用户名: 密码: 验证码:
铁基SCR脱硝催化剂改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮氧化物是一种主要的大气污染物。随着国民经济的发展,我国氮氧化物排放总量逐年增加,污染日益严重,近十年来,我国部分地区的酸雨污染正由过去的硫酸型向硫酸和硝酸复合型转变。作为我国氮氧化物的主要排放源,对燃煤火电厂氮氧化物排放减量化迫在眉睫。选择性催化还原法(Selective Catalytic Reduction, SCR)由于其技术相对成熟且脱除NOx效率高,己成为燃煤发电厂主流的脱硝技术。目前,钒钨钛催化剂因具有较好的脱硝效率和抗二氧化硫毒化性能,己被广泛应用于脱除燃煤火电厂等固定源所排放的氮氧化物,但其存在脱硝温度高,脱硝成本高,钒易流失,造成二次污染等缺点;因此急需开发适合我国国情的高效、低污染、脱硝成本低的SCR脱硝技术。与钒钨钛催化剂相比,铁基催化剂具有无毒、脱硝成本低廉等优点,为一种极具开发潜力的SCR脱硝催化剂;但其低温脱硝活性偏低,限制了其大规模工业应用。针对铁基催化剂SCR脱硝活性温度偏高等缺点,本文从掺杂助剂及改进催化剂制备方法两方面来优化其中低温SCR脱硝性能;使其脱硝温度窗口向低温拓宽;并揭示助剂掺杂及催化剂制备方法的优化对铁基催化剂SCR脱硝的促进机理。
     本文利用共沉淀法制备了高脱硝活性的铁基催化剂,探讨了掺杂铈等助剂及对催化剂前驱体进行微波水热处理对铁基催化剂SCR脱硝活性的影响规律;系统考察了铁基催化剂SCR脱硝特性,构建其脱硝反应模型;揭示了掺杂铈等助剂及微波水热处理对铁基催化剂中低温SCR脱硝性能的优化机理。
     (1)沉淀剂种类对共沉淀法制备的铁铈复合氧化物催化剂SCR脱硝性能具有重要影响,与碱金属沉淀剂相比,氨基沉淀剂制备的铁铈复合氧化物催化剂表现出良好的SCR脱硝性能。通过对不同沉淀剂制备的铁铈复合氧化物催化剂及前驱体进行IR和XRD测试分析可知:NaOH和Na2CO3等碱金属沉淀剂会促使铁铈复合氧化物催化剂前驱体中形成α-FeOOH和α-Fe2O3,而氨基沉淀剂会抑制前驱体中α-FeOOH和α-Fe2O3的形成,促使铁、铈组分在铁铈复合氧化物催化剂中形成固溶体;N2吸附结果也表明:相比于碱金属沉淀剂,氨基沉淀剂制备的铁铈复合氧化物催化剂具有大的比表面积和比孔容,能为SCR脱硝反应提供大量活性位点,从而促使其具有良好中低温SCR脱硝活性。
     (2)以NH4OH为沉淀剂,利用共沉淀法掺杂铈氧化物能够提高铁氧化物的中低温SCR脱硝性能;铈掺杂量通过影响铁铈复合氧化物催化剂中铁、铈元素的相互作用而对其SCR脱硝活性产生影响。实验研究表明:当Ce/(Ce+Fe)摩尔比x由0.025增至0.10,铁铈复合氧化物催化剂低温SCR脱硝性能逐渐增大,而其高温SCR脱硝性能先增大后减少,当Ce/(Ce+Fe)摩尔比x为0.05时,铁铈复合氧化物催化剂具有最宽的脱硝温度窗口。
     (3)借助XRD、N2吸附和TPD等催化剂表征手段,揭示了铈掺杂对铁氧化物中低温SCR脱硝的促进机理。研究发现:利用共沉淀法掺杂的铈氧化物与铁氧化物存在较好相互作用,形成固溶体;使铁铈复合氧化物催化剂表面形成高活性的吸附氧和晶格氧,提高了铁氧化物的低温催化氧化NO为N02性能;当增大烟气中N02/NOx,至0.3时,可分别提高Fe203和Fe0.95Ce0.050z催化剂150℃时的NOx转化率55.9和19.9个百分点;且掺杂铈氧化物会优化铁氧化物的微观孔隙结构,促使其平均孔径减少,使其比表面积和比孔容增大;掺杂0.05摩尔比的铈氧化物会促使铁氧化物比表面积和比孔容由44.53m2/g和0.205cm3/g增至107.25m2/g和0.285cm3/g,分别增大了1.4倍和1.44倍,同时,掺杂铈氧化物会促使铁氧化物表面形成更多Lewis酸位,提升了铁氧化物的低温吸附NH3和NO性能,从而促进了铁氧化物中低温SCR脱硝性能。
     (4)利用积分实验系统,详细考察了煅烧温度、空速比、活性温度、O2浓度和NH3浓度等操作参数对铁铈复合氧化物催化剂SCR脱硝特性的影响规律。研究结果表明:合适的煅烧温度对铁铈复合氧化物催化剂SCR脱硝性能非常关键;当煅烧温度高于其前驱体完全分解温度时,会导致α-Fe2O3从铁铈复合氧化物中析出,使其比表面积和比孔容减少,抑制了铈掺杂对铁氧化物SCR脱硝的促进作用;合适的煅烧温度为400℃。氧在铁铈复合氧化物催化剂SCR脱硝反应中起着重要的作用;掺杂铈氧化物会促使铁氧化物表面形成高活性的吸附氧和品格氧,促使其在无气态O2条件下表现出较高的SCR脱硝性能;且气态O2易使铁铈复合氧化物催化剂表面快速形成吸附氧和晶格氧,参与到SCR反应中,从而提高铁铈复合氧化物催化剂的脱硝活性;当烟气中02浓度低于1%时,增加02浓度会促使铁铈复合氧化物催化剂的脱硝效率迅速上升,但当烟气中O2浓度高于3%后,O2浓度对其NOx脱除率的影响不明显;随着烟气中[NH3]/[NO]由0增至1.0,催化剂脱硝效率先迅速增大,后增速减缓,进一步增大烟气中[NH3]/[NO]并不会提高其脱硝效率。
     (5)借助微分实验系统探讨了Fe0.95Ce0.05Oz催化剂SCR脱硝反应动力学,构建了其催化脱硝动力学模型。在本文的研究工况下,Fe0.95Ce0.05Oz催化剂的NO、NH3和O2的反应级数依次为1.0,0和0.5。175~275℃范围内其催化反应活化能为42.6kJ/mol。
     (6)对铁铈复合氧化物催化剂进行过渡金属掺杂,探讨掺杂第三种过渡金属离子对Fe0.95Ce0.05Oz催化剂SCR脱硝性能的影响规律。研究结果表明:与W、Mo和Zr相比,掺杂Ti能够明显提高Fe0.95Ce0.05Oz催化剂的低温SCR脱硝性能,促使其脱硝温度窗口向低温偏移,其中,合适的钛掺杂摩尔比(Ti/(Ti+Fe+Ce))为0.15。
     (7)掺杂的钛与铁、铈元素存在较好的相互作用,细化铁铈复合氧化物催化剂的孔径,使其比表面积和比孔容增大;降低铁铈复合氧化物催化剂表面铁、铈活性组分浓度,提高了铁、铈组分的分散度;掺杂钛会改变铁铈复合氧化物表面结构,增强其表面弱酸Lewis酸位,提高NH3还原剂在铁铈复合氧化物催化剂表面的低温吸附;掺杂钛也会促使铁铈复合氧化物表面吸附氧浓度增大,增强其表面低温催化氧化NO为NO2性能,从而优化了铁铈复合氧化物催化剂的低温SCR脱硝性能。
     (8)将微波水热处理引入到铁铈钛复合氧化物催化剂的制备中,可进一步提高其低温SCR脱硝性能,使其脱硝温度窗口向低温偏移;且微波水热处理的低温优化效果与铁铈钛复合氧化物催化剂中Fe/Ti摩尔比密切相关,Fe/Ti摩尔比越小,微波水热处理对催化剂脱硝性能的优化效果越强;交替微波加热方式和微波辐射时间会影响微波水热处理对铁铈钛复合氧化物催化剂SCR脱硝性能的低温优化。在相同微波辐射时间条件下,当交替微波加热方式由P30逐渐变为P80,微波水热处理对铁铈钛复合氧化物催化剂低温SCR脱硝的促进作用降低;在P30交替微波加热方式下;微波辐射15min使铁铈钛复合氧化物催化剂低温SCR脱硝活性最强。
     (9)微波水热处理会加速铁铈钛复合氧化物催化剂前驱体的晶化速率;调整其微观孔隙结构,使其平均孔径和比孔容增大;并加强了铁铈钛复合氧化物催化剂中铁、钛组分的相互作用,形成铁钛复合氧化物。微波水热处理会促使铁铈钛复合氧化物催化剂表面Ce3+/Ce4+比值增加,促使其表面Ce3+离子相对含量增加,增强了Ce4+和Ce3+之间的氧化还原转换,提高铁铈钛复合氧化物催化剂表面的晶格氧缺陷值,促使其表面晶格氧浓度增加,增强了其氧化还原性能;并使铁铈复合氧化物催化剂表面Lewis酸性增强,提高NH3在其表面的低温吸附,从而优化了铁基催化剂低温SCR脱硝性能。
Nitric oxides(NOx) are a major pollution which is severe harmful to environment. In our country, the total amount of NOx increases year by year with the development of the national economy, and the pollution caused by NOx emission became severe gradually. In recent ten years, the type of acid rain changed from the sulfuric acid type to the composite of sulfuric acid and nitric acid by degrees in some regions of China. As a major source of NOx emission, it is urgent to reduce NOx in exhaust flue gas from coal-fired power plant. Due to being a relatively mature with high NOx removal efficiency, selective catalytic reduction (SCR) is a well-known mainstream technology for NO*abatement emitted from coal-fired power plant. For the moment, V2O5/TiO2catalyst promoted by MoO3or WO3is the most effectively and widely commercial SCR catalyst used to reduce the nitric oxides emitted from the station source as the coal-fired power plant owing to the high activity and the durability to sulfur compounds. However, V2O5-WO3(MoO3)/TiO2catalyst would bring about some disadvantages in practical use, such as high denitrification temperature, high cost, and toxicity of vanadium pent-oxide to environment and human health. Therefore, it is in dire need of developing a novel SCR technology with high activity, low cost, and absence of toxicity which is suitable for the national conditions of China. Compared with the traditional V2O5-WO3(MoO3)/TiO2catalyst, iron-based catalyst has some advantages with low cost and absence of toxicity, and is a potential catalyst for SCR of NOx Nevertheless, iron-based catalyst shows lower activity at relatively low-temperature, which restricts its large-scare industrial application. On account of higher reaction temperature for iron-based catalyst, the purpose of this paper was to optimize its low-temperature SCR activity through doping other metal oxide and improving the preparation method of catalyst, and to make its SCR reaction temperature window shifted to the low-temperature. Finally, the promotional mechanisms for doping other metal oxide and improving the preparation method of catalyst have also been studied and given in paper.
     In this paper, we firstly obtained iron-based catalyst prepared through co-precipitation method showing high SCR activity. The effects of doping the additives as cerium oxide and the hydrothermal treatment of catalyst precursor by using microwave radiation on SCR activity over iron-based catalysts were investigated. The denitrification characteritics of iron-based catalyst were also under systematic investigation, and its denitration reaction model was founded. Finally, we gave the promotion mechanisms for doping the additives as cerium oxide and the hydrothermal treatment of catalyst precursor by using microwave radiation on SCR activity over iron-based catalysts.
     (1) The types of precipitants showed an important effect on SCR activity over iron-based catalysts prepared through co-precipitation method. Compared with the alkali metal precipitants, the catalysts prepared by using amino precipitants showed high SCR activity. From the IR and XRD results for iron-cerium mixed oxides catalysts and their precursors prepared with different precipitants, it can be seen that: the alkali metal precipitants such as NaOH and Na2CO3could promot the formation of α-FeOOH and α-Fe2O3in the precursors of iron-cerium mixed oxides catalysts. However, amino precipitants would depress the formation of α-FeOOH and α-Fe2O3in the precursors of iron-cerium mixed oxides catalysts, and made iron oxide and cerium oxide to form the solid solution in iron-cerium mixed oxides catalysts. The results of N2adsorption for different catalysts also indicated that the iron-cerium mixed oxides catalysts prepared with amino precipitants had large BET surface areas and pore volumes compared to the catalysts prepared with alkali metal precipitants. The larger BET surface areas and pore volumes could provide huge amount of reactive sites for SCR reaction, and thereby promoted the catalysts showed high medium-low temperature SCR activity.
     (2) The doping of cerium oxide could enhance the medium-low temperature SCR activity of iron oxide catalyst prepared through co-precipitation with NH4OH as the precipitant. The cerium doping amount showed an effect on SCR activity over iron-cerium mixed oxide catalysts through influencing the interaction of cerium oxide and iron oxide in catalysts. The results of research indicated that when the
     molar ratio of Ce/(Ce+Fe) was increased from0.025to0.1, the low-temperature SCR activity over iron-cerium mixed oxide catalysts increased gradually, meanwhile, its high-temprature SCR activity firstly increased and then decreased. The iron-cerium mixed oxide catalysts at the molar ratio of Ce/(Ce+Fe) being0.05showed the most wide temperature window for SCR reaction.
     (3) By means of the catalyst characterizations such as XRD, N2adsorption, TPD and so on, the promotion mechanism by doping cerium oixde on SCR activity over iron oxide catalyst was revealed. The results indicated that the doping cerium oxide could interact well with iron oxide in catalysts prepared though co-precipitation method, and led to the formation of the solid solution between them. The interaction between iron oxide and cerium oxide promoted a large mount of adsorbed oxygen and lattice oxygen with high activity in catalysts, and improved the low-temperature activity of oxidizing NO to NO2over iron oxide catalyst. Meanwhile, when the molar ratio of NO2/NOx was increased to0.3in the simulated flue gas, the conversions of NOx over Fe2O3and Fe0.95Ce0.05O2catalysts at150℃were enhanced by55.9%and19.9%, respectively. The doping of cerium oxide could optimize the microscopic pore structure of iron oxide, made its pore size become smaller, and enhanced the BET surface area and pore volume of iron oxide. The BET surface area and the pove volume of Fe2O3were enlarged from44.53m2/g and0.205cm3/g to107.25m2/g and0.285cm3/g after doping cerium oxide with the molar ratio of Ce/(Ce+Fe) being0.05, and were enhanced1.4and1.44times, respectively. At the same time, The doping of cerium oxide could promote the formation of Lewis acid over iron oxide, which improved the low-temperature adsorption of NH3and NO over iron oxide catalyst, thereby enhanced its medium-low temperature SCR activity.
     (4) The effects of operation parameters such as calcination temperature, Gas hourly space velocity(GHSV), O2concentration and NH3concentration were examined detailly in the intergral experiment system. And the research results demonstrated that the suitable calcination temperature was vital to the SCR activity over iron-cerium mixed oxide catalyst. When the calcination temperature is higher than the complete decompotition temperature for the precursors of iron-cerium mixed oxide catalyst, higher temperature would lead α-Fe2O3separated out from iron-cerium mixed oxide catalyst, and made the BET surface area and the pore volume of catalyst decrease, thereby depressed the promotion of doping cerium oxide on SCR activity over iron oxide. The suitable calcinations temperature was400℃. Oxygen played an important role on SCR activity over iron-cerium mixed oxide catalysts. The doping of cerium oxide could promote the formation of adsorbed oxygen and lattice oxygen with high activity, which made the iron-cerium mixed oxide catalyst show high SCR activity in the absence of gaseous O2within the simulated gas. Meanwhile, gaseous O2could oxidize the surface of iron-cerium mixed oxide catalyst and promoted the formation of absorbed and lattice oxygen on it, thereby enchanced the SCR activity over iron-cerium mixed oxide catalyst. When the concentration of gaseous O2in the simulated gas was lower than1%, the improvement of gaseous O2could lead the SCR activity of iron-cerium mixed oxide catalyst increase sharply. However, the concentration of gaseous O2showed no influence almost on SCR activity of catalyst when the concentration of gaseous O2was higher than3.0%. The SCR activity of catalyst firstly increased sharply and then slowly with the molar ratio of NH3/NO in the simulated gas increasing from0to1, and the SCR activity of catalyst could be not enhanced again by further improving the molar ratio of NH3/NO.
     (5) The kinetics of SCR over Fe0.95Ce0.05O2catalyst had been studied in a differential system, and its catalytic kinetics model for SCR reaction was founded. Under the reaction conditions in this paper, the rate of NO conversion on Fe0.95Ce0.05O2is first-order with respect to NO, zero-order with respect to NH3and nearly0.5-order with respect to O2. The apparent activation energy of the NH3-SCR reaction was42.6kJ/mol at175~275℃.
     (6) By doping other transition metal oxide into iron-cerium mixed oxide catalyst, and we investigated the effect of doping another transition metal oxide on SCR activity over iron-cerium mixed oxide catalyst. The research results indicated that, compared with W、Mo and Zr, the doping of Ti could obviously enhance the low-temperature SCR activity over iron-cerium mixed oxide catalyst, and made its reactive temperature window of SCR shift to the low-temperature region. Thereinto, the suitable molar ratio of Ti/(Ti+Fe+Ce) is0.15.
     (7) There existed better interaction between the doping titanium with other elements as iron and cerium, which could refine the pore diameter of iron-cerium mixed oxide catalyst, and enlarged the BET surface area and pore volume of catalyst. The doping of titanium led the concentration of iron and cerium elements on the surface of catalyst decrease, and enhanced the dispersion of iron and cerium groups on the surface of catalyst. The doping of titanium might change the surface structure of iron-cerium mixed oxide, enhanced the weak Lewis acid, and improved the low-temperature adsorption of NH3over catalyst. At the same time, the adsorted oxygen concentration over iron-cerium mixed oxide catalyst could also be improved after doping titanium which enhanced the low-temperature catalytic oxidation of NO to NO2over catalyst, and thereby promoted the low-temperature SCR activity over iron-cerium mixed oxide catalyst.
     (8) The SCR activity of iron-cerium-titanium mixed oxide catalyst could be enhanced further by introducing microwave hydrothermal treatment into the preparation of catalyst which could make the reactive SCR temperature window shift to the low-temperature region. Meanwhile, the promotional effect of microwave hydrothermal treatment on low-temperature SCR activity is closely related to the molar ratio of Fe and Ti in the mixed oxide catalyst. When the molar ratio of Fe and Ti is smaller, the promotion of microwave hydrothermal treatment is higher. The alternate microwave heating method and the microwave iddiation time played an important role on the promotion of low-temperature SCR activity over iron-cerium-titanium mixed oxide catalyst by using microwave to treat the precursors of catalyst. Under the same microwave iddiation time, when the alternate microwave heating method changed from P30to P80, the promotional effect of microwave hydrothermal treatment on low-temperature SCR activity over iron-cerium-titanium mixed oxide catalyst decreased gruadually. Under the condition of P30, the promotion of microwave hydrothermal treatment was the highest when the microwave iddiation time is15min.
     (9) Microwave hydrothermal treatment could accelerate the crystallite rate of the precursors for iron-cerium-titanium mixed oxide catalysts, adjusted the microscopic pore structure of catalyst, and enlarged the pore diameter and the pore volume of iron-cerium-titanium mixed oxide catalyst. Microwave hydrothermal treatment could strengthen the interaction between iron oxide and titanium oxide in mixed oxide, and promoted the formation of iron-titantium composite oxide. At the same time, the molar ratio of Ce3+/Ce4+on the surface of mixed oxide catalyst could be enhanced after microwave hydrothermal treatment, and improved the relative concentration of Ce3+on the surface of catalyst which enhanced the reduction and oxidation conversion between Ce3+and Ce+, and improved the defect value of lattice oxygen on the surface of iron-cerium-titanium mixed oxide catalyst. Therefore, the concentration of lattice oxygen over catalyst could be improved after microwave hydrothermal treatment, and enhanced the oxidation and reduction properties of catalyst. At the same time, microwave hydrothermal treatment enhanced the Lewis acid of the mixed oxide catalyst, and improved the low-temperature adsorption of NH3over catalyst, thereby enhanced the low-temperature SCR activity over iron-based catalyst.
引文
[1]BP集团.BP世界能源统计2012[M].伦敦:BP集团,2012.
    [2]韩才元,徐明厚,周怀春,等.煤粉燃烧[M].北京:科学出版社,2001,1-3.
    [7]国家统计局,环境保护部.2010中国环境统计年鉴[M].北京:中国统计出版社,2011.
    [4]张楚莹,王书肖,邢佳,等.中国能源相关的氮氧化物排放现状与发展趋势分析[J].环境科学学报,2008,28(12):2470-2479.
    [5]刘文辉.顺应国家政策走向,积极脱硝促进燃煤火电和谐发展-电力集团脱硝战略浅析[J].电力环境保护,2007,23(3):9-13.
    [6]俞海淼,周海珠,裴晓梅.风力发电的环境价值与经济性分析[J].同济大学学报(自然科学版),2009,37(5):704-708.
    [7]国家环境保护总局.火电厂大气污染物排放标准(GB13223-2011)[S].2011.
    [8]高攀.先进再燃及选择性非催化脱硝优化实验与机理研究[D].济南:山东大学,2007.
    [9]孙克勤,钟秦.火电厂烟气脱硝技术及工程应用[M].北京:化学工业出版社,2006.
    [10]张强.燃煤电站SCR烟气脱硝技术及工程应用[M].北京:化学工业出版社,2007.
    [11]Koebel M, Elsener M, Madia G. Reaction Pathways in the selective catalytic reduction process with NO and NO2 at low temperature[J]. Industrial & Engineering Chemistry Research,2001,40(1):52-59.
    [12]刘炜,张俊丰,童志权.选择性催化还原法(SCR)脱硝研究进展[J].工业安全与环保,2005,31(1):52-59.
    [13]贺泓,李俊华,何洪,等.环境催化-原理及应用[M].科学出版社,北京:21-226.
    [14]田贺中.中国氮氧化物排放现状、趋势及综合控制对策研究[D].北京:清华大学,2003.
    [15]钟秦.燃烧烟气脱硫脱硝技术工程实例[M].北京:化学工业出版社,2002.
    [16]朱崇兵,金保异,仲兆平,等.碱金属氧化物对V2O5-WO3/TiO2催化剂脱硝性能的影响[J].环境化学,2007,26(6):783-786.
    [17]熊丽仙,沈伯雄,杨晓燕,等.纳米负载型V205-WO3/TiO2催化剂碱及碱土金属中毒[J].环境化学,2010,29(4):690-695.
    [18]沈伯雄,熊丽仙,刘亭,等.纳米负载型V2O5-WO3/TiO2催化剂碱中毒及再生研究[J].燃料化学学报,2010,38(1):85-90.
    [19]Xiong Z, Lu C, Guo D, et al. Selective catalytic reduction of NOx with NH3 over iron-cerium mixed oxide catalyst:catalytic performance and characterization[J]. Journal of Chemical Technology and Biotechnology,2012.
    [20]Devadas M, Krocher O, Elsener M, et al. Influence of NOt on the selective catalytic reduction of NO with ammonia over Fe-ZSM-5[J]. Applied Catalysis B:Environmental, 2006,67(3):187-196.
    [21]Ahmed S N, Baldwin R, Derbyshire F, et al. Catalytic reduction of nitric oxide over activated carbons[J]. Fuel,1993,72(3):287-292..
    [22]Teng H, Tu Y T, Lai Y C, et al. Reduction of NO with NH3 over carbon catalysts:The effects of treating carbon with H2SO4 and HNO3[J]. Carbon,2001,39(4):575-582.
    [23]Kato A, Matsuda S, Kamo T, et al. Reaction between nitrogen oxide (NOx) and ammonia on iron oxide-titanium oxide catalyst[J]. The Journal of Physical Chemistry,1981,85(26): 4099-4102.
    [24]Sjovall H, Olsson L, Fridell E, et al. Selective catalytic reduction of NOx with NH3 over Cu-ZSM-5-The effect of changing the gas composition[J]. Applied Catalysis B: Environmental,2006,64(3):180-188.
    [25]Bosch H, Janssen F J J G, van den Kerkhof F M G, et al. The activity of supported vanadium oxide catalysts for the selective reduction of NO with ammonia[J]. Applied catalysis,1986,25(1):239-248.
    [26]Singoredjo L, Korver R, Kapteijn F, et al. Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B:Environmental,1992,1(4):297-316.
    [27]Willey R J, Eldridge J W, Kittrell J R. Mechanistic model of the selective catalytic reduction of nitric oxide with ammonia[J]. Industrial & Engineering Chemistry Product Research and Development,1985,24(2):226-233.
    [28]Qi G, Wang Y, Yang R T. Selective catalytic reduction of nitric oxide with ammonia over ZSM-5 based catalysts for diesel engine applications[J]. Catalysis Letters,2008,121(1-2): 111-117.
    [29]Sultana A, Nanba T, Sasaki M, et al. Selective catalytic reduction of NOx with NH3 over different copper exchanged zeolites in the presence of decane[J]. Catalysis Today,2011, 164(1):495-499.
    [30]Stevenson S A, Vartuli J C. The Selective Catalytic Reduction of NO2 by NH3 over HZSM-5[J]. Journal of Catalysis,2002,208(1):100-105.
    [31]Long R Q, Yang R T. Catalytic Performance of Fe-ZSM-5 Catalysts for Selective Catalytic Reduction of Nitric Oxide by Ammonia[J].Journal of Catalysis,1999,188(2):332-339.
    [32]Went G T. Study of supported vanadium oxide catalysts for the selective catalytic reduction of nitrogen oxides[D]. Berkeley, University of Califonia,1991.
    [33]Nam I S, Eldridge J W, Kittrell J R. Deactivation of a vanadia-alumina catalyst for nitric oxide reduction by ammonia[J]. Industrial & engineering chemistry product research and development,1986,25(2):192-197.
    [34]Inomata M, Miyamoto A, Ui T, et al. Activities of vanadium pentoxide/titanium dioxide and vanadium pentoxide/aluminum oxide catalysts for the reaction of nitric oxide and ammonia in the presence of oxygen[J]. Industrial & Engineering Chemistry Product Research and Development,1982,21(3):424-428.
    [35]Lietti L, Svachula J, Forzatti P, et al. Surface and catalytic properties of Vanadia-Titania and Tungsta-Titania systems in the Selective Catalytic Reduction of nitrogen oxides[J]. Catalysis today,1993,17(1):131-139.
    [36]Economidis N V, Pena D A, Smirniotis P G. Comparison of TiO2-based oxide catalysts for the selective catalytic reduction of NO:effect of aging the vanadium precursor solution[J]. Applied Catalysis B:Environmental,1999,23(2):123-134.
    [37]Lietti L, Ramis G, Berti F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts:A review[J]. Applied Catalysis B: Environmental,1998,18(1):1-36.
    [38]Lietti L, Nova I, Ramis G, et al. Characterization and Reactivity of V2O5-MoO3/TiO2 De-NOx SCR catalysts[J].Journal of Catalysis,1999,187(2):419-435.
    [39]Zhu J, Gao F, Dong L, et al. Studies on surface structure of MxOy/MoO3/CeO2 system (M= Ni, Cu, Fe) and its influence on SCR of NO by NH3[J]. Applied Catalysis B: Environmental,2010,95(1):144-152.
    [40]Yao G, Wang F, Wand X, et al. Magnetic field effects on selective catalytic reduction of NO by NH3 over Fe2O3 catalyst in a magnetically fluidized bed[J].Energy,2010,35(5):2295-2230.
    [41]FAISAL IRFAN M, Mjalli F S, Kim S D. Modeling of NH3-NO-SCR reaction over CuO/y-Al2O3 catalyst in a bubbling fluidized bed reactor using artificial intelligence techniques[J]. Fuel,2012,93:245-251.
    [42]Liu Q, Liu Z, Su J. Al2O3-coated cordierite honeycomb supported CuO catalyst for selective catalytic reduction of NO by NH3:Surface properties and reaction mechanism[J]. Catalysis today,2010,158(3-4):370-376.
    [43]Ayari F, Mhamdi M,Aivarez-RodrIguez J, et al. Selective catalytic reduction of NO with NH3 over Cr-ZSM-5 catalysts:General characterization and catalysts screening[J].Applied Catalysis B:Environmental,2013,134-135:367-380.
    [44]Denton P, Giroir-Fendler A, Schuurman Y, et al. A redox pathway for selective NOx reduction:stationary and transient experiments performed on a supported Pt catalysts[J].Applied Catalysis A:General,2001,220(1-2):141-152.
    [45]Macleod N, M. Lambert R. Lean NOx reduction with CO+H2 mixtures over Pt/Al2O3 and Pd/Al2O3 catalysts[J]. Applied Catalysis B:Environmen-tal,2002,35(4):269-279.
    [46]Kondratenko V A, Baerns M. Mechanistic insights into the formation of N2O and N2 in NO reduction by NH3 over a polycrystalline platinum catalyst[J]. Applied Catalysis B:Environmental,2007,70(1-4):111-118.
    [47]Kondratenko V A, Bentrup U, Richter M, et al. Mechanistic aspects of N2O and N2 formation in NO reduction by NH3 over Ag/Al2O3:the effect of O2 and H2[J]. Applied Catalysis B:Environmental,2008,84(3-4):497-504.
    [48]Huang Z, Liu Z, Zhang X, et al. Inhibition effect of H2O on V2O5/AC catalysts for catalytic reduction of NO with NH3 at low temperature[J].Applied Catalysis B:Environmental,2006,63(3-4):260-265.
    [49]Huang Z, Zhu Z, Liu Z. Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperatures[J]. Applied Catalysis B: Environmental,2002,39(4):361-368.
    [50]肖勇,刘振宇,刘清雅,等.SO2影响V2O5/AC催化剂脱硝活性的机理[J].催化学报,2008,29(1):81-85.
    [51]Lei Z, Han B, Yand K, et al. Influence of H2O on the low-temperature NH3-SCR of NO over V2O5/AC catalyst:An experimental and modeling study[J].Chemical Engineering Journal,2013,215-216:651-657.
    [52]Li P, Liu Q, Liu Z. Behaviors of NH4HSO4 in SCR of NO by NH3 over different cokes[J].Chemical Engineering Journal,2012,181-182:169-173.
    [53]周愉千,刘超,宋鹏,等CeOx/AC催化剂NH3选择性催化还原NO[J].环境工程学报,2012,6(8):2720-2724.
    [54]张扬V2O5/AC催化剂上NH3低温还原NO,的实验研究[D].杭州:浙江大学,2010.
    [55]Tang X, Hao J, Yi H, et al. Low-temperature SCR of NO with NH3 over AC/C supported manganese-based monolithic catalysts[J]. Catalysis Today,2007,126(3-4):406-411.
    [56]Kang M, Yeon T H, Park E D, et al. Novel MnOx catalysts for NO reduction at low temperature with ammonia[J].Catalysis Letter,2006,106(1-2):77-80.
    [57]Park T S, Jeong S K, Hong S H, et al. Selective Catalytic Reduction of Nitrogen Oxides with NH3 over Natural Manganese Ore at Low Temperature[J]. Industrial & Engineering Chemistry Research,2001,40(21):4491-4495.
    [58]Qi G, Yand R T.Characterization and FTIR studies of MnOx-CeO2 catalyst for low-temperature selective catalytic reduction of NO with NH3[J].The Journal of Physical Chemistry B,2004,108(40):15738-15747.
    [59]Kang M, Park E D, Kim J M, et al. Cu-Mn mixed oxides for low temperature NO reduction with NH3[J]. Catalysis Today,2006,111(3-4):236-241.
    [60]Pena D A, Uphade B S, Reddy E P, et al. Identification of Surface Species on Titania-Supported Manganese, Chromium, and Copper Oxide Low-Temperature SCR Catalysts[J].The Journal of Physical Chemistry B,2004,108(28):9927-9936.
    [61]Qi G, Yand R T, Ramsay C. Low-temperature SCR of NO with NH3 over USY-Supported Manganese Oxide-based Catalysts[J].Catalysis Letters,2003,87(1):67-71.
    [62]Kijlstra W S, Biervliet M, Poles E K,et al. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures[J].Applied Catalysis B:Environ -mental,1998,16(4):327-337.
    [63]Liu F, He H, Zhang C,et al. Mechanism of the selective catalytic reduction of NOx with NH3 over environmental-friently iron titanate catalyst[J]. Catalysis Today,2011,175(1):18-25.
    [64]Ma L, Li J, Ke R, et al. Catalytic Performance, Characterization, and Mechanism Study of Fe2(SO4)3/TiO2 Catalyst for Selective Catalytic Reduction of NOx by Ammonia [J].The Journal of Physical Chemistry C,2011,115(15):7603-7612.
    [65]Ren W, Zhou Y Q, Lei J Y. A study on NO reduction by ammonia via FeSO4 catalyst[C].Proceeding of the 6th international symposium on coal combustion, Wuhan, China,2007.
    [66]Liu F, He H. Selective catalytic reduction of NO with NH3 over manganese substituted iron titanate catalyst:Reaction mechanism and H2O/SO2 inhibition mechanism study [J].Catalysis Today,2010,153 (3-4):70-76.
    [67]Liu Z, Millington P J, Bailie J E, et al.A comparative study of the role of the support on the behaviour of iron based ammonia SCR catalysts[J].Microporous and Mesoporous Materials,2007,104(1-3):159-170.
    [68]Fabrizioli P, Burgi T, Baiker A. Environmental Catalysis on Iron Oxide-Silica Aerogels: Selective Oxidation of NH3 and Reduction of NO by NH3[J].Journal of Catalysis,2002, 206(1):143-152.
    [69]Indovina V, Campa M C, Pepe F, et al. The catalytic activity of FeO,/ZrO2 and FeOx/ sulphated-ZrO2 for the NO abatement with C3H6 in the presence of excess O2[J].Applied Catalysis B:Environmental,2005,60(1-2):23-31.
    [70]Chmielarz L, KuStroski P, Dziembaj R, et al. Selective catalytic reduction of NO with ammonia over porous clay heterostructures modified with copper and iron species[J]. Catalysis Today,2007,119:181-186.
    [71]刘福东,单文坡,石晓燕,等.用于NH3选择性催化还原NO的非钒基催化剂研究进展[J].催化学报,2011,32(7):1113-1128.
    [72]Long R Q, Yang R T. Superior Fe-ZSM-5 catalyst for selective catalytic reduction of nitric oxide by ammonia[J]. Journal of American Chemistry Society,1999,121:5595-5596.
    [73]Aizeng M, Grunert W. Selective catalytic reduction of NO by ammonia over Fe-ZSM-5 catalysts[J].Chemistry Communication,1999:71-72.
    [74]Qi G, Yang R T.Ultra-active Fe/ZSM-5 catalyst for selective catalytic reduction of nitric oxide with ammonia[J].Applied Catalysis B:Environ -mental,2005,60(1-2):13-22.
    [75]Brandenbergera S, Krochera O, Casapua M, et al. Hydrothermal deactivation of Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with NH:,[J].Applied Catalysis B: Environmental,20]l,101(3-4):649-659.
    [76]Brandenberger S, Krocher O, Wokaun A, et al. The role of Br(?)nsted acidity in the selective catalytic reduction of NO with ammonia over Fe-ZSM-5[J].Journal of Catalysis,2009,268(2):297-306.
    [77]Mauvezin M, Delahay G, Coq B, et al. Identification of iron species in Fe-BEA:Influence of the exchange level[J]. Journal of Physical Chemistry B,2001,105(5):928-935.
    [78]Balle P, Geiger B, Klukowski D,et al. Study of the selective catalytic reduction of NOx on an efficient Fe/HBEA zeolite catalyst for heavy duty diesel engines[J].Applied Catalysis B:Environmental,2009,91(3-4):587-595.
    [79]Klukowski D, Balle P, Geiger B,et al. On the mechanism of the SCR reaction on Fe/HBEA zeolite[J].Applied Catalysis B:Environ mental,2009,93(1-2):185-193.
    [80]H(?)j M, Beier M J, Grunwaldt J D,et al. The role of monomeric iron during the selective catalytic reduction of NOxby NH3 over Fe-BEA zeolite catalysts [J].Applied Catalysis B: Environmental,2009,93(1-2):166-176.
    [81]Balle P, Geiger B, Kureti S. Selective catalytic reduction of NOx by NH3 on Fe/HBEA zeolite catalysts in oxygen-rich exhaust[J]. Applied Catalysis B:Environmental, 2009,85(3-4),109-119.
    [82]Long R Q, Yang R T. Selective catalytic reduction of NO with ammonia over Fe3+ -exchanged mordenite(Fe-MOR):Catalytic performance, characterization, and mechanistic study[J].Journal of Catalysis,2002,207(2):274-285.
    [83]张新艳,程杰,麻春艳,等Fe-MOR催化剂上N2O和NO同去除的研究[C].上海,中国,第六届全国环境化学大会.
    [84]Devadasa M, Krochera O, Elsenera M,et al. Characterization and catalytic investigation of Fe-ZSM5 for urea-SCR[J].Catalysis Today,2007,119 (1-4):137-144.
    [85]Forzatti P, Nova I, Tronconi E. Enhanced NH3 Selective Catalytic Reduction for NOx Abatement[J]. Angewandte Chemie International Edition,2009,48(44):8366-8368.
    [86]Qi G, Yang R T.Low-temperature SCR of NO with NH3 over noble metal promoted Fe-ZSM-5 catalysts[J].Catalysis Letters,2005,100 (3-4):243-246.
    [87]Carja G, Delahay G, Signorile C,et al. Fe-Ce-ZSM-5 a new catalyst of outstanding properties in the selective catalytic reduction of NO with NH3[J].Chemical Communications,2004,12:1404-1405.
    [88]Qi G, Yang R T, Chang R,et al. Deactivation of La-Fe-ZSM-5 catalyst for selective catalytic reduction of NO with NH3:field study results[J].Applied Catalysis A:General,2004,275(1-2):207-212.
    [89]Li Z, Shen L, Huang W,et al. Kinetics of selective catalytic reduction of NO by NH3 on Fe-Mo/ZSM-5[J] Journal of Environmental Sciences,2007,19(12):1516-1519.
    [90]Ruggeria M P, Grossalea A, Nova I,et al. FTIR in situ mechanistic study of the NH3-NO/NO2 "Fast SCR" reaction over a commercial Fe-ZSM-5 catalyst[J].Catalysis Today,2012,184(1):107-114.
    [91]Shi X, Liu F, Shan W,et al.Hydrothermal Deactivation of Fe-ZSM-5 Prepared by Different Methods for the Selective Catalytic Reduction of NOx with NH3[J]. Chinese Journal Of Catalysis,2012,33(3):454-464.
    [92]Long R Q, Yang R T. Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-exchanged TiO2-pillared clay catalysts[J].Journal of Catalysis,1999,186(2):254-268.
    [93]Frey A M, Mert S, Due-Hansen J,et al. Fe-BEA zeolite catalysts for NH3-SCR of NOx[J].Catalysis Letters,2009,130:1-8.
    [94]Rahkamaa-Tolonen K, Maunula T, Lomma M,et al. The effect of NO2 on the activity of fresh and aged zeolite catalysts in the NH3-SCR reaction[J]. Catalysis Today,2005,100(3-4):217-222.
    [95]熊志波,路春美.铁铈复合氧化物催化剂SCR脱硝的改性研究[J].燃料化学学报,2013,41(3):361-367.
    [96]贺泓,刘福东,余运波,等.环境友好的选择性催化还原氮氧化物催化剂[J].中国科学化学,2012,42(4):446-468.
    [97]Brandenberger S, KrOcher O, Tissler A,et al. The state of the art in selective catalytic reduction of NOx by ammonia usingmetal-exchanged zeolite catalysts [J].Catalysis Reviews:Science and Engineering,2008,50 (4):492-531.
    [98]Long R Q, Yang R T. Fe-ZSM-5 for selective catalytic reduction of NO with NH3:a comparative study of different preparation techniques[J].Catalysis Letters,2001, 74(3-4):201-205.
    [99]Long R Q, Yang R T. Temperature-programmed desorption/surface reaction(TPD/TPSR) study of Fe-exchanged ZSM-5 for selective catalytic reduction of nitric oxide by ammonia [J].Journal of Catalysis.2001,198 (1):20-28.
    [100]Long R Q, Yang R T. Reaction Mechanism of Selective Catalytic Reduction of NO with NH3 over Fe-ZSM-5 Catalyst[J].Journal of Catalysis,2002,207(2):224-231.
    [101]Huang H Y, Long R Q, Yang R T. Kinetics of selective catalytic reduction of NO with NH3 on Fe-ZSM-5 catalyst[J].Applied Catalysis A:General,2002,235(1-2):241-251.
    [102]刘亭.锰铈基低温选择性催化还原(SCR)脱硝催化剂的研究[D].天津:南开大学,2011.
    [103]Iwasaki M, Yamazaki K, Shinjoh H. NOx reduction performance of fresh and aged Fe-zeolites prepared by CVD:Effects of zeolite structure and Si/Al2 ratio[J].Applied Catalysis B:Environmental,2011,102(1-2):302-309.
    [104]Grossale A, Nova I, Tronconi E,et al. The chemistry of the NO/NO2-NH3 "fast" SCR reaction over Fe-ZSM5 investigated by transient reaction analysis[J].Journal of Catalysis, 2008,256(2):312-322.
    [105]Grossale A, Nova I, Tronconi E. Role of Nitrate Species in the NO2-SCR Mechanism over a Commercial Fe-zeolite Catalyst for SCR Mobile Applications[J].Catalysis Letter,2009,135(3-4):525-531.
    [106]Larrubia M, Ramis G, Busca G. An FT-IR study of the adsorption and oxidation of N-containing compounds over Fe2O3-TiO2 SCR catalysts[J].Applied Catalysis B:Environ-mental,2001,30(1-2):101-110.
    [107]Apostolescu N, Geiger B, Hizbullah K,et al. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts[J]. Applied Catalysis B:Environmental, 2006,62(1-2):104-114.
    [108]王海利.铈铁固溶体的制备及表征[D].长沙,中南大学,2010.
    [109]晏冬霞,王华,李孔斋,等Ce1-xFexO2复合氧化物的结构及其催化碳烟低温燃烧性能[J].物理化学学报,2010,26(2):331-337.
    [110]李孔斋.铈基复合氧化物制备及其部分氧化甲烷制合成气性能研究[D].昆明.昆明理工大学,2007.
    [111]Sahoo S K, Mohapatra M, Pandey B,et al. Preparation and characterization of α-Fe2O3-CeO2 composite[J].Materials Characterization,2009,60(5):425-431.
    [112]Zhao H, Zhang D, Wang F,et al. Modification of ferrite-manganese oxide sorbent by doping with cerium oxide[J]. Process Safety and Environment Protection.2008,86(6):448-454.
    [113]金瑞奔.负载型Mn-Ce系列低温SCR脱硝催化剂制备、反应机理及抗硫性能研究[D].杭州:浙江大学,2010.
    [114]Perez-Alonso F J, Granados M L, Ojeda M,et al. Chemical Structures of Coprecipitated Fe-Ce Mixed Oxides[J].Chemistry of Materious,2005,17 (9):2329-2339.
    [115]王庆志,孙平.微波技术在食品工业中的应用[J].河北农业科学,2008,12(12):54-55.
    [116]金钦汉,戴树珊,黄卡玛.微波化学[M].科学出版社:北京,1999,1-3.
    [117]]一正新.微波辐射对Ti02制备及光催化过程的影响[D].福州:福州大学,2005.
    [118]翟增秀.微波辅助低温制备负载型纳米光催化剂Ti02的实验研究[D].天津:天津工业大学,2010.
    [119]Chu P, Dwyer F G, Vartuli J C. Crystallization method employing microwave radiation[P].US:4778666,1988-10-18.
    [120]Inada M, Tsujimoto H, Eguchi Y,et al. Microwace-assisted zeolite synthesis from coal fly ash in hydrothermal process[J]. Fuel,2005,84(12-13):1482-1486.
    [121]Bonaccorsi L, Proverbio E. Influence of process parameters in microwave continuous synthesis of zeolite LTA[J].Microporous and Mesoporous Materials,2008,112 (1-3):481-493.
    [122]Hidekazu T, Atsushi F, Satoshi F,et al. Microwave-assisted Two-Step Process for the Synthesis of a Singe-Phase Na-A Zeolite from Coal Fly Ash[J].Advanced Powder Technology,2008,19(1):83-94.
    [123]Ling W S, Thian T C, Bhatia S. Synthesis, Characterization and pervaporation properties of microwave synthesized zeolite A membrane[J].Desalination,2011,277(1-3):383-389.
    [124]Drobeka M, Motuzasa J, van Loon M,et al. Coupling microwave-assisted and classical heating methods for scaling-up MFI zeolite membrane synthesis[J].Journal of membrane Science,2012,401-402:144-151.
    [125]Yoshida K, Gonzalez-Arellano C, Luque R,et al. Effcient hydrogenation of carbonyl compounds using low-loaded supported copper nanoparticles under microwave irradiation[J].Applied Catalysis A:General,2010,379(1-2):38-44.
    [126]Mcmahon K C, Suib S L, Johnson B G,et al. Dispersed Cobalt-Containing Zeolite Fischer-Tropsch Catalysts[J].Journary of catalysis,1987,106(1):47-53.
    [127]Nekooi P, Akbari M, Amini M K. CoSe nanoparticles prepared by the microwave-assisted polyol method as an alcohol and formic acid tolerant oxygen reduction catalyst[J].International Journal of Hydrogen Energy,2010,35(12):6392-6398.
    [128]Darmanina T, Nativoa P, Gillilanda D,et al. Microwave-assisted synthesis of silver nanoprisms/nanoplates using a "modified polyol process"[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,395:145-151.
    [129]银董红,尹笃林,伏再辉,等.分子筛表面酸性对微波固相法制备的ZnCl2/HY催化剂的影响[J].催化学报,2002,23(6):567-570.
    [130]Li X, Zhang X, Lei L. Preparation of CuNaY zeolites with microwave irradiation and their application for removing thiophene from model fuel[J].Separation and Purification Technology,2009,64(3):326-331.
    [131]Cheng Z, Han S, Sun W. Microwave-assisted synthesis of nanosized FAU-type zeolite in water-in-oil microemulsion[J].Materials Letters,2013,95:193-196.
    [132]李旦振,郑宜,傅贤智,等.微波法制备SO427TiO2催化剂及其光催化氧化性能[J].物理化学学报,2001,17(3):270-272.
    [133]史书杰,王鹏,杨禹,等。用于水处理的Fe2O3/La2O2/CNTs催化剂的微波辅助制备与表征[J].材料导报,2007,21(11A):283-285.
    [134]Li X, Wand L, Lu X. Preparation of silver-modified TiO2 via microwave-assisted method and its photocatalytic activity for toluene[J]. Journal of Hazardous Materials.2010,117(1-3):639-647.
    [135]王道军,王涛,周建华,等.有序介孔碳的微波快速合成和表面修饰及其负载性能[J].无机化学学报,2010,,26(2):305-314.
    [136]Liu X, Bi X T, Liu C,et al. Performance of Fe/AC catalyst prepared from demineralized pine particles in a microwave reactor[J].Chemical Engineering Journal, DOI: 10.1016/j.cej.2012.04.039.
    [137]Zheng J, Fu R, Tian T,et al. Effect of the microwave thermal treatment condition on Pt-Fe/C alloy catalyst performance[J].International Journal of Hydrogen Energy,2012,37 (17):12994-13000.
    [138]吴东辉,金瑞娣,汪信.微波水热改性制备S2O82-/Fe2O3-SiO2固体酸及催化性能[J].应用化学,2005,22(8):879-883.
    [139]Jiang F Y, Wang C M, Fu Y,et al. Synthesis of iron oxide nanocubes via microwave-assisted solvolthermal method[J].Journal of Alloys and Compounds, 2010,503(2):131-33.
    [140]马双忱,赵毅,马宵颖,等.活性炭床加微波辐射脱硫脱销的研究[J].热能动力工程,2006,21(4):338-342.
    [141]马双忱,金鑫,王梦璇,等.微波辐射载催化剂活性炭脱除烟气中的实验研究[J].中国科学:技术科学,2011,41(12):1606-1611.
    [142]Wei Z S, Zeng G H, Xie Z R,et al. Microwave catalytic NOx and SO2 removal using FeCu/zeolite as catalyst[J].Fuel,2011,90(4):1599-1603.
    [143]Long R Q, Yang R T. Characterization of Fe-ZSM-5 Catalyst for Selective Catalytic Reduction of Nitrix Oxide by Ammonia[J]. Journal of Catalysis,2000,194(1):80-90.
    [144]Long R Q, chang M T, Yang R T. Enhancement of activities by sulfation on Fe-exchanged TiO2-pillared clay for selective catalytic reduction of NO by ammonia[J].Applied Catalysis B:Environmental,2001,33(2):97-107.
    [145]吴碧君,刘晓勤,肖萍,等Mn-Fe/TiO2低温NH3选择性还原NO催化活性及其反应机制[J].中国电机工程学报,2007,27(17):51-56.
    [146]江博琼Mn/TiO2系列低温SCR脱硝催化剂制备及其反应机理研究[J].杭州:浙江大学,2008.
    [147]Wu Z, Jiang B, Liu Y. Effect of transition metals addition on the catalyst of manganese/titania for low-temperature selective catalytic reduction of nitric oxide with ammonia[J]. Applied Catalysis B:Environmental,2008,79(4):347-355.
    [148]Liu F, He H, Ding Y, et al. Effect of manganese substitution on the structure and activity of iron titanate catalyst for the selective catalytic reduction of NO with NH3[J]. Applied Catalysis B:Environmental,2009,93(1):194-204.
    [149]绍红,霍超.微波技术在催化剂制备领域的应用研究[J].化工技术与开发,2006,35(11):1-5.
    [150]Gao X, Jiang Y, Zhong Y,et al. The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3[J]. Journal of Hazardous Materials,2010,174(1-3):734-739.
    [151]Chen L, Li J, G M,et al. Mechanism of Selective Catalytic Reduction of NOx with NH3 over CeO2-WO3 Catalysts[J].Chinese Journal of Catalysis,2011,32(5):836-841.
    [152]Li K, Wang H, Wei Y,et al. Preparation and characterization of Ce^Fe^ complex oxides and its catalystic activity for mechane selective oxidation[J].Journal of rare earths, 2008,26(2):245-249.
    [153]阎忠君,王京刚,文明芬,等.不同沉淀剂对铈锆复合稀土氧化物性能的影响[J].北京化工大学学报,2005,32(3):9-12.
    [154]郑建东,任晓光,宋永吉,等.沉淀剂对铜锰复合氧化物变换催化剂构效的影响[J].燃料化学学报,2010,38(4):445-451.
    [155]华金铭,郑起,魏可美,等.沉淀剂种类对水煤气变换Au/Fe2O3催化剂结构和催化性能的影响[J].催化学报,2006,27(11):1012-1018.
    [156]李孔斋,张华,魏永刚,等.铁铈复合氧化物制备及其甲烷选择性氧化制合成气催化性能[J].中国稀土学报,2008,26(1):6-11.
    [157]刘成文,罗来涛.沉淀剂对甲烷在Ce0.9Fe0.1O2催化剂上催化燃烧反应的影响[J].石油化工,2007,36(2):127-131.
    [158]Liu F, He H. Structure-Activity Relationship of Iron Titanate Catalysts in the Selective Catalytic Reduction of NOx with NH3[J]. Journal of Physical Chemistry:C,2010,114(40):16929-16936.
    [159]Gao X, Du X, Cui L,et al. A Ce-Cu-Ti oxide catalyst for the selective catalytic reduction of NO with NH3[J].Catalysis Communications,2010,12(4):255-258.
    [160]Shan W, Liu F, He H,et al. A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOX with NH3[J]. Applied Catalysis B:Environmental,2012, 115-116:100-106.
    [161]刘辉,李平,魏雨,等.红外光谱技术在铁氧化物形成研究中的应用[J].河北师范法学学报(自然科学版),2005,29(3):272-276.
    [162]白昱,毛健,尹海顺,等.沉淀剂对纳米Ce02粒径及Zeta电位的影响研究[J].化工新型材料,2009,,37(4):62-65.
    [163]Gotic M, Music S. Mossbauer, FT-IR and FE SEM investigation of iron oxides precipitated from FeSO4 solutions[J]. Journal of molecular structure,2007,834:445-453.
    [164]Gialanella S, Girardi F, Ischia G, et al. On the goethite to hematite phase transformation[J]. Journal of thermal analysis and calorimetry,2010,102(3):867-873.
    [165]Jubb A M, Allen H C. Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition[J]. ACS Applied Materials & Interfaces,2010,2(10):2804-2812.
    [166]Liu F, He H, Zhang C,et al. Selective catalytic reduction of NO with NH3 over iron titanate catalyst:Catalytic performance and characterization[J]. Appllied Catalysis B: Environment,2010,96(3-4):408-420.
    [167]Qi G, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst[J]. Journal of Catalysis,2003,217(2):434-441.
    [168]Mhamdi M, Khaddar-Zine S, Ghorbel A. Influence of the cobalt salt precursors on the cobalt speciation and catalytic properties of H-ZSM-5 modified with cobalt by solid-state ion exchange reaction[J]. Applied Catalysis A:General,2009,357(1):42-50.
    [169]郭凤,余剑,朱剑虹,等Mn-Fe-Ce/TiO2低温NH3选择性催化还原NO[J].过程工程学报,2009,9(6):1192-1197.
    [170]Nguyen L Q, Salim C, Hinode H. Promotive Effect of MO, (M=Ce, Mn) Mechanically Mixed with Au/TiO2 on the Catalytic Activity for Nitrogen Monoxide Reduction by Propene[J]. Topics in Catalysis,2009,52:779-783.
    [171]Metkar P S, Salazar N, Muncrief R,et al. Selective catalytic reduction of NO with NH3 on iron zeolite monolithic catalysts:Steady-state and transient kinetics[J]. Applied Catalysis B:Environmental,2011,104(1-2):110-126.
    [172]范红梅,仲兆平,金保异,等V2O5-WO3/TiO2催化剂氨法SCR脱硝反应动力学研究[J].燃料化学学报,2006,34(3):377-380.
    [173]Iwasaki M, Yamazaki K, Shinjoh H. Transient reaction analysis and steady-state kinetic study of selective catalytic reduction of NO and NO+NO2 by NH3 over Fe/ZSM-5[J]. Applied Catalysis A:General.2009,366(1):84-92.
    [174]Delbecq F, Sautet P. Electronic and chemical properties of the Pt80Fe20(111) alloy surface: a theoretical study of the adsorption of atomic H, CO, and unsaturated molecules[J].Journal of catalysis,1996,164(1):152-165.
    [175]Sakamoto Y, Higuchi K, Takahashi N,et al. Effect of the addition of Fe on catalytic activities of Pt/Fe/y-Al2O3 catalyst[J]. Applied catalysis B:Environmental,1999, 23:159-167.
    [176]李远,沈岳松,祝社民,等.锆掺杂对Ti-Ce-Ox复合氧化物NH3选择性催化还原NO的影响[J].硅酸盐学报,2011,39(6):889-894.
    [177]付银成,宋浩,吴卫红,等V2O5/TiO2的钾、钠、钙复合中毒及改性研究[J].能源与环境,2011(2):40-44.
    [178]Cheng L, Li J, Ge M. The poisoning effect of alkali metals doping over nano V2O5-WO3/TiO2 catalysts on selective catalytic reduction of NOx by NH3[J].Chemical Engineering Journal,2011,170(2-3):531-537.
    [179]Tiwari S, Prakash R, Choudhary R J,et al. Oriented growth of Fe3O4 thin film on crystalline and amorphous substrates by pulsed laser deposition[J]. Journal of Physics D: Applied Physics,2007,40(16):4943-494.
    [180]吴平霄,李海玲.Ce掺杂羟基铁插层蒙脱石的光催化性能研究[J].矿物学报,2012,3(4):461-466.
    [181]杨青.Ce改性铁锰复合氧化物低温选择性催化还原NO,研究[D].广州:华南理工大学,2011.
    [182]梅燕,闫建平,聂祚仁.焙烧条件对Ce离子价态影响的XPS研究[J].光谱学与光谱分析,2010,30(1):270-273.
    [183]He H, Dai H, Au C T. Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE=Ce,Pr) solid solutions[J].Catalysis Today,2004,90(3):245-254.
    [184]Tang X, Li Y, Huang X,et al. MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde:Effect of preparation method and calcinations temperature[J].Applied Catalysis B:Environmental,2006,62(3-4):265-273.
    [185]吴大旺,张秋林,林涛,等CexTi1-xO2负载锰基催化剂的制备及其低温NH3选择催化还原NO[J].无机化学学报,2011,27(1):53-60.
    [186]Music S, Saric A, Popovic S,et al. Forced hydrosis of Fe3+ ions in NH4Fe(SO4)2 solutions containing urotropin [J].Croatica Chemica ACTA,2000,73(2):541-567.
    [187]江洋,司知蠢,吴晓东,等.多度金属离子掺杂CeO2-SO42-|固体酸的结构、redox性能、 吸附性能及NH3-SCR舌性研究[J].中国稀土学报,2011,29(4):417-421.
    [188]李烨,程昊,李德意,等.添加W03提高铈锆固溶体的氨选择性催化还原NOx反应活性[J].催化学报,2008,29(6):547-552.
    [189]徐海迪,邱春天,张秋林,等.WO3对MnOx/ZrO2-TiO2整体式催化剂NH3选择性催化还原NOx性能的影响[J].物理化学学报,2010,26(9):2449-2454.
    [190]吴碧君,肖萍,刘晓勤MnOx-WO3/TiO2 NH3选择性还原NOx的催化性能与动力学[J].化工学报,2011,62(4):940-946.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700