用户名: 密码: 验证码:
钢管混凝土桥墩在长联矮墩连续刚构桥中的应用与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几十年来,多跨连续刚构桥以其自身的优势在我国得到广泛的应用,它是利用主墩的柔性来适应上部结构的纵向变形。由于该结构为墩梁固结体系,对温度变化、混凝土的收缩徐变、汽车制动力、水平地震力等因素产生的次内力相当敏感,而且联长越长,桥墩越低,产生的次内力也越大,对桥墩受力极为不利,甚至导致结构形式不成立。因此,连续刚构的应用在一定程度上受到了联长和墩高的制约。钢管混凝土结构是在钢管中填充素混凝土而形成的一种组合结构,它将钢材和混凝土两种材料结合起来,相互弥补对方的缺点,充分发挥各自的优点,是一种较为理想的组合型式。该结构具有承载力高,截面尺寸小、施工方便、经济效益好、塑性和韧性好、耗能能力强、抗震性能好等优点。目前,在桥梁工程中钢管混凝土结构多用于拱桥的拱肋,而用于桥墩的实例较少。
     本文针对长联矮墩连续刚构桥中矮墩的受力特点,结合钢管混凝土结构的优势,提出采用钢管混凝土结构作为此类刚构桥的墩柱,以解决长联矮墩连续刚构桥中矮墩的技术难题,进一步扩大连续刚构桥的适用范围。本文对此展开相应的研究,主要内容如下:
     1、介绍了钢管混凝土结构的刚度计算方法,即基于叠加理论的换算刚度和基于统一理论的组合刚度,计算了圆形和方形截面在不同钢材牌号、混凝土标号和含钢率时两种刚度的差值百分比,并分析这些参数对该差值百分比的影响,得到常用钢号及混凝土标号下两种刚度之间的误差分布范围。本文提出了“临界含钢率”,根据实际含钢率和临界含钢率的大小关系,从而可以方便快速地判定两种刚度间的相互关系以及因采用换算刚度给计算结果带来的偏差,使设计人员做到心中有数,有的放矢。
     2、在假定墩底与基础固结,墩顶只允许产生水平位移而无转角的力学模式下,基于能量法和并联刚度集成理论提出了四肢钢管混凝土桥墩的抗推刚度理论公式,根据该公式对圆形和方形钢管混凝土桥墩的抗推刚度进行了比较。
     3、以渭河大桥为工程背景,采用有限元软件Midas civil对钢管混凝土桥墩和钢筋混凝土桥墩进行了静力对比分析,比较两种桥墩在适应上部结构变形、结构内力分配、材料用量等方面的差异,得出钢管混凝土桥墩的抗推刚度比同等条件下钢筋混凝土桥墩的抗推刚度更小,更能适应上部结构的变形,结构受力更加均衡,材料用量更少,工程造价更低,建议可以作为长联矮墩连续刚构桥中合理的桥墩形式予以推广。对钢管混凝土桥墩的合理墩高适用范围进行了探讨,对不同墩高情况下连续刚构桥墩的组合形式提出了一些建议。
     4、采用有限元软件Midas civil对钢管混凝土桥墩和钢筋混凝土桥墩分别进行了弹性反应谱分析和非线性动态时程分析,对其抗震性能进行了比较,利用XTRACT程序计算了不同轴压比下两种桥墩塑性铰区截面的弯矩-曲率曲线,得到曲率延性系数,结合时程分析计算得到的桥墩塑性铰区弯矩-转角滞回曲线,对两种桥墩的延性和耗能性进行了对比分析。结果表明,钢管混凝土桥墩可以大大降低结构的地震响应,具有更好的延性和吸能性,有利于结构抗震,可以作为高地震烈度区桥梁墩柱的理想形式。
In recent decades, multi-span continuous rigid frame bridge with its own advantages hasbeen widely used in our country, it uses the flexibility of the pier to adapt to the longitudinaldeformation of the superstructure. As a result of pier girder consolidation, structure is verysensitive to the secondary internal force which is caused by temperature change, concreteshrinkage and creep, automobile braking force, and horizontal seismic force, etc.. The longercontinuous span and the lower pier will lead to the greater secondary internal force, it isextremely unfavorable to the pier and even leads to the structural form is not established.Therefore, the application of continuous rigid frame bridge has been constrained by thecontinuous length and pier height in a certain extent. The concrete-filled steel tubularstructure is formed by a combination of plain concrete filled steel tube structure. It combinestwo materials of steel and concrete to mutually compensate for each other's shortcomings andgive full play their respective advantages, is a relatively ideal type of combination.Thestructure has the advantages of high capacity, small cross-section size, easy construction, goodeconomic returns, good ductility and toughness, strong energy consumption ability, goodseismic performance, etc. At present, in bridge engineering, the concrete-filled steel tubularstructure mostly used for arch rib of the arch bridge and few examples for the bridge piers.
     For the mechanical characteristics of low pier in long span and low pier continuous rigidframe bridge, combined with the advantages of concrete filled steel tubular structure, it wasproposed as pier column of such rigid frame bridge in this paper, to solve the technicalproblems of low pier and to further expand the application scope of the continuous rigid framebridge. So corresponding researches were carried out in this paper, the main contents are asfollows:
     1、Stiffness calculation methods of the concrete-filled steel tubular structure that areconversion stiffness based on the superposition theory and combined stiffness based on theunified theory were introduced. Calculation of the error between the two stiffness for roundand square section with different steel grade, concrete grade, steel ratio, and analysis of theimpact of these parameters on the error were completed, so to get the error range between the two stiffness with the commonly steel grade and concrete grade."Critical steel ratio" was putforward in this paper, according to the relationship between actual steel ratio and critical steelratio, the designers can easily and quickly determine the relationship between the twostiffness and the deviation of calculation results due to using conversion stiffness, they canaccomplish know fairly well and shoot the arrow at the target.
     2、In the hypothetical mechanical mode that the end of the pier and foundation areconsolidated, the top of the pier is only allowed to produce horizontal displacement withoutangular displacement. Based on the energy method and the parallel stiffness integration theory,the theory formula of thrust stiffness of the four-columns steel tube concrete piers wasproposed, then by the formula thrust stiffness between round and square section wascompared.
     3、Taking Weihe bridge as the engineering background, by the finite element softwareMidas civil, the static behaviors of the steel tube concrete piers and reinforced concrete pierswere comparatively analyzed,the two piers were compared in adapting to the upper structuraldeformation, the internal force distribution, the amount of material and other differences.Concluded that compared with the reinforced concrete piers under the same conditions, thesteel tube concrete piers had smaller thrust stiffness, better ability to adapt to the upperstructural deformation, more balanced structure force, less material consumption, and lowerproject cost, it is suggested that steel tube concrete pier can be used as reasonable pier formfor long span and low pier continuous rigid frame bridge to promote.The reasonableapplication scope of the steel tube concrete piers was discussed, and some suggestions forcombination of continuous rigid frame bridge piers under the conditions of different pierheights were proposed.
     4、According to elastic response spectrum analysis and dynamic time-history analysis bythe finite element software Midas civil, the seismic performances of steel tube concrete piersand reinforced concrete piers were compared. The moment-curvature curves in plastic hingezone of two kinds of bridge piers under different ratio of axial compression stress to strengthwere calculated by XTRACT program, then the curvature ductility factors were obtained,combined with the moment-rotation hysteretic curves calculated by the time-history analysis, ductility and energy dissipation capability of two kinds of piers were comparatively analyzed.The results show that steel tube concrete piers can greatly reduce the seismic response ofstructure, and have better ductility and energy absorbing capability, they are conducive toaseismic structure and can be used as the ideal pier form in high earthquake intensity zone.
引文
[1]马保林.高墩大跨连续刚构桥[M].北京:人民交通出版社,2001
    [2]朱尔玉,刘磊,兰巍,等.现代桥梁预应力结构[M].北京:清华大学出版社,2008
    [3]陈建伟.薄壁高墩大跨连续刚构若干关键问题研究[D].杭州:浙江大学,2006
    [4]刘进.高墩大跨刚构桥桥墩静力非线性与稳定性研究[D].长沙:湖南大学,2004
    [5]陈密.高墩大跨连续刚构关键技术研究[D].成都:西南交通大学,2005
    [6]张亚军.高墩大跨连续刚构桥稳定性分析[D].西安:长安大学,2007
    [7]李清菲.高墩大跨径连续刚构桥仿真分析[D].兰州:兰州交通大学,2009
    [8]王应槐.高墩大跨连续刚构桥静动力及稳定性研究[D].长沙:长沙理工大学,2009
    [9]黄列夫.高墩大跨连续刚构桥的设计与研究[D].长沙:湖南大学,2007
    [10]邬晓光,邵新鹏,万振江.刚架桥[M].北京:人民交通出版社,2001
    [11]周军生,楼庄鸿.大跨径预应力混凝土连续刚构桥的现状和发展趋势[J].中国公路学报,2000,13(1):31-37
    [12]杨高中,杨征宇,周军生,等.连续刚构桥在我国的应用和发展[J].公路,1998(6):1-7
    [13]范立础.预应力混凝土连续梁桥[M].北京:人民交通出版社,1988
    [14]陈素君.高墩大跨径刚构桥的设计与施工监控研究[D].湖南:湖南大学,2003
    [15]李衡山.大跨高墩连续刚构桥墩截面研究[D].湖南:湖南大学,2004
    [16]马庭林,陈克坚,徐勇.南昆铁路清水河大桥预应力连续刚构主桥施工设计[J].桥梁建设,1997,27(3):12-18
    [17]金峰,刘斌.高墩大跨度连续刚构桥结构特点及施工控制[J].中国港湾建设,2005,136(3):40-43
    [18]陈素君.高墩大跨连续刚构桥的设计与施工监控[J].公路,2003(3):86-88
    [19]黄列夫.羊里大桥高墩关键技术问题研究[J].湖南水利水电,2003,128(6):10-12
    [20]潘可明.东莞水道大跨矮墩连续刚构桥的设计实践[J].特种结构,2008,25(5):64-68
    [21]王文涛.刚构-连续组合梁桥[M].北京:人民交通出版社,1997
    [22]陈应陶.大跨度刚构-连续梁组合体系研究与分析[D].成都:西南交通大学,2005
    [23]柯亮亮.刚构-连续组合梁桥结构分析[D].西安:长安大学,2009
    [24]赵宝俊.刚构-连续组合梁桥下部结构刚度与体系的适应性分析[D].西安:长安大学,2007
    [25]张通.大跨刚构-连续梁桥的全寿命性能监测与分析[D].哈尔滨:哈尔滨工业大学,2008
    [26]高宏伟.刚构-连续组合梁桥0#块应力分析[D].西安:长安大学,2007
    [27]刘海鹏.高墩长联大跨径刚构-连续组合梁桥桥型研究[J].路基工程,2010(5):91-93
    [28]刘沐宇,杜细春.多跨PC刚构-连续组合梁桥的合拢次序分析[J].武汉理工大学学报,2007,29(6):107-110
    [29]周翰斌,钱门友.长联多跨预应力混凝土刚构-连续梁桥的合龙施工[J].交通科技,2004(5):57-59
    [30]陈列,徐公望.高墩大跨预应力混凝土梁桥桥式方案及合拢顺序选择[J].桥梁建设,2005(1):33-35
    [31]房卫民,张世霖,万科峰.大跨径刚构-连续组合体系梁式桥五跨一次合拢工艺[J].中南公路工程,1995(3):25-34
    [32]阎陈苗.刚构-连续组合梁桥变性分析及控制[D].西安:长安大学,2006
    [33]钱登朝.高墩大跨刚构-连续组合梁桥关键技术研究[D].西安:长安大学,2006
    [34]张立江.王万联络线松花江大桥主桥设计[J].铁道标准设计,2005(6):31-33
    [35]罗珂,欧阳平.香江圩郁江大桥桥型方案设计[J].广西交通科技,2000,25(12):43-46
    [36]曾照亮,王勇,张安国.高墩大跨超长联连续刚构桥设计[J].公路工程,2008,33(4):103-104
    [37]李杰.钢管混凝土高墩连续刚构桥施工期稳定性及可靠度分析[D].长沙:长沙理工大学,2009
    [38]李海泉.钢管混凝土叠合式桥墩有限元分析[D].成都:西南交通大学,2009
    [39]刘明虎.改善矮主墩连续刚构结构受力的措施及可行性探讨[J].公路交通科技,2004,21(1):77-80
    [40]林颖,凌怀强,陈炜针.连续刚构桥梁主墩设计浅析[J].公路,2004(2):39-42
    [41]陈福寿.矮墩连续刚构桥的实现[J].公路,2004(6):84-86
    [42]吴彪.矮墩连续刚构桥合龙段的顶推施工[J].公路,2004(7):64-68
    [43]余郁.矮墩连续刚构桥的优化初探[J].市政技术,2009,27(6):569-571
    [44]许航,张召斌.对四片薄壁墩连续刚构可行性的探讨[J].公路,2001(7):73-76
    [45]车颖琪,廖小军,麦深林.连续刚构的矮墩及0#块受力分析[J].公路交通技术,2008(1):81-84
    [46]魏朝柱.流溪河特大桥125m连续刚构设计及技术特点[J].公路交通科技(应用技术版),2010(11):317-320
    [47]谢跃军.一跨津塘公路大桥预应力混凝土刚构设计[J].铁道标准设计,2003(8):63-66
    [48]陈礼榕.大跨矮墩连续刚构地震响应分析[J].四川建筑,2010,30(3):122-123
    [49] Kloppel V K, Goder W. An Investigation of the Load Carrying Capacity ofConcrete-Filled Steel Tubes and Development of Design Formula[J]. Der Stahlbau,1957a,26(1):1-10
    [50] Kloppel V K, Goder W.An Investigation of the Load Carrying Capacity ofConcrete-Filled Steel Tubes and Development of Design Formula[J]. Der Stahlbau,1957b,26(2):44-50
    [51]赵鸿铁.钢与混凝土组合结构[M].北京:北京科技出版社,2001
    [52] Lally Handbook of Lally Column Construction(Steel Column-Concrete Filled)TenthEdition[M].New York:Lally Column Companies,1926
    [53] Передерий.Г. П.. Трубчатая арматура[M].Москва:Трансжелдориздат,1945
    [54] Росновский..В.А. Трубобетон в мостостороении[M].Москва:Трансжелдориздат,1963
    [55]仲威雄,加藤勉,金谷弘,等.コンクリート充填钢管の偏心压缩實验[R].日本建筑学会论文报告集,1965
    [56]日本建筑学会.コンクリート充填钢管构造设计施行指针[S].1997
    [57] Fukumoto Y.Structural Stability Design-Steel and Composite Structures[M]. Pergamon,Elsevier Science,1995
    [58] Wakabayashi M. Recent Development and Research in Composite and Mixed BuildingStructures in Japan[A].Proceedings of the4th ASCCS International Conference[C].Kosice,Slovakia,1994:237-242
    [59] Nishiyama I,Morino S,Sakino K,et al.Summary of Research on Concrete-FilledStructural Steel Tube Column System Carried out under the US-Japan CooperativeResearch Program on Composite and Hybrid Structures[R]. Japan:Building ResearchInstitute,2002
    [60] ASCCS Seminar Report.Concrete Filled Steel Tubes-a Comparison of InternationalCodes and Practices[R].Innsbruck,1997
    [61] Design of Composite Steel and Concrete Structures[S],Part1.1:General Rules and forBuildings,2004
    [62] BRID GE R Q,MAR TIN D,O’Shea.Behavior of Thin-Walled Steel Box Sections withor without Internal Restraint[J].Journal of Constructional Steel Research,1998,47:73-91
    [63] British Steel. SHS Design Manual for Concrete Filled Columns[M].London,1990
    [64] Load and Resistance Factor Design Specification for Structural Steel Buildings[S].American Institute of Steel Construction,INC,1999
    [65] Kl o ppel.K.,Goder.W..Traglastversuche mit ausbetonierten Stahlrohren und Aufstellungeiner Bemessungsformel[J].Der Stahlbau,1957(1):1-10
    [66] Скворцов.Н.ф..Применение стальтрубобетона в мостостороении[M].Москва:Автотрансиздат,1955
    [67]陈宝春.钢管混凝土拱桥[M].北京:人民交通出版社,2007
    [68] Matsui C. Structural Performance and Design of Concrete Filled Steel TubularStructures[J].JSSC Steel Construction Engineering,1994,1(2):11-24
    [69] Schneider,S.P. Axially Loaded Conerete-Filled Steel Tubes[J].Journal of StructuralEngineering,ASCE,1998,124(10):1125-1138
    [70] Johnnson,R.P. Some Research on Composite Structures in the U.K.,Proc. of anEngineering Foundation Confer.On Steel-Concrete ComPosite Strueture[C].ASCE,Irsee,1996:15-28
    [71] Bridge,R.Q. High Strength Materials in Composite Construction,Conference Report ofInternational Conference on Composite Construction-Conventional and Innovative[C].Innsbruck, Austria,1997:29-40
    [72] Gupta L M,Parlewar P M. An Investigation of Concrete-Filled Steel Box Columns[J].Journal of Structural Engineering,2001,28(1):33-38
    [73]钟善桐.钢管混凝土结构(第三版)[M].北京:清华大学出版社,2003
    [74] Stephen P,Schneider Associate Member,ASCE.Axially Loaded Concrete-Filled SteelTubes[J]. Journal of Structural Engineering,1998(10):1125-1137
    [75] Nishikawa K,Yamamoto S,Nator T,et al.Retrofitting for Seismic Upgrading of SteelBridge Columns[J].Engineering Structures,1998,20(4-6):540-551
    [76] Michel B, Julia M. Seismic Design of Concrete-filled Circular Steel BridgePiers[J].Journal of Bridge Engineering,ASCE,2004,9(1):24-34
    [77] Kitada T,Matsumura M,Otoguro Y.Seimic Retrofitting Techniques Using an EnergyAbsorption Segment for Steel Bridge Piers [J].Engineering Structures,2003,(25):621-635
    [78] Usami T,Ge H B,Saizuka K.Behavior of Partially Concrete-filled Steel Bridge Piersunder Cyclic and Dynamic Loading[J].J.Construct.Steel Res,1997,41(2/3):121-136
    [79] Julia M,Michel B.Cyclic Testing of Concrete-Filled Circular Steel Bridge Piers HavingEncased Fixed-based Detail [J].Journal of Bridge Engineering,ASCE,2004,9(1):14-23
    [80] Elremaily A,Azizinamini A. Behavior and Strength of Circular Concrete-Filled TubeColumns[J]. Journal of Constructional Steel Research,2002,58(12):1567-1591
    [81] Ge H B,Usami T.Cyclic Tests of Concrete Filled Steel Box Columns[J].Journal ofStructural Engineering,ASCE,1996,122(10):1169-1177
    [82] Hajjar J F,Gourley B C. A Cyclic Nonlinear Model for Concrete-Filled TubesCross-Section Strength[J].Journal of Structural Engineering,ASCE,1997,122(11):1327-1136
    [83] Hajjar J F,Gourley B C,Olson M C.A Cyclic Nonlinear Model for Concrete-FilledTubes,II:Verification[J].Journal of Structural Engineering,ASCE,1998,123(6):745-754
    [84] Morishita Y,Tomii M. Experimental Studies on Bond Strength between Square SteelTube and Encased Concrete Core under Cyclic Shearing Force and Constant AxialForce[J]. Transactions of Japan Concrete Institute,1982(4):363-370
    [85] Nakanishi K,Kitada T,Nakai H.Experimental Study on Ultimate Strength and Ductilityof Concrete Filled Steel Columns under Strong Earthquakes[J].Journal of ConstructionalSteel Research,1999,51(3):297-319
    [86] Prion H G L,Boehme J.Beam-Column Behaviour of Steel Tubes Filled with HighStrength Concrete[J].Canadian Journal of Civil Engineering,1994(21):207-218
    [87] Sakino K,Inai E,Nakahara H. Tests and Analysis on Elasto-Plastic Behavior of CFTBeam-Columns-U.S.-Japan Cooperative Earthquake Research Program[A]. Proceedingsof the Fifth Pacific Structural Steel Conference[C].Seoul,Korea,1998:901-906
    [88] Tomii M,Sakino K. Experimental Studies on the Ultimate Moment of Concrete FilledSquare Steel Tubular Beam-Columns[J].Traps. of AIJ.1979a(275):55-63
    [89] Varma A. H. Seismic Behavior,Analysis and Design of High Strength SquareConcrete-Filled Steel Tube (CFT) Columns[D].Doctoral Dissertation of LehighUniversity,2000
    [90] Shmas,M. and Saadeghvaziri,M.A.State of the Art of Concrete-Filled Steel TubularColumns[J].ACI Structural,1997,94(5):558-571
    [91] Xu Jishan. The Triaxial Behavior of Concrete and Its Application to concrete Filled SteelTube[A]. Proc. of the International Specialty Conference on Concrete Filled SteelTubular Structures[C]. Harbin,China: Aug.1985
    [92] Architectural Institute of Japan(AIJ).Recommendations for Design and Construction ofConcrete Filled Steel Tubular Structure[M].Oct.1997(in Japanese)
    [93] Hass,R.On Realistic Testing of the Fire Protection Technology of Steel and CementSupports[M].Translation of BHPR/NL/T/1444,1991
    [94] Kim D K,Choi S M,Chung K S. Structural Characteristics of CFT Columns SubjectedFire Loading and Axial Force[A]. Proceedings of the6th ASCCS Conference,ASCCS[C]. Los Angeles,USA,2000:271-278
    [95] Kodur V K R. Performance-Based Fire Resistance Design of Concrete-Filled SteelColumns[J]. Journal of Constructional Steel Research,1999,51(1):21-26
    [96] Kodur V K R,Lie T T. Evaluation of Fire Resistance of Rectangular Steel ColumnsFilled with Fibre-Reinforced Concrete[J].Canadian Journal of Civil Engineering,1997(24):339-349
    [97] Kodur V K R,Sultan M A. Enhancing the Fire Resistance of Steel Columns throughComposite Construction[A]. Proceedings of the6th ASCCS Conference,ASCCS[C].Los Angeles, U. S.A.,2000:279-286
    [98] Lie T T. Fire Resistance of Circular Steel Columns Filled with Bar-reinforcedConcrete[J]. Journal of Structural Engineering,1994,120(5):1489-1509
    [99] Lie T T,Chabot M.A Method to Predict the Fire Resistance of Circular Concrete FilledHollow Steel Columns[J].Journal of Fire Protection Engineering,1990,2(4):111-126
    [100] Wang Y C.A Simple Method for Calculating the Fire Resistance of Concrete-FilledCHS Columns[J].Journal of Constructional Steel Research,2000,54(3):365-386
    [101] Zha X X. FE Analysis of Fire Resistance of Concrete Filled CHS Columns[J].Journalof Constructional Steel Research,2003,59(6):769-779
    [102]韩林海,杨有福.现代钢管混凝土结构技术(第二版)[M].北京:中国建筑工业出版社,2007
    [103]陈宝春.钢管混凝土拱桥设计与施工[M].北京:人民交通出版社,1999
    [104] Nakamura S,Momiyama Y,Hosaka T, et al.New Technologies of Steel-ConcreteComposite Bridges[J].Journal of Constructional Steel Research,2002(58):99-130
    [105] Mossahebi N,Yakel A,Azizinamini A.Experimental Investigation of a Bridge GirderMade of Steel Tube Filled with Concrete[J].Journal of Constructional SteelResearch,2005(61):371-386
    [106]刘钊,施大震,吴榃,等.一座钢管混凝土塔柱斜拉桥的结构设计特色[J].桥梁建设,2002,32(5):26-29
    [107]刘钊,吴京,吕志涛.钢管混凝土塔柱斜拉桥的动力特性和地震响应[J].桥梁建设,2001,31(5):10-13
    [108]代向群,毛健.南海紫洞大桥钢管混凝土斜拉桥的设计[J].公路交通科技,2002,19(2):74-78
    [109]臧华.钢管混凝土桥墩的静力与抗震性能研究[D].南京:东南大学,2008
    [110] Hajjar.Concrete-Filled Steel Tube Columns under Earthquake Loads[J]. Prog.Struct.Engng Mater,2000(2):72-81
    [111]臧华,刘钊.钢管混凝土桥墩的应用与研究[J].中国工程科学,2007,9(7):71-75
    [112] Shinichi Tamai,Tsutomu Sato,Masaru Okmoto.Hysteresis Model of Steel Jacketed RCColumns for Railway Viaducts[A].16th Congress of IABSE [C].SWISS:LUCERNE,2000
    [113]郑强,孙国安.佛陈大桥缺陷原因分析及加固[J].中国铁道科学,2000,21(4):21-29
    [114] Kitada T.Ultimate Strength and Ductility of State-of-the-Artconcrete-Filled SteelBridge Piers in Japan[J].Engineering Structures,1998,20(6):347-354
    [115]蔡绍怀.钢管混凝土结构的计算与应用[M].北京:中国建筑工业出版社,1989
    [116]严国敏.钢管混凝土组合桥墩高架桥的设计与实施(之四)[J].国外桥梁,1999,27(1):42-44
    [117]金增洪.矮塔斜拉桥的设计与施工[J].中外公路,2004,24(1):14-16
    [118]吴平平,王祖珍,江雪玲.亳州枢纽互通区的桥梁设计[J].公路工程与运输,2007,165(5):223-226
    [119]曾彦,曾勇,赵顺波.钢管混凝土叠合柱式桥墩受力性能分析[J].世界桥梁,2010,38(2):52-58
    [120]臧华,涂永明.钢管混凝土在桥梁工程中的应用与前景[J].中国市政工程,2010,147(4):34-36
    [121]王新.京沈高速公路钢管混凝土独柱式立交桥的设计[J].辽宁交通科技,1997,20(6):28-32
    [122]范晓江.浅谈钢管混凝土在柱式桥墩中的应用[J].山西建筑,2007,33(33):321-322
    [123]何晓晖,刘冰,李勇.深圳北站大桥设计及施工简介[J].华东公路,2001,133(6):28-31
    [124]徐腾飞.钢管混凝土非线性稳定承载与可靠度研究[D].成都:西南交通大学,2010
    [125]胡宇.钢管混凝土叠合格构柱高墩性熊试验研究及非线性分析[D].成都:西南交通大学,2010
    [126]马建锋.钢管混凝土压弯构件的稳定性及在桥墩中的应用[D].南京:南京理工大学,2009
    [127]马建锋,惠颖.钢管混凝土高桥墩的极限承载力分析[J].钢结构,2009,24(10):24-27
    [128]刘扬,陈敏海,王达.大跨钢管混凝土超高墩连续刚构桥的动力特性研究[J].公路交通科技,2010,67(7):199-201
    [129]臧华,刘钊,李红英,等.钢管混凝土桥墩抗震性能试验研究[J].防灾减灾工程学报,2010,30(4):442-446
    [130]张玉芬.复式钢管混凝土轴压性能及节点抗震试验研究[D].西安:长安大学,2010
    [131] Zhong Shantong.The Comparison of the Composite Rigidities with the ConversionRigidities for CFST Members[C].Proceedings of6th ASCCS Conference, LosAngeles,2000:22-24
    [132]马桂军,刘海霞,庞静.钢管混凝土拱桥拱肋刚度计算取值分析[J].东北林业大学学报,2004(5):39-40
    [133]夏桂云,曾庆元,李传习.钢管混凝土结构抗压刚度[J].长沙交通学院学报,2003,19(l):34-38
    [134]韩林海,钟善桐.钢管混凝土压弯扭剪承载力相关关系及钢管混凝土统一理沦构想[J].工业建筑,1995,25(1):14-21
    [135]韩林海.钢管高强混凝土纯弯曲构件力学性能及承载力的研究[J].哈尔滨建筑大学学报,1997,30(1):32-40
    [136]钟善桐.钢管混凝土中钢管与混凝土的共同工作[J].哈尔滨建筑大学学报,2001,43(1):6-10
    [137]胡盛华.大跨度钢管混凝土拱桥收缩徐变及温度效应研究[D].长沙:湖南大学,2007
    [138]陈明宪,彭建新,颜东煌,等.钢管混凝土拱桥收缩徐变问题综述[J].长沙交通学院学报,2004,20(2):19-24
    [139]谢肖礼,秦荣.收缩徐变对钢管混凝土拱桥影响的理论研究[J].桥梁建设,2001(4):1-4
    [140] Nakai.H,Kurita.A,Ichinose L.H. An Experimental Study on Creep of Concrete FilledSteel Pipes[C].Proceedings of the3rd International Conference on Steel-ConcreteComposite Structures,Fukuoka,Japan,September1991:55-60
    [141] Terry P.J, Bradford M.A, Gilbert R.I.Creep and Shrinkage of Concrete inConcrete-Filled Circular Steel Tubes[C].Proc. of6th Inter. Symposiumon TubularStructures,Melbourne,Australia,1994:293-298
    [142] Morinos,Kswanguchi.J,CaoZ.S. Creep Behavior of Concrete-Filled Steel Tubularmembers[C].Pro. of an Engineering Foundation Conference on Steel-ConcreteComposite Structure,ASCE,Irsee,1996:514-525
    [143] B. Uy. Static Long-tern Effects in Short Concrete-Filled Steel Tube Columns underSustained Loading[J].ACI Structural Journal,2001,98(1):96-104
    [144]王元丰,韩冰.钢管混凝土轴心受压构件的徐变分析[J].中国公路学报,2000,13(2):57-60
    [145]韩冰,王元丰.钢管混凝土受弯构件徐变分析[J].铁道标准设计,1999(5):19-20
    [146] JTG D62-2004,公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004
    [147] DL/T5085-1999,钢-混凝土组合结构设计规程[S].北京:中国电力出版社,1999
    [148] CECS104:99,高强混凝土结构技术规程[S].北京:中国工程建设标准化协会,1999
    [149] CECS28:90,钢管混凝土结构设计与施工规程[S].北京:中国计划出版社,1992
    [150] O’Shea M.D.,Bridge R.D. Circular Thin Walled Concrete Filled Steel Tubes[A].PSSC’954thPacific Structural Steel Conference[C].Oxford:Pergamon,1995:53-60
    [151] JCJ01-89,钢管混凝土结构设计与施工规程[S].上海:同济大学出版社,1989
    [152] Lin T.Y.,Stotesbury S.D. Structural Concepts and Systems for Architects and Engineers(Second Edition)[M].New York:Van Norstrand Reinhold,1988
    [153] JTG D60-2004,公路桥涵设计通用规范[S].北京:人民交通出版社,2004
    [154]范立础.桥梁抗震[M].上海:同济大学出版社,1997
    [155]叶爱君,管仲国.桥梁抗震[M].北京:人民交通出版社,2011
    [156]李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,2003
    [157]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001
    [158] GB18306-2001,中国地震动参数区划图[S].北京:中国标准出版社,2001
    [159] JTG/T B02-01-2008,公路桥梁抗震设计细则[S].北京:人民交通出版社,2008
    [160]范立础,桌卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001
    [161] Mander.J.B,Priestley.M.J.N,Park.R.Theoretical Stress-Strain Model forConfined Concrete[J].Structural Engineering,1988,114(8):1804-1826
    [162] Mander.J.B,Priestley.M.J.N,Park.R.Observed Stress-Strain Behavior ofConfined Concrete[J].Structural Engineering,1988,114(8):1827-1849
    [163] Priestley M.J.N.,Seible F.,Calvi G.M..Seismic Design and Retrofit of Bridges[M].JohnWiley&Sons,Inc.,1996
    [164]韩林海.钢管混凝土结构:理论与实践[M].北京:科学出版社,2004
    [165]四川省交通厅公路规划勘察设计研究院.公路钢管混凝土桥梁设计与施工指南[M].北京:人民交通出版社,2008
    [166] AIJ-1997,Recommendations for Design and Construction of Concrete Filled SteelTubular Structures[S].Tokyo:Architectural Institute of Japan(AIJ),1997
    [167] ACI318-05,Building Code Requirements for Structural Concrete and Commentary[S].USA:American Concrete Institute,Detroit,2005
    [168] AISC360-05,Specification for Structural Steel Buildings[S].Chicago:AmericanInstitute of Steel Construction(AISC),2005
    [169] Eurocode4(EC4),Design of Steel and Concrete Structures-Part1:General Rules andRules for Buildings[S].Brussels:European Committee for Standardization,2004
    [170] BS5400,Steel,Concrete and Composite Bridges,Part5:Code of Practice for Designof Composite Bridges[S].London:British Standards Institution,2005
    [171] DBJ13-51-2003,钢管混凝土结构技术规程[S].福州:福建省建设厅,2003
    [172]卢辉,韩林海.圆钢管混凝土抗弯刚度计算方法探讨[J].工业建筑,2004,34(1):1-5
    [173]钟善桐.钢管混凝土刚度的分析[J].哈尔滨建筑大学学报,1999,32(3):13-18
    [174]查晓雄,唐家祥,钟善桐.钢管混凝土抗弯刚度研究及在框架结构分析中的应用[J].哈尔滨建筑大学学报,1998,31(5):40-45
    [175] Shufen Zhou,Xianwu Hao,Ziqing Li. Stiffness Calculation Method of Concrete FilledSteel Tubular Structure[A].The2nd International Conference on Civil Engineering andTransportation,Applied Mechanics and Materials[C]. Guilin,China,2012
    [176]周淑芬,匡虹桥.黏土中超长群桩竖向承载力模型试验研究[J].岩土工程学报,2009,31(9):1472-1475
    [177]刘志峰,孙学先,杨霞林.考虑地基变形影响的高墩柱抗推刚度的解析方法[J].水利与建筑工程学报,2007,5(4):63-66
    [178]徐君兰,顾安邦.连续刚构桥主墩刚度合理性的探讨[J].公路交通科技,2005,22(2):59-62
    [179]曹淑上,江建斌,张永水,等.少联大跨径连续—刚构组合桥的受力分析及合龙顺序探讨[J].现代交通技术,2006,3(6):34-37
    [180]袁伦一.连续桥面简支梁桥墩台计算实例[M].北京:人民交通出版社,1995
    [181] Matsui C. Strength and Behavior of Frame with Concrete Filled Square Steel TubularColumns under Earthquake Loading[A].Proceedings of the International SpecialtyConference on Concrete Filled Steel Tubular Structures[C].1985:104-111
    [182] Han L H,Yang Y F.Influence of Concrete Compaction on Behavior of Concrete FilledSteel Tubes with Rectangular Sections[J].Advances in Structural Engineering-AnInternational Journal,2001,4(2):93-100
    [183] JTG D60-2004,公路桥涵设计通用规范[S].北京:人民交通出版社,2004
    [184] CECS159-2004,矩形钢管混凝土结构技术规程[S].北京:中国计划出版社,2004
    [185]周淑芬,郝宪武,李子青,等.钢管混凝土桥墩在长联低墩连续刚构桥中的应用研究[J].郑州大学学报(工学版),2012
    [186]邱顺冬.桥梁工程软件midas Civil常见问题解答[M].北京:人民交通出版社,2009
    [187]邱顺冬.桥梁工程软件midas Civil应用工程实例[M].北京:人民交通出版社,2011
    [188]刘美兰. midas Civil在桥梁结构分析中的应用(一)[M].北京:人民交通出版社,2012

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700