alleviate soil K deficiency in the root zone, and improve soil K concentration in non-root zone significantly. The effects of K fertilizer application on the dynamics of soil K in root zone and non-root zone were not the same in different patterns of paddy-upland rotation.
     6. Potassium uptake by crops changed the soil clay mineral under paddy-upland rotation. For YRS, the content of chlorite was increased in root-zone soil in the -K treatment. For YCS, the contents of vermiculite, chlorite and 1.4 nm intergrade minerals were all increased in the root-zone soil in the -K treatment. Soil clay minerals in non-root zone closer to root zone were also changed. External K application alleviated the changes of soil clay minerals to some extent.
     7. It differed in K fixation and release capacity between root-zone and non-root-zone soil after paddy-upland rotation. The capacity of K fixation was weak for YRS which is rich in 1:1 clay mineral such as kaolinite. But the capacity of K fixation was strong for YCS which is rich in 2:1 clay mineral such as hydromica and vermiculite. And the amount of K fixed in YCS increased with increase in the amount of added K. Root-zone soil had more K fixation and less K release than the non-root-zone soil. The concentration of non-exchangeable K was one of the factors which affected K fixation and release in soil. External K application decreased the percentage of K fixed and improved the K-supplying power of soil.
引文
1.阿道夫.全球范围的养分循环与迁移.见:周健民主编,农田养分平衡与管理.南京:河海大学出版社,2000
    2.鲍士旦,马建锋.土壤钾素供应状况的研究Ⅲ几种不同土壤中钾的固定与释放.南京农业大学学报,1988,11(3):74-78
    3.鲍士旦.土壤农化分析(第三版).北京:中国农业出版社,2000
    4.毕于运,王道龙,高春雨,王亚静.中国秸秆资源评价与利用.北京:中国农业科学技术出版社,2008,81
    5.曹一平,徐永泰,李晓林.小麦根际微区养分状况的研究.北京农业大学学报,1991,17:69-74
    6.陈防,鲁剑巍,万运帆,刘冬碧,许幼生.长期施钾对作物增产及土壤钾素含量及形态的影响.土壤学报,2000,37(2):233-241
    7.陈防,万开元,陈树森,张过师,沙颂阳.中国南方钾素研究进展与展望.见:周健民,Magen H主编,土壤钾素动态与钾肥管理.南京:河海大学出版社,2008
    8.陈华癸.土壤微生物学.上海:上海科学技术出版社,1981
    9.陈际型.水稻钾素营养的根际效应.土壤,1993,(6):304-306
    10.陈同斌,曾希柏,胡清秀.中国化肥利用率的区域分异.地理学报,2002,57(5):531-538
    11.陈小琴,周健民,王火焰,杜昌文.铵钾施用次序和比例对油菜生长和氮钾养分吸收的影响.土壤,2008,40(4):571-574
    12.陈新平,张福锁,李晓林.我国北方地区钾素资源管理的研究现状与展望.化肥工业,1997,24(1):19-21
    13.崔建宇,王敬国.肥田萝卜、油菜对金云母中矿物钾活化与的作用.植物营养肥料学报,1999,5(4):328-334
    14.戴志新,徐茂.江苏省土壤钾素平衡与解决缺钾的途径.南京农业大学学报,1995,18(4):67-70
    15.董元彦.磷钾在红壤中的迁移及扩散系数.华中农业大学学报,1995,14(3):247-252
    16.杜振宇,周健民.钾在红壤肥际微域中的迁移.土壤学报,2005,42(6):1035.1039
    17.范明生,江荣风,张福锁,吕世华,刘学军.水旱轮作系统作物养分管理策略.应用生态学报,2008,19(2):424-432
    18.范明生.水旱轮作系统养分资源综合管理研究.[博士学位论文].北京:中国农业大学图书馆,2005
    19.范钦桢,谢建昌.长期肥料定位试验中土壤钾素肥力的演变.土壤学报,2005,42(4):591-599
    20.范钦桢.铵对土壤钾素释放、固定的影响研究.土壤学报,1993,30(3):246-251
    21.封克,史瑞和,鲍士旦.苏南白土钾素供应状况的研究.南京农业大学学报,1990,13(2): 76-81
    22.封克,殷士学,张山泉.矿物钾在作物营养中的意义.土壤通报,1992,23(2):58-60
    23.高祥照,马文奇,崔勇,王蓉芳,张福锁.我国耕地土壤养分变化与肥料投入状况.植物营养与肥料学报,2000,6(4):363-369
    24.关连珠.土壤肥料学.北京:中国农业出版社,2001,191.195
    25.郭朝晖,张杨珠,黄子蔚.根际微域营养研究进展(一).土壤通报,1999,30(1):46-49
    26.郭建华,韩宝文,邢竹.耗竭土壤钾素的固定及对棉花钾素营养的作用.华北农学报,2003,18(1):94-96
    27.韩鲁佳,闫巧娟,刘向阳,胡金有.中国农作物秸秆资源及其利用现状.农业工程学报,2002,18(3):87-91
    28.贺永华,沈东升,朱荫湄.根系分泌物及其根际效应.科技通报,2006,22(6):761.766
    29.胡红青,贺纪正,武从斌.湖北省几种土壤的粘土矿物组成与表面化学性质。华中农业大学学报,1998,17(4):335-340
    30.胡全才,卢朝东,Syers J K.我国不同土壤Q/I特性及其供钾能力研究.山西农业科学,2000,28(1):35-39
    31.黄昌勇.土壤学.北京:中国农业大学出版社,2000
    32.黄绍文,金继运,王泽良,程明芳.北方主要土壤钾形态及其植物有效性研究.植物营养与肥料学报,1998,4(2):156-164
    33.黄绍文,金继运.土壤钾形态及其植物有效性研究进展.土壤肥料,1995,(5):23-29
    34.黄绍文,金继运.我国北方一些土壤对外源钾的固定.植物营养与肥料学报,1996,2(2):131-138
    35.吉尔马.通过土壤迁移是向作物根系供应钾素的主要因素.见:谢建昌主编,土壤钾素的动态.北京:中国农业科技出版社,1986
    36.纪雄辉,郑圣先,石丽红,廖育林.洞庭湖区不同稻田土壤及施肥对养分淋溶损失的影响.土壤学报,2008,45(4):663-671
    37.江长胜,杨剑虹,魏朝富,谢德体,屈明.低分子量有机酸对紫色母岩中钾释放的影响.植物营养与肥料学报,2002,8(4):441-446
    38.姜存仓.不同基因型棉花对钾的反应差异及其机理研究.[博士学位论文].武汉,华中农业大学图书馆,2006
    39.姜子绍,宇万太.农田生态系统中钾循环研究进展.应用生态学报,2006,17(3):545-550
    40.蒋梅莹,熊毅.中国土壤胶体研究Ⅷ五种主要土壤的粘粒矿物组成.土壤学报,1982,19(1):62-69
    41.金继运.土壤钾素研究进展.土壤学报,1993,30(1):94-101
    42.金继运.我国北方土壤缺钾和钾肥应用的发展趋势.见:中国农业科学院土壤肥料研究所主编,北方土壤钾素和钾肥效益.北京:中国农业科技出版社,1994,1-5
    43.李贵宝,李叙勇.我国可持续农业发展中钾养分资源管理的对策.农资科技,2000,(3): 15-17
    44.李家康,林葆,梁国庆,沈桂芹.对我国化肥施用前景的剖析.植物营养与肥料学报,2001,7(1):1-10
    45.李玫,王天华,魏刚,汪涛.杨树、刺槐混交及缺钾情况下对矿物钾的利用.北京林业大学学报,1995,17(2):99-103
    46.李娜,杨涛.我国油菜籽产业发展现状及趋势展望.农业展望,2009,(2):19-21
    47.李庆逵.从土壤钾素含量和状态看我国钾肥问题.科学通报,1964,(9):780-786
    48.李文革,李倩,贺小香.秸秆还田研究进展.湖南农业科学,2006,(1):46-48
    49.李学垣.土壤化学.北京:高等教育出版社,2001,100-107
    50.李学垣.土壤化学及实验指导.北京:中国农业出版社,1997
    51.李玉田.我国钾化肥使用的历史、现状和对策.农业新技术,1992,10(4):30-35
    52.李玉影,金继运,刘双全,黄绍文.钾对春小麦生理特性、产量及品质的影响.植物营养与肥料学报,2005,11(4):449-455
    53.李志洪,赵兰坡,窦森.土壤学.北京:化学工业出版社,2005
    54.梁成华,金耀青,宋菲,田蕴辉.黑云母的释钾能力及其生物有效性研究.土壤学报,1994,31(2):220-223
    55.梁成华,魏丽萍,罗磊.土壤固钾与释钾机制研究进展.地球科学进展,2002,17(5):679-684
    56.梁成华.地质与地貌学.北京:中国农业出版社,2002
    57.林清火,罗微,林钊沐.砖红壤地区旱地土壤肥料养分淋失研究进展.热带农业科学,2003,23(1):61-66
    58.刘冬碧,鲁剑巍,万运帆,陈防.长期施钾对湖北省几种土壤粘土矿物组成影响的初步研究.湖北农业科学,1999,(6):27-30
    59.刘枫,王允清,刘英,钱国平.安徽省土壤钾素供应状况与钾肥效应分析.土壤通报,2003,34(3):205-208
    60.刘更另.中国有机肥料.北京:农业出版社,1991,38-41
    61.刘荣乐,金继运,吴荣贵,梁鸣早.我国北方土壤一作物系统内钾素平衡及钾肥肥效研究Ⅰ 主要种植制下的土壤钾素平衡与调控.土壤肥料,1999,(6):3-11
    62.刘荣乐,金继运,吴荣贵,梁鸣早.我国北方土壤一作物系统内钾素循环特征及秸秆还田与施钾肥的影响.植物营养与施肥学报,2000,6(2):123-132
    63.刘淑霞,赵明东,赵兰坡,刘景双,王金达,于君宝.吉林省主要耕作土壤中钾的固定与释放.水土保持学报,2002,16(4):98-101
    64.刘巽浩.耕作学.北京:中国农业出版社,1996,156-171
    65.刘永辉,张静妮,崔德杰,隋方功,张玉龙.长期定位施肥对非石灰性潮土粘土矿物组成及主要理化性质的影响.土壤学报,2006,43(4):697-702
    66.刘元昌,徐琪.江苏省太湖地区养分平衡状况的初步探讨.生态学杂志,1984,(3):12-16
    67.刘芷宇.土壤-根系微区养分环境研究概况.土壤学进展,1980,8(3):1-11
    68.龙怀玉,李韵珠,张维理,蒋以超.温度对潮土和褐土钾吸附动力学的影响.中国农业科学,2004,37(6):878-885
    69.鲁如坤,刘鸿翔,闻大中,钦绳武,郑剑英,王周琼.我国典型地区农业生态系统养分循环和平衡研究Ⅱ农田养分收入参数.土壤通报,1996,27(4):151-154
    70.鲁如坤,时正元,赖庆旺.红壤长期施肥养分的下移特征.土壤,2000,32(1):27-29
    71.鲁如坤,时正元,施建平.我国南方6省农田养分平衡现状评价和动态变化研究.中国农业科学,2000,33(2):63-67
    72.鲁如坤.“微域土壤学”——一个可能的土壤学新分支.土壤学报,1999,36(2):287-288
    73.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,1999
    74.鲁如坤.土壤—植物营养学原理和施肥.北京:化学工业出版社,1998
    75.鲁如坤.我国土壤氮、磷、钾的基本状况.土壤学报,1989,26(3):280-286
    76.陆景陵.植物营养学.北京:中国农业大学出版社,1994
    77.吕忠贵,杨圆.浅析氮磷化肥的使用、利用及对农业生态环境污染.农业环境与发展,1997,14(3):30-34
    78.罗家贤,包梅芬.几种粘土矿物和一些土壤的钾固定.土壤学报,1988,25(4):379-380
    79.罗良国,闻大中,沈善敏.北方稻田生态系统养分平衡研究.应用生态学报,1999,10(3):301-304
    80.罗良国,闻大中,沈善敏.北方稻田生态系统养分渗漏规律研究.中国农业科学,2000,33(2):68-74
    81.罗微,林清火,林钊沐,屈明,茶正早.钾肥在砖红壤中的淋失特征初步模拟研究.水土保持学报,2004,18(6):93-96
    82.马毅杰,陈家坊.水稻土物质变化与生态环境.北京:科学出版社,1999,1-8
    83.芒森.农业中的钾.(范钦桢,郑文钦译).北京:科学出版社,1995,261-262
    84.茅昂江,王明珠.余江县低丘红壤耕地的养分平衡状况与对策土壤通报.1996,(6):298-303
    85.牛灵安,秦耀生,郝晋珉,牛新胜.曲周试区秸秆还田配施氮磷肥的效应研究.1998,(6):32-35
    86.潘大伟,梁成华,杜立宇.土壤含钾矿物的释钾研究进展.土壤通报,2005,36(2):253-258
    87.潘兆橹.结晶学及矿物学.北京:地质出版社,1984,176-186
    88.彭千涛,范钦桢.水分和温度对土壤钾素释放、固定影响的初步研究.土壤学报,1984,21(4):387-394
    89.秦祖平,徐琪,熊毅.太湖地区两种稻麦轮作制中营养元素的循环Ⅱ 常规稻田生态系统中大量元素的循环状况.应用生态学报,1989,9(3):245-252
    90.沈仁芳,赵其国.排水采集器原状土柱中红壤元素淋溶研究.土壤学报,1995,32(增刊):111-116
    91.沈善敏,万洪富,谢建昌.中国土壤肥力.北京:中国农业出版社,1998
    92.石孝均.水旱轮作体系中的养分循环特征.[博士学位论文].北京:中国农业大学图书馆,2003
    93.史建文,鲍士旦,史瑞和.耗竭条件下层间钾的释放及耗竭后土壤的固钾特性.土壤学报,1994,31(1):42-49
    94.史瑞和.植物营养原理.南京:江苏科学技术出版社,1989,77-78
    95.司友斌,王慎强,陈怀满.农田氮、磷的流失与水体富营养化.土壤,2000,(4):188-193
    96.宋秀杰.我国有机肥利用现状及合理利用的技术措施.农村生态环境,1997,13(2):56-59
    97.苏以荣,张曼其.大麦成熟期养分的雨水淋失.农业现代化研究,1992,13(5):299-301
    98.孙克刚,李贵宝,刘纯敏,杨占平,黄绍文,金继运.河南省主要土类供钾能力与固钾特性.华北农学报,1999,14(1):123-128
    99.孙克刚,杨占平,王英,吕爱英,李冬花.秸秆还田配合施钾对土壤钾的盈亏影响.磷肥与复肥,2002,17(2):69-71
    100.谭德水,金继运,黄绍文,高伟.长期施钾与秸秆还田对华北潮土和褐土区作物产量及土壤钾素的影响.植物营养与肥料学报,2008,14(1):106-112
    101.谭宏伟,周柳强,谢如林.广西农田养分循环与平衡分析.广西科学院学报,2000,16(2):82-86
    102.王波,杨振明,鲍士旦.水稻耐低钾基因型的筛选及吸钾特性的研究.植物营养与肥料学报,1999,5(1):85-88
    103.王定勇,石孝均,毛知耘.长期水旱轮作条件下紫色土养分供应能力的研究.植物营养与肥料学报,2004,10(2):120-126
    104.王火焰,朱树国,周健民,吴礼树,杜昌文,陈小琴.常规方法准确测定土壤有效钾素变化可能性的探讨.土壤通报,2006,37(5):954-960
    105.王火焰,朱树国,周健民,吴礼树,杜昌文,陈小琴.运用四苯硼钠法准确测定土壤有效钾素变化的初步探讨.土壤,2007,39(2):231-237
    106.王火焰.NPK肥料在土壤中的交互作用与养分的形态转化.[博士学位论文].南京:中国科学院南京土壤研究所,2001
    107.王敬国.植物营养的土壤化学.北京:北京农业大学出版社,1995:107-119
    108.王石军.21世纪我国钾肥工业的发展与展望.化肥工业,2001,28(3):15-17
    109.王为木,杨肖娥,李华,魏幼璋.低钾胁迫对两个耐钾能力不同水稻品种养分吸收和分配的影响.中国水稻科学,2003,17(1):52-56
    110.王旭刚,郝明德,张春霞.降水输入旱地农田生态系统中的养分研究.西北农林科技大学学报,2005,33(7):115-120
    111.西北农业大学主编.农业化学研究法.北京:中国农业出版社,2000
    112.谢建昌,杜承林.土壤钾素的有效性及其评定方法研究.土壤学报,1988,25(2):132-134
    113.谢建昌,罗家贤,马茂桐.不同土壤的供钾潜力和当前土壤钾素平衡状况.见:国际平衡施肥学术讨论会论文集.北京:农业出版社,1989,97-105
    114.谢建昌,周健民.我国土壤钾素研究和钾肥使用的进展.土壤,1999,(5):244-254
    115.谢建昌.钾与中国农业.南京:河海大学出版社,2000
    116.谢建昌.世界肥料使用的现状与前景.植物营养与施肥学报,1998,4(4):321-330
    117.谢金学,吴金书,谭和芳,汪吉东,张永春.氮磷钾配合施肥对水稻养分吸收和产量的影响.江苏农业科学,2008,(5):258-260
    118.熊明彪,雷孝章,胡恒,宋光煜,曹叔尤,石孝均,毛知耘.长期施钾对紫色土稻麦产量及土壤钾素的影响.西南农业学报,2003,16(3):53-56
    119.徐国华,鲍士旦,史瑞和.生物耗竭土壤的层间钾自然释放及固定特性.土壤,1995,27(4):182-185
    120.徐国华,鲍士旦,史瑞和.土壤钾素供应状况的研究Ⅳ禾谷类及豆类作物对土壤层间钾的利用.南京农业大学学报,1991,14(2):47-52
    121.徐明岗,梁国庆,张夫道.中国土壤肥力演变.北京:中国农业科技出版社,2006
    122.徐明岗,张一平,张君常,孙本华.两种土壤中钙镁磷钾向根系的运移机理.中国农业科学,1996,29(5):76-82
    123.徐明岗,张一平.土壤养分扩散的影响因素及其相互关系.土壤学进展,1995,23(3):13-20
    124.徐明岗.恒电荷土壤与可变电荷土壤(的吸附特性.土壤肥料,2002,(2):13.17
    125.徐琪,杨林章,董华元.中国稻田生态系统.北京:中国农业出版社,1998,105.138
    126.徐晓燕,马毅杰.土壤矿物钾的释放及其在植物营养中的意义.土壤通报,2001,32(4):173-176
    127,许曼丽,刘芷宇.土壤-根系微区养分状况的研究Ⅰ.微钾玻璃电极的应用.土壤学报,1982,19(4):367-374
    128.许曼丽,刘芷宇.土壤-根系微区养分状况的研究Ⅱ.钾离子的富集与亏缺.土壤学报,1983,20(3):295-302
    129.宣家祥.根土界面的研究Ⅰ.钾离子向稻根迁移的数学模型.土壤学报,1982,19(3):296-304
    130.薛泉宏,马博虎,尉庆丰.陕西几种土壤非交换钾释放动力学研究.西北农业大学学报,1999,27(3):66-71
    131.杨振明,王波,鲍士旦,史瑞和.耗竭条件下冬小麦的吸钾特点及其对土壤不同形态钾的利用.植物营养与肥料学报,1998a,4(1):43-49
    132.杨振明,阎飞,韩丽梅.土壤钾素研究的新进展.吉林农业大学学报,1998b,20(3):99-106
    133.杨振明,周文佐,鲍士旦,史瑞和.我国主要土壤供钾能力的综合评价.土壤学报,1999,36(3):377-386
    134.姚源喜,刘树堂,郇恒福.长期定位施肥对非石灰性潮土钾素状况的影响.植物营养与肥料学报,2004,10(3):241-244
    135.袁可能.植物营养元素的土壤化学.北京:科学出版社,1983
    136.张炳宁,张月平,李名洲,双传昌,周立业.杂交水稻拔节孕穗专用肥肥效研究初报.土壤肥料,1998,(1):23-26
    137.张福锁,曹一平.根际动态过程与植物营养.土壤学报,1992,29(3):239-250
    138.张福锁.环境胁迫与植物根际营养.北京:中国农业出版社,1998:21-75
    139.张会民,吕家珑,李菊梅,徐明岗,刘红霞.长期定位施肥条件下土壤钾素化学研究进展.西北农林科技大学学报,2007a,35(1):155.160
    140.张会民,徐明岗,吕家珑,刘骅,石孝均,黄绍敏.长期施钾下中国3种典型农田土壤钾素固定及其影响因素研究.中国农业科学,2007b,40(4):749-756
    141.张会民,徐明岗.长期施肥土壤钾素演变.北京:中国农业出版社,2008
    142.张会民.长期施肥下我国典型农田土壤钾素演变特征及机理.[博士学位论文].杨凌:西北农林科技大学图书馆,2007
    143.张建才,史瑞和,鲍士旦.江苏几种不同土壤钾素供应状况的研究.南京农业大学学报,1988,11(2):73-81
    144.张漱茗,闫华,刘光栋,刘兆辉.山东主要土壤供钾能力和非交换性钾释放的研究.植物营养与肥料学报,1999,5(1):26-31
    145.张同树,程尧.我国富水区域水旱轮作与农业持续发展.农业技术经济,1998,(2):52-54
    146.张卫峰.四问我国肥料施用追“钾”不止.http://www.chinaha.org/hwzx/index.asp?Templet Flag=2&Classld=102&ArticlelD=2172,2009
    147.张艳萍,徐平芳.钾肥的合理分配和有效施用.科技园地,2004,(2):17-19
    148.中国农业年鉴编委会.中国农业年鉴.北京:中国农业出版社,1992
    149.中华人们共和国国家统计局.中国统计年鉴.北京:中国统计出版社,2008
    150.周健民,王火焰.土壤钾素形态与转化.见:周健民,Magen H主编,土壤钾素动态与钾肥管理.南京:河海大学出版社,2008,3-9
    151.周健民.土壤钾素肥力评价与钾肥合理施用.长春:吉林科学技术出版社,2004
    152.周明,涂书新,孙锦荷,郭智芬.富钾植物籽粒苋(Amaranthus spp.)对土壤矿物钾的吸收利用研究.核农学报,2005,19(4):291-296
    153.朱培立,黄东迈,余晓鹤,王家骧,储国良,顾志权.稻麦轮作制中的钾肥运筹效益.江苏农业学报,2000,16(2):105-110
    154.朱永官,罗家贤.我国南方某些土壤对钾素的固定及其影响因素.土壤,1993,25(2):64-67
    155.朱咏莉,刘军,王益权,贾宏涛,孙慧敏,邱莉萍.干湿交替过程对黄土高原几种主要土壤钾有效性的影响.土壤通报,2002,33(6):435-437
    156.朱兆良.合理使用化肥充分利用有机肥发展环境友好的施肥体系.中国科学院院刊,2003,(2):89-93
    157.邹超亚.南方耕作制度.北京:中国农业出版社,1996,31-37
    158. Abedin Mian M J, Blume H P, Bhuiya Z H, Eaqub M. Water and nutrient dynamics of a paddy soil of Bangladesh. J Plant Nutr Soil Sci, 1991, 154: 93-99
    
    159. Ali M A, Tatla Y H, Aslam M. Response of cotton (Gossypium Hirsutum L.) to potassium fertilization in arid environment. J Agric Res, 2007, 45(3): 191-198
    
    160. Attoe O J, Truog E. Exchangeable and acid-soluble potassium as regards availability and reciprocal relationships. Soil Sci Soc Am J, 1946, 10: 81-86
    
    161. Attoe O J. Potassium fixation and release in soils occurring under moist and dry conditions. Soil Sci Soc Am Proc, 1947, 11: 145-149
    
    162. Barber S A. A diffusion and mass-flow concept of soil nutrient availability. Soil Sci, 1962, 93:39-49
    
    163. Barber S A. Potassium availability at the soil-root interface and factors influencing potassium uptake. In: Munson R D ed., Potassium in Agriculture. Madison, Wisconsin, USA: ASA, CSSA,SSSA, 1985, 309-324
    
    164. Barshad I. Cation exchange in soils II Replaceability of ammonium and potassium from vermiculite, biotite, and montmorillonite. Soil Sci, 1954, 78: 57-76
    
    165. Barshad I. Cation exchange in soils I Ammonium fixation and its relation to potassium fixation and to determination of ammonium exchange capacity. Soil Sci, 1951, 77: 463-472
    
    166. Barshad I. Vermiculite and its relation to biotite as revealed by base exchange reactions, x-ray analyses, differential thermal curves and water content. Am Mineral, 1948, 33: 635-678
    
    167. Bassett W A. Role of hydroxyl orientation in mica alteration. Geol Soc Am, 1960, 71: 449-456
    
    168. Bhandari A L, Ladha J K, Pathak H, Padre A T, Dawe D, Gupta R K. Yield and soil nutrient changes in a long-term rice-wheat rotation in India. Soil Sci Soc Am J, 2002, 66: 162-170
    
    169. Bouabid R, Badraoui M, Bloom P R. Potassium fixation and charge characteristics of soil clays.Soil Sci Soc Am J, 1991, 55:1493-1498
    
    170. Brady N C. The nature and properties of soils, Tenth Edition. New York: Macmillan Publishing Company, 1990
    
    171. Carter M A, Singh B. Response of maize and potassium dynamics in Vertosols following potassium fertilization. In: SuperSoil 2004: 3rd Australian New Zealand Soils Conference, 5-9 Dec. 2004, University of Sydney, Australia. Published on CDROM. Website: www.regional. org.au/au/asssi/
    
    172. Cassman K G, Bryant D C, Higashi S L, Roberts B A, Kerby T A. Soil potassium balance and cumulative cotton response to annual potassium additions on a vermiculitic soil. Soil Sci Soc Am J,1989,53:805-812
    
    173. Chandler W V. Nutrient uptake by corn. North Carolina Agric Exp Stn Tech Bull, 1960, 143
    
    174. Chen X, Zhou J, Wang H. Productivity and K-supplying power change by an eight-season potash application in different patterns on two paddy soils. Geoderma, 2003, 115: 65-74
    175. Cook M G, Hutcheson T B. Soil potassium reactions as related to clay mineralogy of selected Kentucky soils. Soil Sci Soc Am J, 1960, 24: 252-256
    
    176. Dawe D, Frolking S, Li C. Trends in rice-wheat area in China. Field Crops Res, 2004, 87: 89-95
    
    177. Dest W M, Guillard K. Bentgrass response to K fertilization and K release rates from eight sand rootzone sources used in putting green construction. Int Turfgrass Soc Res J, 2001, 9: 375-381
    
    178. Dhaliwal A K, Gupta R K, Singh Y, Singh B. Potassium fixation and release characteristics of some Benchmark soil series under rice-wheat cropping system in the Indo-Gangetic Plains of northwestern India. Commun Soil Sci Plant Anal, 2006, 37: 827-845
    
    179. Dobermann A, Cassman K G, Stacruz P C, Adviento M A, Pampolino M F. Fertilizer inputs,nutrient balance, and soil nutrient supplying power in intensive, irrigated rice systems II Effective soil K supplying capacity. Nutr Cycl Agroecoyst, 1996,46: 11-21
    
    180. Dobermanna A, Cassman K G, Mamaril C P, Sheehy J E. Management of phosphorus, potassium,and sulfur in intensive, irrigated lowland rice. Field Crops Res, 1998, 56(1-2): 113-138
    
    181. Douglas L A. Vermiculites. In: Dixon J B, Weed S B eds., Minerals in soil environment. Madison,Wisconsin: Soil Science Society of America, 1977, 259-292
    
    182. Du Z Y, Zhou J M, Wang H Y, Du C W, Chen X Q. Potassium movement and transformation in an acid soil as affected by phosphorus. Soil Sci Soc Am J, 2006, 70(6): 2057-2064
    
    183. Dyer B. On the analytical determination of probably available "mineral" plant food in soils. J Chem Soc, Trans, 1894, 65: 115-167
    
    184. Evans S D, Barber S A. The effect of rubidium-86 diffusion on the uptake of rubidium-86 by corn.Soil Sci SocAm Proc, 1964, 28: 56-57
    
    185. Fanning D S, Keramidas V Z. Micas. In: Dixon J B, Weed S B, Dinauer R C eds., Minerals in Soil Environments. Madison, Wisconsin: Soil Science Society of America, 1977, 195-258
    
    186. Fardeau J C, Poss R, Saragoni H. Effect of potassium fertilization on K-cycling in different agrosystems. In: Potassium in ecosystems: biogeochemical fluxes of cations in agro- and forest-systems., Basel, Switzerland: International Potash Institute, 1992, 59-78
    
    187. Farr E, Vaidyanathan L V, Nye P H. Measurement of ionic concentration gradients in soil near roots. Soil Sci, 1969, 107: 385-391
    
    188. Feigenbaum S, Shainberg I. Dissolution of illite-a possible mechanism of potassium release. Soil Sci Soc Am J, 1975, 39: 985-990
    
    189. Feng K, Wang X, Wang X, Tang Y. Relationship between 2:1 mineral structure and the fixation and release of cations. Pedosphere, 2003, 13(1): 81-86
    
    190. Fitzpatrick R J M, Guillard K. Kentucky bluegrass response to potassium and nitrogen fertilization. Crop Sci, 2004,44: 1721-1728
    
    191. Ganeshamurthy A N, Biswas C R. Contribution of potassium from non-exchangeable sources in soil to crops. J Indian Soc Soil Sci, 1985, 33(1): 60-66
    192. Ganesthamurthy A N, Biswas C R. Movement of potassium in an ustochrept soil profile in a long-term fertilizer experiment. J Agric Sci, 1983, 102: 393-397
    
    193. Gong Z, Zhang G, Chen Z. Development of soil classification in China. In: Eswaran H, Rice T, Ahrens R, Stewart B A eds., Soil Classification: A global desk reference. Washington, DC: CRC press, 2003, 101-125
    
    194. Gregory P J, Crowford D V, McGowen M. Nutrient relations of winter wheat 1. Accumulation and distribution of Na, K, Ca, Mg, P, S and N. JAgric Sci, 1979, 93: 485-494
    
    195. Haylock O F.A method for estimating the availability of non-exchangeable potassium. In:Proceedings of the 6th International Congress of Soil Science, Part B. Paris, France. 1956,403-408
    
    196. Hinsinger P, Dufey J E, Jaillard B. Biological weathering of micas in the rhizosphere as related to potassium absorption by plant root. In: McMichael B L, Persson H, eds., Plant Roots and Their Environment. Amsterdam: Elsevier, 1991, 98-105
    
    197. Hinsinger P, Elsass F, Jaillard B, Robert M. Root-induced irreversible transformation of a trioctahedral mica in the rhizosphere of rape. Eur J Soil Sci, 1993a, 44: 535-545
    
    198. Hinsinger P, Jailland B. Root-induced release of interlayer potassium and vermiculitization of phlogopite as related to potassium depletion in the rhizosphere of ryegrass. Eur J Soil Sci, 1993b,44: 525-534
    
    199. Hinsinger P, Jaillard B, Dufey J E. Biological weathering of micas in the rhizosphere as related to potassium absorption by the roots of ryegrass. Soil Sci Soc Am J, 1992, 56(3): 977-998
    
    200. Huang P M. Feldspars, pyroxenes, and amphiboles. In: Dixon J B, Weed S B eds., Minerals in Soil Environment. Madison Wisconsin: Soil Science Society of America, 1977, 553-602.
    
    201. Jackson M L. Interlayering of expansible layer silicates in soil by chemical weathering. Clays clay Miner, 1963, 11: 29-46
    
    202. Kar A K, Chattopadhyay J P, Dhua S P. Relative fixation of added potassium and ammonium in some acid soils. J Indian Soc Soil Sci, 1975, 23(4): 428-433
    
    203. Kauffman M D, Bouldin D R. Relationship of exchangeable and non-exchangeable K in soil adjacent to cationexchange resins and plant roots. Soil Sci, 1967, 104: 145-150
    
    204. Kettler T A, Doran J W, Gilbert T L. Simplified method for soil particle-size determination to accompany soil-quality analyses. Soil Sci Soc Am J, 2001, 65: 849-852
    
    205. Khaled E M, Stucki W. Iron oxidation state effects on cation fixation in smectite. Soil Sci Soc Am J, 1991, 55(2): 550-554
    
    206. Kittrick J K. Forces involved in ion fixation by vermiculite. Soil Sci Soc Am Proc, 1966, 60:801-803
    
    207. Kodama H, Schnitzer M. Evidence for interlamellar adsorption of organic matter by clay in a podzol soil. Can J Soil Sci, 1971, 51: 509-512
    208. Kucheabuch R O. Potassium dynamics in the rhizosphere and potassium availability. In:Methodology in soil K research. Proceedings of the 20th Colloquium of the International Potash Institute. 1987,215-234
    
    209. Kunze G W, Jeffries C D. X-ray characteristics of clay minerals as related to potassium fixation.Soil Sci Soc Am Proc, 1953, 17: 242-244
    
    210. Lagache M. New data on the kinetics of the dissolution of alkali feldspars at 200℃ in CO_2 charged water. Geochim Cosmochim Acta, 1976,40: 157-161
    
    211. Li X, George E, Marschner H. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil, 1991, 136: 41-48
    
    212. Luebs R E, Stanford G, Scott A D. Relation of available potassium to soil moisture. Soil Sci Soc Am J, 1956,20:45-50
    
    213. MacLean A J. Potassium supplying power of some Canadian soils. Can J Soil Sci, 1961, 41:196-206
    
    214. Markewitz D, Richter D D. Long-term soil potassium availability from a Kanhapludult to an aggrading loblolly pine ecosystem. For Ecol Manage, 2000, 130: 109-129
    
    215. Marschner H. Mineral nutrition of higher plants. 2nd ed. London: Academic Press, 1995
    
    216. Marshall C E. The physical chemistry and mineralogy of soils. Vol. 1. Soil materials. New York:John Wiley and Sons, 1964
    
    217. Martin H W, Sparks D L. On the behavior of non-exchangeable potassium in soils. Commun Soil Sci Plant Anal, 1985, 16(2): 133-162
    
    218. Mehrotra C L, Singh G, Pandey R K. Fixation of potassium as related to soils and their particle size distribution in some soils of U.P. J Indian Soc Soil Sci, 1953, 53-61
    
    219. Mengel K, Braunschweig Von L C. The effect of soil moisture upon the availability of potassium and its influence on the growth young maize plants (Zea mays L.). Soil Sci, 1972, 114: 142-148
    
    220. Mengel K, Kirkby E A. Potassium in crop production. AdvAgron, 1980, 33: 59-110
    
    221. Metson A J. The long-term potassium supplying power of New Zealand soils. In: Transactions of the 9th International Congress of Soil Science, Adelaide, Australia. 1968, 2: 621-630
    
    222. Munson R D. Potassium in Agriculture. Madison, Wisconsin, USA: ASA-CSSA-SSSA, 1985
    
    223. Niebes J F, Dufey J E, Jaillard B, Hinsinger P. Release of non-exchangeable potassium from different size fractions of two highly K-fertilized soils in the rhizosphere of rape (Brassica napus cv Drakkar). Plant Soil, 1993,155/156: 403-406
    
    224. Nielsen J D, Moeberg J P. The influence of K-depletion on mineralogical changes in pedons from two field experiments and in soils from four pot experiments. Acta Agric Scandinavica (Sweden),1984, 34(3): 391-399
    
    225. Nielsen J D. Fixation and release of potassium and ammonium ions in Danish soils. Plant Soil,1972, 36(1): 71-88
    226. Olk D C, Cassman K G Reduction of potassium fixation by two humic acid fractions in vermiculitic soils. Soil Sci Soc Am J, 1995, 59: 1250-1258
    
    227. Pearson R W. Potassium supplying power of eight Alabama soils. Soil Sci, 1952, 74: 301-309
    
    228. Pleysier J L, Juo A S R. Leaching of fertilizer ions in a Ultisol from the High Rainfall Tropics: leaching through undisturbed soil columns. Soil Sci Soc Am J, 1981, 45: 754-760
    
    229. Ponnamperuma F N. The chemistry of submerged soils. Adv Agron, 1972, 24: 29-32
    
    230. Portela E A C. Potassium supplying capacity of northeastern Portuguese soils. Plant Soil, 1993,154: 13-20
    
    231. Quemener J. Important factors in potassium balance sheets. In: Laudelout H, ed., Nutrient Balances and the Need for Potassium. Bern: International Potash Institute, 1986, 41-72
    
    232. Rausell-Colom J A, Sweetman T R, Wells L B, Norrish K. Studies in the artificial weathering of micas. In: Hallsworth E G, Crawford D V eds., Experimental pedology. London: Butterworths,1965,40-70
    
    234. Rich C I, Black W R. Potassium exchange as affected by cation size, pH, and mineral structure.Soil Sci, 1964,97:384-390
    235 Rich C I. Mineralogy of soil potassium. In: Kilmer V J ed. The Role of Potassium in Agriculture.Madison, WI, USA: Soil Science Society of America, 1968, 79-96
    
    236. Rich C J. Effect of cation size and pH on potassium exchange in Nason soil. Soil Sci, 1964, 98:100-106
    
    237. Richards J E, Bates T E. Studies on the potassium-supplying capacities of Southern Ontario soils,II: Nitric acid extraction of non-exchangeable K and its availability to crops. Can J Soil Sci, 1988,68: 199-203
    
    238. Sawhney B L. Kinetics of cesium sorption by clay minerals. Soil Sci Soc Am J, 1966, 30: 565-569
    
    239. Schneider A. Short-term release and fixation of K in calcareous clay soils. Consequence for K buffer power prediction. Eur J Soil Sci, 1997, 48(3): 499-512
    
    240. Scott A D. Effect of particle size on interlayer potassium exchange in micas. Trans 9th Int Congr Soi Sci, 1968,2:649-660
    
    241. Shaimukhametov M S, Mamadaliev G N. The effect of long-term fertilization on the potassium status and mineralogy of clay particles in typical Serozem. Eur Soil Sci, 2003, 36: 994-1002
    
    242. Singh B, Singh A P. Fixation of Potassium in soil as affected by an ammoniacal fertilizer. J Indian Soc Soil Sci, 1979, 27(3): 272-276
    
    243. Singh B, Singh Y, Imas P, Xie J. Potassium nutrition of the rice-wheat cropping system. Adv Agron, 2003, 81: 203-259
    
    244. Singh Y, Singh B. Efficient management of primary nutrients in the rice-wheat system. In: Kataki P K ed., The Rice-Wheat Cropping System of South Asia: Efficient Production Management.New York: Food Products Press, An Imprint of the Haworth Press, 2001, 23-86
    245. Song S K, Huang P M. Dynamics of potassium release from potassium-bearing minerals as influenced by oxalic and citric acids. Soil Sci Soc Am J, 1988, 52: 383-390
    
    246. Sparks D L, Huang P M. Physical chemistry of soil potassium. In: Munson R D ed., Potassium In Agriculture. Madison, Wisconsin: CSSA-ASA-SSSA, 1985
    
    247. Sparks D L, Liebhardt W C. Temperature effects on potassium exchange and selectivity in Delaware soils. Soil Sci, 1982, 133: 10-17
    
    248. Sparks D L. Potassium dynamics in soils. In: Stewart B A, ed. Advances in Soil Science, New York: Springer-Verlage New York. Inc., 1987, 6: 1-63
    
    249. Stillwell T C, Sekhon G S, Arscott T G Response to K fertilization of three Punjab soils. Indian J Agric Sci, 1975,45: 149-151
    
    250. Stitcher H. Potassium in allophane and zeolites. In: Potassium in soil. Proceedings of the 9th Colloquium of the International Potash Institute, Germany, 1972, 43-51
    
    251. Suarez-Hernandez A, Hanway J J. Plant availability of native and added potassium in undried soils. Soil Sci Soc Am Proc, 1974, 38: 113-116
    
    252. Tan K H, Nopamornbodi O. Electron microbeam scanning of element distribution zone in soil rhizosphere and plant tissue. Soil Sci, 1979, 127: 235-241
    
    253. Thomas G W, Hipp BW. Soil factors affecting potassium availability. In: Rich C I, Kilmer V J,Younts S E, Brady N C eds., The Role of Potassium in Agriculture. Madison, Wisconsin: ASA,CSSA, and SSSA, 1968,269-291
    
    254. Thomas G W. Forms of aluminum in cation exchangers. In: Transactions of the 7th Internal Congress of Soil Science. Madison,Wisconsin, 1960, 2: 364-369
    
    255. Timsina J, Connor D J. Productivity and management of rice-wheat cropping systems: issues and challenges. Field Crops Res, 2001, 69: 93-132
    
    256. Vaast Ph, Zasoski R J. Effects of VA-mycorrhizae and nitrogen sources on rhizosphere soil characteristics, growth and nutrient acquisition of coffee seedlings (Coffea arabica L.). Plant Soil,1992,147:31-39
    
    257. Van der Marel H W. Potassium fixation in Dutch soils: Mineralogical analyses. Soil Sci, 1954, 78:163-179
    
    258. Vyn T J, Galic D M, Janovicek K J. Corn response to potassium placement in conservation tillage.Soil Till Res, 2002, 67: 159-169
    
    259. Wicklander L. Cation and exchange phenomena. In: Mitchell R L, Bear F E eds., Chemistry of the Soil. 2nd ed. New York: Van Nostrand Reinhold Company, 1969, 163-205
    
    260. Woodhead T, Huke R, Huke E. Areas, location, and ongoing collaborative research for the rice-wheat system of Asia. In: Paroda R S, Woodhead T, Singh R B eds., Sustainability of Rice-wheat Product Systems in Asia. Bangkok (Thailand): FAO, 1994. 68-96
    
    261. Zeng Q, Brown P H. Soil potassium mobility and uptake by corn under differential soil moisture regimes. Plant Soil, 2000, 221: 121-134
    
    262. Zhou J M, Huang P M. Kinetics and mechanisms of monoammonium phosphate-induced potassium release from selected potassium-bearing minerals. Can J Soil Sci, 2006, 86(5):799-811
    
    263. Zhou J M, Huang P M. Kinetics of monoammonium phosphate induced potassium release from selected soils. Can J Soil Sci, 1995, 75(2): 197-203

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700