用户名: 密码: 验证码:
菜粕与蓝藻混合高温发酵过程中的物质转化及光谱学特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
解决农业固体有机废弃物问题的根本途径就在于开展其资源化利用。目前,资源化利用农业固体有机废弃物的最有效和最经济的途径是好氧堆肥。快速高效堆肥技术资源化利用固体有机废弃物的关键是,理解堆肥过程中的物质降解情况及选择合适的接种微生物。本论文以菜粕为主要原料生产氨基酸有机肥,通过添加微生物菌剂和蓝藻,建立了3个不同的堆体:CK,菜粕堆肥;AA,菜粕+微生物菌剂;LA,菜粕+蓝藻+微生物菌剂。本论文主要研究了不同堆体在堆肥过程中的物理、化学、生物学指标以及光谱学特征的动态变化,揭示了菜粕和蓝藻共发酵过程中物质变化的基本规律;研究了添加微生物菌剂和蓝藻对菜粕堆肥光谱学性质变化的影响,运用二维相关光谱方法研究菜粕堆肥过程中的物质降解顺序;研究了三维荧光光谱-荧光区域指数(EEM-FRI)方法评价堆肥腐熟度的可行性;应用多重荧光标记-激光共聚焦显微镜(CLSM)方法,研究了添加微生物菌剂和蓝藻对菜粕堆肥中的大分子有机物降解和微生物空间分布的影响,揭示堆肥腐熟机制。本论文获得了如下的研究成果。
     1)加入微生物菌剂可以明显缩短堆体升温时间,AA较CK堆体提前5天达到高温期;提高堆体的最高温度,AA较CK堆体平均温度高10℃以上;加速发酵进程。发酵结束时,3个堆体pH和EC差异不显著,均达到国家有机肥标准;微生物菌剂的添加明显促进了有机碳的降解,总碳(TC)含量下降,水溶性总碳(DOC)含量上升;堆肥总氮含量变化不大,但水溶性总氮和游离氨基酸含量升高,发酵结束时,AA和LA处理游离氨基酸含量达到50.00g g kg-1左右;发酵结束时,LA处理检测不到藻毒素。该结果表明,蓝藻和菜粕混合高温发酵处理不但使蓝藻无害化处理,而且也达到了蓝藻得资源化利用目的。该研究表明蓝藻与菜粕混合高温发酵是资源化利用蓝藻的一个重要途径。
     2)在发酵过程中,3个堆体不同天数的堆肥样品间的一维红外光谱(FTIR)谱图中的峰位置十分相似,仅峰强度上有所变化。运用二维相关光谱分析方法,发现堆肥样品中有机物降解特征差异明显。具体而言,在1800-900cm-1波数范围内的二维FTIR相关光谱显示,在堆肥过程中,纤维素、蛋白质和异质多糖降解之间有协同关系;接种微生物菌剂能促进多糖的降解,但蓝藻却抑制了多糖的降解;纤维素、蛋白质和异质多糖的降解顺序不同,具体为CK堆体中物质降解顺序为异质多糖>氨基酸化合物Ⅰ>氨基酸化合物Ⅱ>纤维素,AA和LA堆体中物质降解顺序为纤维素>异质多糖>氨基酸化合物Ⅱ>氨基酸化合物Ⅰ。在3600-3100cm-1波数范围内的二维FTIR相关光谱谱图,进一步揭示了接种微生物菌剂能够改变堆肥中的纤维素和异质多糖中的OH键的降解顺序。因此,二维FTIR相关光谱方法可以用于研究接种加速堆肥腐熟机制的一种工具。
     3)三维荧光光谱结果显示,在发酵过程中,类蛋白质物质含量逐步下降,而腐殖酸类物质和富里酸类物质含量均呈整体上升趋势;接种微生物菌剂能增强类富里酸和类胡敏酸物质含量。通过对三维荧光峰强度和区域面积积分与化学、生物学指标的皮尔森相关性分析确定,三维荧光光谱可以用于表征堆肥腐殖化程度,其中中类富里酸和类胡敏酸峰强度和类蛋白类荧光区域面积积分更适用于表征堆肥的腐熟度。
     4)菜粕原料接种微生物菌剂和蓝藻影响了木质纤维素的降解和纤维素结晶度的变化。添加微生物菌剂可以明显促进发酵过程中半纤维素和木质素的降解,使纤维素的含量增加。蓝藻与菜粕混合发酵,则在一定程度上影响了微生物菌剂作用的发挥。堆体材料主体菜粕纤维结晶体为典型的纤维素Ⅰ型,整个堆肥过程没有改变纤维素的晶型;Si02和碳酸钙的衍射强度峰随着堆肥的进行逐步增强;各堆体的纤维素结晶度先上升后下降,其中,以AA处理下降的幅度最大。
     5)通过变性梯度凝胶电泳方法,发现堆肥过程中所有堆体的细菌种类逐渐增多,而随着高温期的延续,堆体的细菌种类逐步下降,堆肥前期和后期细菌类型差异较大。多重荧光标记-激光共聚焦显微镜(CLSM)原位观察结果表明,菜粕原料中的纤维素形成完整的网络结构,蛋白质、α-多糖、脂肪镶嵌在网格中;发酵结束时,镶嵌在网格内的蛋白质、α-多糖、脂肪被大量降解,荧光强度减弱,而纤维素的荧光强度增加。
Aerobic composting is a cheap, efficient and sustainable treatment for agricultural organic solid wastes, since it not only solves the pollution problem of agricultural organic solid wastes but also applies organic solid wastes as a resource. The key issue of rapid composting is to understand the degradation of organic matters and selection of composting inoculation. In this paper, the three piles were build by rapeseed meal mixed with blue algae and microbial agent, including rapeseed meal pile (CK treatment), rapeseed meal+microbial agent (AA treatment), and rapeseed meal+blue algae+microbial agent (LA treatment). The purposes of this study were1) to investigate the dynamic evolution of physical, chemical and biological indices as well as spectroscopy in order to explore the fate of organic matters during the fermentation;2) to identify the influence of microbial agent and blue algae in the spectroscopic characteristics of rapeseed meal composting;3) to explore the feasibility of two dimensional FTIR correlation spectroscopy on the mechanism of the degradation of rapeseed meal during compositng and assessment of compost maturity by fluorescence excitation-emmision matrix combined with fluorescence regional integrity (EEM-FRI) technique;4) to study the distribution of macromolecules and cells by multiple fluorescence labeling-confocal laser scanning microscopy (CLSM) method during the fermentation in order to reveal the mechanism of compost maturity. The main orginal conclusions of this work are drawn.
     1) Addition of microbial agent during the fermentation could significantly shorten the duration of start-up (i.e.5day), improve the maximum temperature (about10℃), and speed up composting. At the end of composting, pH and electricity conductivity (EC) had no markedly differences among the three piles. Meanwhile, the quality of compost products was compliant to the provisions of the relevant national standards. Moreover, the degradation of organic carbon was enhanced after the addition of microbial agent. Specifically, the total carbon content decreased and the dissolved carbon content enhanced with the addition of compost inoculation. More importantly, no cyanobacterial toxin was detected in the compost at the end of LA treatment, suggesting that blue algae being treated to harmless extent during the fermentation.
     2) The results of one dimensional FTIR of compost showed that for the compost from the three piles, the peak position of FTIR was similar but the intensity of peak was slightly distinct. The results of two dimensional FTIR correlation spectroscopy revealed the marked difference among the peak intensity among the three piles. Through2D FTIR correlation spectroscopy in the range of1800-900cm-1, the following trend in the ease of the degradation of organic compounds was observed:proteins, heteropolysaccharides and cellulose co-vary in theirdegradation during the fermentation; heteropolysaccharides> amide Ⅰ in proteins> amide Ⅱ in proteins> cellulose in proteins in the CK treatment; cellulose> heteropolysaccharides> amide Ⅱ in proteins> amide Ⅰ in the AA and LA treatment. The above-mentioned results revealed that addition of microbial agent could speed up the degradation of heteropolysaccharides. As a result, heteropolysaccharides play an important role in the priming effect which speeds up the degradation of other organic matters. Howevetr, blue algae could slow down the degradation of heteropolysaccharides and restain the role of compost inoculation. The2D FTIR correlation spectroscopy in the range of3600-3100cm-1further demonstrated that addition of microbial agent could change the degradation sequencing of OH bond. However, the role of compost inoculation was impressed in LA treatment but the performance of LA treatment was better than that of CK treatment. Therefore, the2D FTIR correlation spectroscopy can be applied as a tool to explore the mechanism of speeding up of the compost maturity with the addition of inoculant.
     3) Fluorescence EEM spectroscopy was applied to assess the maturity of compost. The results showed that during the three piles, proteins-like substances decreased but humic-and fulvic-like substances increased during the fermentation, revealing the increase of humification process. The fluorescence intensity of humic-like substances was enhanced in the pile with the addition of inoculation. Pearson correlation analysis between fluorescence indices and physical, chemical and biological indices demonstrated that the peak intensity of humic-like substances and fluorescence integrity indices of proteins-like substances were more suitable to assess the maturity of compost.
     4) Both the microbial agent and blue algae could influence the degradation and the crystallinity of lignocellulose. Specifically, the addition of microbial agent could significantly improve the degradation of hemicellulose and lignin and increase the content of cellulose. However, the addition of blue algae to composting affected the role of microbial agent to some extent. X-ray diffraction peak intensity of SiO2and CaCO3increased with the duration of composting. The crystallinity of lignocellulose for all the three piles increased first and then decreased. Among the three piles, the crystallinity of lignocellulose in AA pile decreased the most.
     5) DGGE profiles showed that bacterial communities were rich during compost start-up period and dominant communities were not obvious. In the thermophilic period bacterial communities decreased and dominant communities were significant. In the cooling period the structure of the bacterial population remained stable. Therefore, temperature played an important screening role in the composition of bacteria population. Multiple fluorescent labeling combined with CLSM observation clearly demonstrate that cellulose protects other biopolymers (i.e. proteins, a-polysccharides and lipids) from enzymatic attack and its successive aerobic fermentation by forming a network structure not accessible to enzymes. In the end of the fermentation, proteins, a-polysaccharides, lipids and eDNA were degraded and fluorescence intensity of those decreased significantly while the fluorescence intensity of cellulose increased markedly.
引文
[1]Abdennaceur H, Kaouala B, Naceur J, et al. Microbial characterization during composting of municipal solid waste[J]. Bioresource Technology,2001,80(3):217-225.
    [2]Adav S S, Lin J C, Yang Z, et al. Stereological assessment of extracellular polymeric substances, exo-enzymes, and specific bacterial strains in bioaggregates using fluorescence experiments [J].Biotechnology Advances,2010,28:255-280.
    [3]Alberto V. F, Gisela V, Nelson A, et al. Evaluation of marine algae as asource of biogas in a two-stage anaerobic reactor system[J].Biomass and Bioenergy,2008,32(4):338-344.
    [4]Amann R I, Ludwig W, Schleifer K H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation[J]. American Society for Microbiology,1995,59 (1):143-169.
    [5]Anna J. Szekely, Rita Sipos, et alDGGE and T-RFLP Analysis of Bacterial Succession during Mushroom Compost Production and Sequence-aided T-RFLP Profile of Mature Compost[J]. Microbial Ecology,2009,57(3):522-533
    [6]Andre F, Jaime R, Juanita F, et al. Biodegradation of Pinus radiate softwood by white-and brown-rot fungi[J]. World Journal of Microbiology and Biotechnology,2001,:31-34.
    [7]Angelika J, Anne P, Michael M, et al. Phosphorus removal from eutrophic lakes using periphyton on submerged artificial substrata[J].Hydrobiologia,2004,528(3):123-142.
    [8]Bach P D, Shoda M, Kubota H. Rate of composting of dewatered sewage sludge in continuously mixed isothermal reactor[J]. Fermentation Technology,1984,:285-292.
    [9]Baker Andy. Fluorescence properties of some farm wastes:implications for water quality monitoring[J]. Water Research,2002,36(1):189-195.
    [10]Boeriu C G, Bravo D, Gosselink R J A, et al. Characterisation of structure dependent functional properties of lignin with infrared spectroscopy[J]. Industrial Crops and Products, 2004,20(2):205-218.
    [11]Burie J R. Simplified and efficient method of computing generalized two-dimensional correlation spectroscopy[J].Applied Spectroscopy,1996,50(7):861-865.
    [12]Cahyani V R. Matsuya K. Asakawa S, et al. Succession and phylogenetic composition of bacterial communities responsible for the composting process of rice straw estimated by PCR-DGGE analysis[J].Soil Science and Plant Nutrition,2003,49(4):619-630.
    [13]Cegarra J, Alburquerque J A, Tortosa G, et al. Effects of the forced ventilation on composting of a solid olive-mill by-product managed by mechanical turning[J]. Waste Management, 2006,:1377-1383.
    [14]Chefetz B, Hadar Y, Chen Y. Dissolved organic carbon fractions formed during composting of municipal solid waste:properties and significance[J].Acta Hydrochim. Hydrobiol,1998, 26(3):172-179.
    [15]Chen W, Westerhoff P, Jerry A, et al. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J]. Environment Science and Technology,2003,37(24):5701-5710.
    [16]Chen M Y, Lee D J, Tay J H. Distribution of extracellular polymeric substances in aerobic granules [J]. Applied Microbiology Biotechnology,2007,73:1463-1469.
    [17]Cindy H, Nakatsu,Vigdis Torsvik, et al. Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products[J]. Soil Sci. Soc. AM.J,2000,64:1382-1388.
    [18]Claudio M, HEribert I. Community level physiological profiling as a tool to valuale compost maturity:a kinetic approach[J]. European Journal of Siol Biology,2003,39:141-149.
    [19]Clobe P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J].Marine Chemistry,1996,51(4):325-346.
    [20]Coble P G, Green S A, Blough N V, et al. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy[J]. Nature,1990,348(4):432-435.
    [21]Codd G A, Morrison L F, Metcalf J S. Cyanobacterial toxins:risk management for health protection [J].Toxicology and Applied Pharmacology,2004,203 (3):264-272.
    [22]Dinel H, Schnitzer M, Dumontet S.Compost Maturity:Chemical characteristics of extractable lipids[J]. Compost Science & Utilization,1996,4(2):16-25.
    [23]El Mastry H G. Utilization of egyptian rice straw in production of cellulases and microbial protein:effect of various pretreatments on yields of protein and enzyme activity[J]. Journal of the Science of Food and Agriculture,1983,34:725-732.
    [24]Ekinci K, Keener H M, Elwell D L. Composting short paper fiber with broiler litter and additives. Part I:effects of initial pH and carbon/nitrogen ratio on ammonia emission[J]. Compost Science& Utilization,2008,8(2):160-172.
    [25]Ferris M J, Nold S C, Revsbech N P, et al. Seasonal distributions of dominant 16S rRNA-defined populations in a hot spring microbial mat examined by denaturing gradient gel electrophoresis[J]. Applied Environmental Microbiology,1997,63(4):1367-1374.
    [26]Garcia-Aleman J, Dickson J M. Mathematical modeling of nanofiltration membranes with mixed electrolyte solutions[J]. Journal of Membrane Science,2004,235:1-13.
    [27]Goyal S, Dhull S K, Kapoor K K. Chemical and biological changes during composting of different organic wastes and assessment of compost maturity [J].Bioresource Technology, 2009,100(3):1004-1009.
    [28]Grube M, Lin J G, Lee P H, et al. Evaluation of sewage sludge-based compost by FTIR spectroscopy[J]. Geoderma,2006,130,324-333.
    [29]Hallegraeff G M. A review of harmful algal blooms and their apparent global increase[J]. Phycologia,32(2):79-99.
    [30]Hassen A,Beiguith K,Jedidi N,et al. Mcrobial Characterization during composting of Municipal solid waste[J].Bioresource Technology,2001,80(5):217-225
    [31]Hassen A, Belguith K, Jedidi N, et al. Microbial characterization during composting of municipal solid waste [J]. Bioresource Technology,2001:217-225.
    [32]Herrmann R F, Shann J F. Microbial community change during the composting of municipal solid waste[J]. Microbial Ecology,1997,33(1):78-85.
    [33]Hildrum K I, Isaksson T, Naes T, et al. Near-infrared spectroscopy bridging the gap between data analysis and NIR application[M]. New York:Ellis Horwood,1994.
    [34]Hinterstoisser B, Salmen L. Application of dynamic 2D-FTIR to cellulose[J]. Vibrational Spectroscopy,2000,22:111-118.
    [35]Hishikawa Y, Inoue S, Magoshi J, et al. Novel tool for characterization of noncrystalline regions in cellulose:a FTIR deuteration monitoring and generalized two-dimensional correlation spectroscopy [J].Biomacromolecules,2005,6:2468-2473.
    [36]Hua Rui, Sun Su-Qin, Zhou Qun,et al.Discrimination of Fritillary according to geographical origin with Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy [J]. Journal of Pharmaceutical and Biomedical Analysis,2003,33:199-209.
    [37]Huang G F, Wong J W C, Wu Q T, et al. Effect of C/N on composting of pig manure with sawdust [J]. Waste Management,2004,24(8):805-813.
    [38]Hudson N, Baker A, Ward D, et al. Can fluorescence spectrometry be used as a surrogate for the Biochemical Oxygen Demand (BOD) test in water quality assessment? An example from South West England[J]. Science of the Total Environment,2008,391(1):149-158.
    [39]Ichida J M, Krizova L, LeFevre C A, Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost[J]. Journal of Microbiological Methods,2001,47(2): 199-208.
    [40]Jung Y M, Shin H S, Kim S B, et al.2002. New approach to generalized two dimensional correlation spectroscopy.1:Combination of principal component analysis and two dimensional correlation spectroscopy t[J]. Applied Spectroscopy,2002,56,1562-1567.
    [41]Justin E, Birdwell, Kalliat T, et al. Characterization of dissolved organic matter in fogwater by excitatione-emission matrix fluorescence spectroscopy [J]. Atmospheric Environment, 2010,44(27):3246-3253.
    [42]Khalil A I, Beheary M S, Salem E M. Monitoring of microbial populations and their cellulolytic activities during the composting of municipal solid wastes[J]. World Journal of Microbiology and Biotechnology,2001,17(2):155-161.
    [43]Klemm D, Heublein B, Fink H P, et al. Cellulose:fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie,2005,44(22):3358-3393.
    [44]Knapp E B. C, N and microbial biomass inter relationship during the decomposition of wheat straw[J]. Soil Biology and Biochemistry,1989(15):455-461.
    [45]Kokot S, Czarnik-Matusewicz B, Ozaki Y. Two-dimensional correlation spectroscopy and principal component analysis studies of temperature dependent IR spectra of cotton cellulose[J]. Biopolymers,2002,67(6):456-469.
    [46]Konstantinov S R, Zhu W Y, W illiams B A, et al. Effect of fermentable carbohydrates on piglet facial bacterial communities as revealed by 16S ribosomal DNA [J]. FEMS Microbiology Ecology,2003,(43):225-235.
    [47]LaMontagne M G, Michel F C, Holden P A,et al. Evaluation of extraction and purification methods for obtaining PCR-ampifiable from compost for microbial community analysis [J]. Journal of Microbiological Methods,2002,49:255-264.
    [48]Lee S S, Ha J K, Cheng K J. Relative contributions of bacteria, protozoa, and fungi to in vitro degradation of orchard grass cell walls and their interactions[J]. Applied and Environmental Microbiology,2000,66(9):3807-3813.
    [49]Liu R G,Yu H, Huang Y. Structure and morphology of cellulose in wheat straw [J]. Cellulose, 2005,12(1):25-34.
    [50]Marhuenda-Egea F C, Martinez-Sabater E, Jorda J, et al.Dissolved organic matter fractions formed during composting of winery and distillery residues:Evaluation of the process by fluorescence excitation-emission matrix[J].Chemosphere,2007,68(2):301-309.
    [51]Marhuenda-Egea F C, Martinez-Sabater E, Jorda J, et al.Dissolved organic matter fractions formed during composting of winery and distillery residues:Evaluation of the process by fluorescence excitation r emission matrix[J]. Chemosphere,2007,68(2):301-309.
    [52]Mecozzi M, Pietrantonio E, Pietroletti M. The roles of carbohydrates, proteins and lipids in the process of aggregation of natural marine organic matter investigated by means of 2D correlation spectroscopy applied to infrared spectra[J].Molecular and Biomolecular Spectroscopy,2009,71(5):1877-1884.
    [53]Meunchang S, Panichsakpatana S, Weaver R W. Co-composting of filter cake and bagasse by producets from a sugar mill[J]. Bioresource Technology,2005,96(4):437-442.
    [54]Muyzer G, Smalla K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology[J]. Antonie Van Leeuwenhoek,1998,(73):127-141.
    [55]Muyzer G, Wall E C, Uitterlinden A G Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. Applied and Envirournental Microbiofogy,1993,59(2):695-700.
    [56]Muyzer G DGGE/TGGE a method for identifying genes from natural ecosystem[J]. Current Opinion in Microbiology,1999,:317-322.
    [57]Neu T R, Kuhlicke U, Lawrence J R. Assessment of fluorochromes for two photon laser scanning microscopy of biofilms[J]. Applied and Environmental Microbiology,2002,68: 901-909.
    [58]Ngh A, Sharma S. Effect of microbial inocula on solid waste composting, vermicomposting and plant response[J]. Compost Science and Utilization,2003,11(3):190-199.
    [59]Noda I. Generalized two-dimensional correlation method applicable to infrared, raman and other types of spectroscopy[J].Applied Spectroscopy,199,47(9):1329-1336.
    [60]Pastuszewska B, Jableckib G, Buraczewska L, et al.The protein value of differently processed rapeseed solvent meal and cake assessed by in vitro methods and in tests with rats[J].Animal Feed Science and Technology,2003,106:175-188.
    [61]Plaza C, Senesi N, Brunetti G, et al. Evolution of the fulvic acid fractions during co-compos-ting of olive oil mill wastewater sludge and tree cuttings [J].Bioresource Technology,2007, 98,:1964-1971.
    [62]Provenzano M R, De Oliveira S C, Silva M R S, et al.Assessment of maturity degree of composts from domesticsolid wastes by fluorescence and fourier transform infrared spectroscopies[J]. Journal of Agricultural and Food Chemistry,2001,49(12):5874-5879.
    [63]Ravindran B, Sekaran G. Bacterial composting of animal fleshing generated from tannery industries[J].Waste Management,2010,(30):2622-2630.
    [64]Reveille V, Mansuy L, Jarde E, et al. Characterization of sewage sludge-derived organic matter:lipids and humic acids[J].Organic Geochemistry,2003,34 (4):615-627.
    [65]Santamaria-Romero S, Ferrera-Cerrato R. Dynamics and relationships among microorg-anisms, C-organic and N-total during composting and vermicomposting[J]. Agrociencia, 2001,35:377-383.
    [66]Shao Z H, He P J, Zhang D, et al. Characterization of water-extractable organic matter during the biostabilization of municipal solid waste[J]. Journal of Hazardous Materials,2009,164 (2-3):1191-1197
    [67]Si Roncero M B, Torres A L, Colom J F, et al. TCF bleaching of wheat straw pulp using ozone and xylanase, Part A:paper quality assessment[J]. Bioresource Technology,2003,87 (3):305-314.
    [68]Smidt E, Lechner P, Schwanninger M, et al.Characterization of waste organic matter by FT-IR spectroscopy:application in waste science[J]. Applied Spectroscopy,2002,56(9):1170-1175.
    [69]Smidt E, Meissl K. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management[J]. Waste Manage,2007,27:268-276.
    [70]Smole M S, Pesin Z, Kreze T, et al. X-ray study of pretreated regenerated cellulose fibres[J].Materials Research Lnnovations,2003,7(5):275-282.
    [71]Sosulski K, Sosulski F W. Enzyme-aided vs. two-stage processing of canola:technology, product quality and cost evaluation[J] Journal of the American Oil Chemists Society,1993, 70(9):825-829.
    [72]Takaku H, Kodaira S, Kimoto A, et al. Microbial communities in the garbage composting with rice hull as an amendment revealed by culture-dependent and-independent approaches [J]. Journal of Bioscience and Bioengineering,2006,101(1):42-50.
    [73]Tang Zhu, Yu Guanghui, Liu Dongyang, et al. Different analysis techniques for fluorescence excitation-emission matrix spectroscopy to assess compost maturity [J]. Chemosphere,2011, 82:1202-1208.
    [74]Tiquia S M, Wan J H C, Tam N F Y. Microbial population dynamics and enzyme activities during composting[J]. Compost Science and Utilization,2002,10(2):151-160.
    [75]Tiquia S M. Microbiological parameters as indicators of compost maturity[J]. Journal of Applied Microbiology,2005,99:816-828.
    [76]Tuomela M, Oivanenl P, Hatakka A. Degradation of synthetic 14C-lignin by various white r rot fungi in soil[J]. Soil Biology & Biochemistry,2002,34:1613-1620.
    [77]Ueno Y, Haruta S, Ishii M, et al. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost[J].Applied Microbiology and Biotechnology, 2001,57(4):555-562.
    [78]Wang R H, Shaarani S M, Godoy L C, et al. Bioconversion of rapeseed meal for the production of a generic microbial feedstock[J].Enzyme and Microbial Technology,2010, 47(3):77-83.
    [79]Wei Z M, Xi B D. The fluorescence characteristic changes of dissolved organic matter during municipal solid waste composting[J]. Journal of Environmental Seience,2005,17(6):953-956.
    [80]Wong J W C, Mak K F, Chan N W, et al. Co-composting of soybean residues and leaves in Hong Kong [J]. Bioresource Technology,2001,76:99-106.
    [81]Woods End Research. Guide to Sovita testing for compost maturity index[J]. Compost Manual,2002,11:1-8.
    [82]Wu F C, Tanoue E. Molecular mass distribution and fluorescence characteristics of dissolved organic ligands for copper(II) in Lake Biwa, Japan[J]. Organic Geochemistry,2001,32(1): 11-20.
    [83]Wu Y H, Philip G, Kerr, et al. Removal of cyanobacterial bloom from a biopond-wetland system and the associated response of zoobenthic diversity[J]. Bioresource Technology,2010, 101(11):3903-3908.
    [84]He X S, Xi B D, Wei Z M, et al. Fluorescence excitation-emission matrix spectroscopy with regional integration analysis for characterizing compos-ition and trans-formation of dissolved organic matter in landfill leachates[J]. Journal of Hazardous Materials,2011(190): 293-299.
    [85]Yu G H, Juang Y C, Lee D J, et al. Enhanced aerobic granulation with extracellular polymeric substances (EPS)-free pellets[J]. Bioresource Technology,2009,100:4611-4615.
    [86]Yu G H, Luo Y H, Wu M J, et al. PARAFAC modeling of fluores-ceence excitation-emission spectra for rapid assessment of compost maturity [J]. Bioresource Technology,2010, 101(21):8244-8251.
    [87]Yu G H, Tang Z, Xu, Y C, et al. Multiple fluorescence labeling and two dimensional FTIR-13C NMR heterospectral correlation spectroscopy to characterize extracellular polymeric substances in biofilms produced duringcomposting[J].Environmental Science and Technology,2011,45:9224-9231.
    [88]Yu G H, He P J, Shao L M. Novel insights into sludge dewaterability by fluoresceence excitation-emission matrix combined with parallel factor analysis[J].Water Research,2010 (44):797-806.
    [89]Yu G H, He P J, Shao, LM, et al. Extracellular proteins, polysaccharides and enzymes impact on sludge aerobic digestion after ultrasonic pretreatment[J]. Water Research,2008,42,1925-1934.
    [90]Yu Z T,Mark Morrison. Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis [J]. Applied and Environmental Microbiology,2004,8:4800-4806.
    [91]Zhang Y L, Chen J B, Lei Y, et al. Evaluation of different grades of ginseng using Fourier-transform infrared and two-dimensional infrared correlation spectroscopyp[J]. Journal of Molecular Structure,2010(974):94-102.
    [92]Zhao Q Y, Dong C X, Yang X M, et al. Biocontrol of Fusarium wilt disease for Cucumis melo melon using bio-organic fertilizer[J]. Applied Soil Ecology,2011,47(1):67-75.
    [93]边才苗,施时迪.土壤细菌DNA的抽提及分析[J].浙江师范大学学报(自然科学版),2002,25(1):56-61.
    [94]陈刚,彭健,刘振利,等.中国菜籽饼粕品质特征及其影响因素研究[J].中国粮油学报,2006,21(1):95-98.
    [95]陈国珍,黄贤智.荧光分析法[M],北京:科学出版社,1990.
    [96]陈嘉川,谢益民,李彦春.天然高分子科学[M].北京:科学出版社,2008,:122-240.
    [97]陈银节,缪九军,张宗元.三维荧光光谱的油气指示意义[J].天然气地球科学,2005,16(1):69-72.
    [98]陈中举,张燕玲.荧光标记生物大分子及其应用[J].国外医学生物医学工程分册,2004,27(6):348-352.
    [99]崔宗均,宫小燕,李国学.变性梯度凝胶电泳在堆肥微生物研究中的应用[J].微生物学通报,2004,31(5):116-119.
    [100]崔宗均,李美丹,朴哲,等.一组高效稳定纤维素分解菌MC1的筛选及功能[J].环境科学,2002,23(3):36-39.
    [101]邓晶,杜昌文,周健民,等.红外光谱在土壤学中的应用[J].土壤,2008,40(6):872-877.
    [102]丁传雨,乔焕英,沈其荣,等.生物有机肥对茄子青枯病的防治及其机理探讨[J].中国农业科学,2012,45(2):239-245.
    [103]董加宝,张长贵,王祯旭.食用菜籽蛋白研究及应用[J].粮食与油脂,2005,12:11-13.
    [104]段旭光,曾雷,付美云,等.红外光谱对有机废弃物堆肥的监测研究[J].湖南农业科学,2009,5:74-76.
    [105]范雪芳,徐淼,王帅,等.红外光谱分析技术及其应用[J].成都医学院学报,2009,4(3):217-220.
    [106]冯明谦,刘德明.滚筒式高温堆肥中微生物种类数量的研究[J].中国环境科学,1999,19(6):490-492.
    [107]傅平青,刘丛强,吴丰昌.溶解有机质的三维荧光光谱特征研究[J].光谱与光谱分析,2005,25(12):2024-2028.
    [108]傅平青,刘丛强,尹祚莹,等.腐殖酸三维荧光光谱特性研究[J].地球化,2004,33(3):301-308.
    [109]宫玉胜.复合菌剂的筛选及在蓝藻堆肥上的应用[A].安徽大学,2010.
    [110]郭群召,吴学巧.烟田施用菜子饼肥对土壤酶活性及烟叶质量的影响[J].中国农学通报,2006,22(12):380-382.
    [111]韩士群,严少华,王震宇,等.太湖蓝藻无害化处理资源化利用[J].自然资源学报,2009(3):431-438.
    [112]胡皆汉.实用红外光谱学[M].北京:科学出版社,2011.
    [113]黄安民,周群,徐明,任等.白腐菌腐朽毛竹的二维相关光谱分析[A].第十五届全国分子光谱学术报告会论文集[C],2008.
    [114]黄国锋,吴启堂,黄焕忠.有机固体废弃物好氧高温堆肥化处理技术[J].中国农业生态学报,2003(1):159-161.
    [115]黄红丽,曾光明,黄国和,等.郁红艳堆肥中木质素降解微生物对腐殖质形成的作用[J].中国生物工程学报,2004,24(8):29-31.
    [116]江欢欢,程凯,杨兴明,等.辣椒青枯病拮抗菌的筛选及其生物防治效应[J].土壤学报,2010,47(6):1225-1231.
    [117]蒋小芳,罗佳,黄启为,等.不同原料堆肥的有机无机复混肥对辣椒产量和土壤生物性状的影响[J].植物营养与肥料,2008,14(4):766-773.
    [118]雷猛,冯新泸,何滔,等.广义二维相关光谱技术及其应用[J].光谱实验室,2008,9(5):996-1002.
    [119]李国学,张福锁.固体废物堆肥化与有机复混肥生产[M].北京:化学工业出版社,2000.
    [120]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    [121]李吉进.畜禽粪便高温堆肥机理与应用研究[D].北京:中国农业大学,2004.
    [122]李霞,滕晓云.X射线衍射原理及在材料分析中的应用[J].物理通报,2008(9):58-59.
    [123]李自刚.农业有机固体废弃物堆肥过程中微生物多样性与物质转化关系研究[D].南京:南京农业大学,2006.
    [124]梁越敢,郑正,汪龙眠,等.干发酵对稻草结构及产沼气的影响中国环境科学[J].中国环境科学,2011,31(3):417-422.
    [125]林剑,赵广杰,孟令萱,等.利用X射线衍射技术与红外光谱分析真菌侵蚀的木材[J].光谱学与光谱分析,2010,30(6):1674-1677.
    [126]刘杰,韩卿.红外光谱技术在木素结构研究中的应用[J].江苏造纸,2010,9(3):25-30.
    [127]刘军,朱文优.菜籽粕发酵饲料的研制[J].食品与发酵工业,2007,:69-71.
    [128]刘粤惠,刘平安.X射线衍射分析原理与应用[M].北京:化学工业出版社,2003.
    [129]刘志宏,蔡汝秀.三维荧光光谱技术分析应用进展[J].分析科学学报,2000,16(6):516-523.
    [130]马礼敦.近代X射线多晶体衍射—实验技术与数据分析[M].北京:化学工业出版社,2004.
    [131]莫舒颖.蔬菜残株堆肥化利用技术研究[M].北京:中国农业科学院,2009.
    [132]牛俊玲,高军侠,李彦明,等.堆肥过程中的微生物研究进展[J].中国生态农业学报,2007,15(6):185-189.
    [133]钮琰星,黄凤洪,倪光远,等.菜籽粕的饲用现状和饲用改良技术发展趋势[J].中国油脂, 2009,05:4-7.
    [134]欧阳建新,施周,崔凯龙,等.微生物复合菌剂对污泥好氧堆肥过程的影响[J].中国环境科学.2011,31(2):253-258.
    [135]潘彦斌,赵勇,张福义.红外指纹区特点及解析[J].现代仪器,2000,:11-3.
    [136]彭小华,王建军,张立伟.菜籽饼粕中的抗营养因子变化机理及对动物营养的影响[J].江西饲料,2002,5:1-14.
    [137]齐云,陈飞,袁月祥,等.一株能分解纤维素的高温耐碱放线菌[J].应用与环境生物学报,2003,9(3):322-325.
    [138]任小利,王丽萍,徐大兵,等菜粕堆肥与无机肥配施对烤烟产量和品质以及土壤微生物的影响[J].南京农业大学学报,2012,35(2):92-98.
    [139]申婷婷,付常璐,牟宗刚,等.二维红外相关光谱法的分析[J].济南大学学报,2007,21(2):124-129.
    [140]沈其荣,王瑞宝,王岩,等.堆肥制作中的生物化学变化特征[J].南京农业大学学报,1997,:51-57.
    [141]沈银武,刘永定,吴国樵.富营养湖泊滇池水华蓝藻的机械清除[J].水生生物学报,2004,28(2):131-135.
    [142]石春芝,蒲一涛,郑宗坤,等.垃圾堆肥接种固氮菌对堆肥含氮量的影响[J].应用与环境生物学报,2002,8(4):419-421.
    [143]史玉英,沈其荣,娄无忌,等.纤维素分解菌群的分离和筛选[J].南京农业大学学报,1996,19(3):59-62.
    [144]孙宏.微生物发酵法对菜粕脱毒及蛋白质改良的研究[M].武汉:华中农业大学,2009.
    [145]孙石,许晓毅,毕晓伊,等.滇池水体除藻材料的除藻作用试验研究[J].安全与环境学报,2004,:2-6.
    [146]万忠梅,吴景贵.土壤酶活性影响因子研究进展西北农林科技大学学报(自然科学版)[J].2005,33(6):87-92.
    [147]王朝晖.竹材材性变异规律与加工利用研究[D].北京:中国林业科学研究院,2001
    [148]王春铭,卢建文,雷恒毅,等.城市污泥堆肥过程中微生物研究[J].生态环境,2007,16(2):462-466.
    [149]王利娟.蓝藻快速好氧堆肥的研究[D].无锡:江南大学,2009.
    [150]王琪,胡鑫尧.三维光谱学-二维红外光谱和时间分辨光谱[J].光谱学与光谱分析,2000,20(2):176-179.
    [151]王秋君,张小莉,罗佳,等.不同有机无机复混肥对小麦产量、氮效率和土壤微生物多样性的影响[J].植物营养与肥料学报,2009,15(5):1003-1009.
    [152]王晟,徐祖信.从生态学观点看湖泊藻类控制的技术体系[J].上海环境科学,2003,22 (5):333-335.
    [153]王伟东,崔宗均,杨洪岩,等.高效稳定纤维素分解菌复合WSC-6的稳定性研究[J].中国环境科学,2005,25(5):567-571.
    [154]王伟东.木质纤维素快速分解复合系及有机肥微好氧新工艺[D].北京:中国农业大学.
    [155]王亚静,毕于运,高春雨.中国秸秆资源可收集利用量及其适宜性评价[J].中国农业科学,2010,43(09):1852-1859.
    [156]王永红,冉炜,张富国,等.混合菌种固体发酵菜粕生产氨基酸肥料的条件研究[J].中国农业科学,2009,42(10):3530-3540.
    [157]卫亚红,梁军锋,黄懿梅,等.家畜粪便好氧堆肥中主要微生物类群分析[J].中国农学通报,2007,23(11):242-248.
    [158]魏周君.基于傅里叶变换红外光谱分析的火灾气态产物定量监测技术研究[D].合肥:中国科学技术大学,2009.
    [159]魏自民,李英军,席北斗,等.三阶段温度控制接种法对堆肥有机物质变化影响[J].环境科学,2008,:540-544.
    [160]吴昊.X射线衍射及应用[J].沈阳大学学报(自然科学版),1995,:7-12.
    [161]吴景贵,吕岩,王明辉,等.有机肥腐解过程的红外光谱研[J].究植物营养与肥料学报,2004,10(3):259-266.
    [162]吴景贵,席时权,姜岩.红外光谱在土壤有机质研究中的应用[J].光谱学与光谱分析,1998,18(1):52-57.
    [163]吴强,王静.二维相关分析光谱技术[J].化学通报,2000,:45-53.
    [164]吴秋珏,张剑峰,田金可,等.畜禽舍粪便污染及生物技术在治理中的应用[A].畜牧业环境、生态、安全生产与管理——2010年家畜环境与生态学术研讨会论文集[C],2010.
    [165]李秀艳,吴星五,高廷耀,等.接种高温菌剂的生活垃圾好氧堆肥处理[J].同济大学学报,2004,32(3):367-371.
    [166]吴正松,彭绪亚,蔡华帅,等.微生物在堆肥化中的应用研究[J].重庆建筑大学学报,2005,27(1):92-96.
    [167]武晓丹,金哲雄,孙素琴,等.七种不同产地仙鹤草原药材及提取物的红外光谱与二维相关红外光谱的分析与鉴定[J].光谱学与光谱分析,2010,30(12):3223-3227.
    [168]武雪萍,刘国顺,郭平毅,等.饼肥中的有机营养物质及其在发酵过程中的变化[J].植物营养与肥料学报,2003,9(3):303-307.
    [169]席北斗,党秋玲,魏自民,等.生活垃圾微生物强化堆肥对放线菌群落的影响[J].农业工程学报,2011,27(1):227-232.
    [170]席北斗,刘鸿亮,白庆中,等.堆肥中纤维素和木质素的生物降解研究现状[J].环境污染治理技术与设备,2002,(3):19-23.
    [171]席北斗,刘鸿亮,孟伟,等.王庆生高效复合微生物菌群在垃圾堆肥中的应用[J].环境科学,2001,22(05):122-125.
    [172]席鹏彬,马永喜,李德发,等.中国菜籽饼粕化学组成特点及其影响因素的研究[J].中国畜牧杂志,2004,10(40):12-15.
    [173]杨翠云,刘苏静,周世伟,等.微囊藻毒素对微生物的生态毒理学效应研究进展[J].生态毒理学报,2009,4:602-608.
    [174]杨天学.生活垃圾与畜禽粪便混合堆肥工艺参数优化研究[D].哈尔滨:东北农业大学,2009.
    [175]杨新萍.X射线衍射技术的发展和应用[J].山西师范大学学报,2007,12(1):72-76.
    [176]叶代勇,黄洪,傅和青,等.纤维素化学研究进展[J].化工学报,2006,57(8):1782-1791.
    [177]尹永强,何明雄,韦峥宇,等.堆肥腐熟机理研究进展[J].安徽农业科学,2008,36(23):10053-0055.
    [178]郁红艳,曾光明,牛承岗,等.细菌降解木质素的研究进展[J]环境科学与技术,2005,28(2):104-108.
    [179]郁露,孙素琴,周群,等.白芥子炒制过程的红外及二维相关光谱研究[J].光谱学和光谱分析,2006,12(26):2181-2185.
    [180]袁秀云,张仙云.不同肥料对烤烟根系发育及其生理活性的影响[J].山西师范大学学报(自然科学版),2002,3:64-68.
    [181]岳兰秀,吴丰昌,刘丛强,等.红枫湖和百花湖天然溶解有机质的分子荧光特征与分子量分布的关系[J].科学通报,2005,50(24):2774-2780.
    [182]曾光明,黄国和,袁兴中,等.堆肥环境生物与控制[M].北京:科学出版社,2006,1-10.
    [183]张丰松,李艳霞,杨明,等.畜禽粪便堆肥溶解态有机质三维荧光光谱特征及Cu络合[J].农业工程学报,2011,27(1):314-319.
    [184]张平平,刘宪华.纤维素生物降解的研究现状与进展[J].天津农学院学报,2004,11(3):48-54.
    [185]张树清,张夫道,刘秀梅,等.高温堆肥对畜禽粪中抗生素降解和重金属钝化的作用[J].中国农业科学,2006,39(2):337-343.
    [186]张彤,方汉平.微生物分子生态技术:16SrRNA/DNA[J].微生物学通报,2003,30(2):97-101.
    [187]张相锋,王洪涛,聂永丰,等猪粪和锯末联合堆肥的中试研究[J].农村生态环境,2002,18(4):19-22.
    [188]张小莉,孟琳,王秋君,等.不同有机无机复混肥对水稻产量和氮素利用率的影响[J].应用生态学报,2009,20(3):624-630.
    [189]张勇涛.有机固体废弃物堆肥的腐熟度研究[D].杨凌:西北农林科技大学,2007.
    [190]张宗舟.论菜籽饼的理化与微生物脱毒[J].甘肃农林科技,2002,:6-7.
    [191]中华人民共和国国家统计局.中国统计年鉴2009年[M].北京:中国统计出版社,2010.
    [192]中华人民共和国农业部.NY525-2011有机肥料[S].北京:中国标准出版社,2011.
    [193]周航,黎青,杨文叶,等.有机肥配施化肥对毛竹产量和土壤养分的影响.安徽农业科学,2012,40(14):2108-2109,2146.
    祝虹煜,何小松,吴修所,等.荧光光谱技术在堆肥腐熟度评价中的应用[J].环境污染与防治,2010,32(6):69-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700