用户名: 密码: 验证码:
微波强化水合碱式碳酸镁反应结晶过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水合碱式碳酸镁是一种应用广泛的重要镁质无机化工产品。以氯化镁为原料,制备高性能、高附加值的功能碳酸镁材料,将碳酸镁产品系列化、功能化、微细化、专用化是镁资源开发利用的一个重要发展方向。
     本文在微波外场下,以MgCl2溶液为镁源,Na2CO3或NaHCO3溶液为沉淀剂,选择合适条件与MgCl2溶液进行均相结晶反应,直接合成水合碱式碳酸镁。通过对反应液中Mg2+含量追踪及产物XRD、FT-IR、EM表征研究该反应结晶历经过程,考察了反应温度、物料浓度、NaCl底料添加、pH值及溶液搅拌等主要工艺参数对反应过程和水合碱式碳酸镁最终形貌的影响。
     水合碱式碳酸镁晶体的合成是通过形成絮状无定形物或是介稳溶液,逐步相转移的反应结晶过程。实验表明:温度、反应物浓度、体系pH值、搅拌等反应条件都对反应结晶过程有较大影响;温度升高、反应物浓度增大、pH值升高、搅拌转速增大均能加快反应速度;而各工艺参数对于产物形貌影响较为复杂,温度升高,物料浓度较低,粒径越大;pH值较高,则片层变薄易结块团聚;搅拌转速降低,粒径越大。通过条件优化,获得了制备的比表面积较大的球状颗粒的方法。
     通过考察微波和水浴加热方式对水合碱式碳酸镁反应结晶过程影响,发现:微波能强化该反应结晶体系,促进反应结晶的成核、相转移、生长各个阶段,反应速率更快,产物颗粒粒径较大。
     以粒数衡算方程为理论基础,对微波场下的碱式碳酸镁结晶生长动力学进行研究。通过对经典的反应结晶生长速率模型进行筛选对比,发现Bransom模型能较好的描述水合碱式碳酸镁结晶生长过程。在微波条件下,晶体生长速率方程为Gt=0.25×L-0.2;在水浴下,晶体生长速率与粒度L的指数关系为L-1.24。实验数据表明,加热方式对晶体生长速率方程与粒度关系有影响,在微波条件下晶体生长速率的受粒度影响小。
Hydromagnesite (hydrated magnesium carbonate hydroxide) is a kind of important and widely used magnesium inorganic materials. The new development direction for magnesium resources utilization is that the inexpressive and abundant magnesium chloride in salt lake is used as raw material to prepare the functional magnesium carbonate with excellent performance and high additional value, making the product serialization, functionalization and specialization.
     In this article, MgCl2 solution was used as magnesium source and Na2CO3 or NaHCO3 solution was used as precipitant, and hydromagnesite was directly synthesis by the reaction crystallization process when the two solutions were mixed under the microwave field. The prepared hydromagnesite was characterized by XRD, FT-IR, and SEM. The effects of the reaction conditions on the crystal product and the reaction course were investigated, where the reaction conditions included reaction temperature, reactant concentrations, NaCl concentration, pH value, stirring speed and so on.
     The results showed that the reaction crystallization process in this system involved the phase transition. That is, the amorphous material or metastable solution was formed firstly, and then it gradually transited to hydromagnesite crystal. Reaction temperature, reactant concentrations, pH value and stirring speed had great influences on the reaction crystallization process. Increase of reaction temperature, reactant concentrations, pH value and stirring speed could accelerate the reaction rate, while the effect of these reaction conditions on the morphology of hydromagnesite crystal became more complex. The higher the reaction temperature was, the larger the particle size of the prepared hydromagnesite crystal was. The higher the reactant concentration was, the smaller the crystal size of hydromagnesite was. With the increase of pH value in the solution, the layers of the crystal became thinner and the crystal particle became easy to agglomerate. With the decrease of stirring speed, the particle size of crystal increased. Based on the experimental optimization, a new method to prepare the spherical crystal of hydromagnesite with a large specific surface area was developed.
     Comparing the reaction crystallization processes carried out under microwave field and under water-bath, it was found that microwave could enhance the reaction crystallization process, especially for the nucleation, phase transfer, growth of hydromagnesite crystal. And it also could increase the reaction rate and make the particle size of crystal bigger under microwave field.
     Furthermore, the crystallization kinetics of hydromagnesite under microwave field was studied. Based on the PBE (population balance equation) and the population density data of hydromagnesite crystal, the growth rate model of crystal was determined by comparing the classical size-dependent growth rate models. It was found that the Bransom model could easily and accurately describe the crystal growth for this reaction system. Under the microwave field, the growth rate equation of hydromagnesite crystal was obtained as Gt=0.25 x L-0.2. In the water-bath, the relationship between the crystal growth rate and the particle size L of crystal was L-1.24. This result proved that the heating method affected the relationship between the crystal growth rate and the crystal particle size, and the crystal size had less effect on the crystal growth rate under the microwave field.
引文
[1]李增容,徐徽,庞全世等.盐湖镁资源开发技术进展及镁产业发展规划与设想[J].青海科技,2010,17(1):13-17.
    [2]青海省科学技术厅高新技术及产业化处.盐湖资源综合利用金属镁一体化项目及其发展前景展望[J].青海科技,2010,17(1):9-12.
    [3]王渠东,丁文江.镁合金研究开发现状与展望[J].世界有色金属,2004,(7):8-11.
    [4]胡庆福.镁化合物生产与应用[M].北京:化学工业出版社,2004.
    [5]天津化工研究院.无机盐工业手册(下册)[M].第二版.北京:化学工业出版社,1996.
    [6]吴健失,方建华.碱式碳酸镁对高冲聚苯乙烯的阻燃作用[J].兰化科技,1989,7(3):175-179.
    [7]刘红梅,赵浩峰,卫爱丽等.MgCO3对AZ91D镁合金的细化研究[J].铸造工程造型材料,2002,(4):18-20.
    [8]Dean McCann. Steel making using magnesium carbonate [P]. US:6375711,2000.
    [9]秦麟卿,刘以波,黄志雄等.碱式碳酸镁颗粒形貌对环氧树脂黏度和固化时间的影响[J].粘接,2008,29(6):18-20.
    [10]李连会,胡庆福,王振道等.菱镁矿复分解法制取药用碳酸镁[J].非金属矿,2001,24(4):25-27.
    [11]Sylvester O Aideloje, Cyprian O Onyeji, Nicholas C Ugwu. Altered pharmacokinetics of halofantrine by an antacid, magnesium carbonate [J]. European Journal of Pharmaceutics and Biopharmaceutics,1998,46(3):299-303.
    [12]三觜幸平,田边克幸,田上直树.碱式碳酸镁及其制备方法和用途[P].CN:1646430,2005.
    [13]周祚万.晶须的特点及其产业化前景分析[J].新材料产业,2002(6):18-21.
    [14]童身毅,徐绾韶.镁盐晶须在涂料中在涂料中的应用[J].中国涂料,2000,3:32-33.
    [15]Vanderlioff J W. Method for carrying out chemical reactions using microwave energy [P]. US:3432413,1969.
    [16]Gedye R, Smith F, Westaway K, Ali H, et al. The use of microwave ovens for rapid organic synthesis [J]. Tetrahedron Letters,1986,27(3):279-282.
    [17]周相廷,刘丽艳.碱式碳酸镁前驱状态的研究[J].化学试剂,1999,21(3):135-137.
    [18]Zhiping Zhang, Yajun Zheng, Jixiu Zhang, et al. Synthesis and shape evolution of monodisperse basic magnesium carbonate microspheres [J]. Crystal Growth & Design, 2007,7(2):337-342.
    [19]Yong Wang, Zhibao Li, George P. Demopoulos. controlled precipitation of nesquehonite (MgCO3·3H2O) by the reaction of MgCl2 with (NH4)2CO3 [J]. Journal of Crystal Growth, 2008,310(6):1220-1227.
    [20]Xiaoli Wang, Dongfeng Xue. Direct observation of the shape evolution of MgO whiskers in a solution system [J]. Materials Letters,2006,60(25-26):3160-3164.
    [21]邵明浩,史永刚,胡泽善.碳酸镁晶须的制备、表征与分析方法[J].后勤工程学院学报,2008,24(1):37-40.
    [22]王万平,张懿.碳酸盐热解法制备氧化镁晶须[J].硅酸盐学报.2002,30(增刊):93-95.
    [23]王麟生,卢荣丽,胡炳元.一种纳米氧化镁的制备方法[P].CN:101033073,2007.
    [24]宋兴福,杨晨,孙淑英等.一种棒状三水碳酸镁的制备方法[P].CN:101830488A,2010.
    [25]宋兴福,杨晨,孙淑英等.一种多孔玫瑰花状碱式碳酸镁的制备方法[P].CN:101830489A,2010.
    [26]Kohei Mitsuhashi, Naoki Tagami, Katsuyuki Tanabe, et al. Synthesis of microtubes with a surface of "House of Cards" structure via needlelike particles and control of their pore size [J]. Langmuir,2005,21(8):3659-3663.
    [27]Zhihua Hao, Jie Pan, Fanglin Du. Synthesis of basic magnesium carbonate microrods with a surface of "house of cards" structure [J]. Materials Letters,2009,63(12):985-988.
    [28]Chenglin Yan, Dongfeng Xue. Novel self-assembled MgO nanosheet and its precursors [J]. The Journal of Physical Chemistry B,2005,109 (25):12358-12361.
    [29]Z Zhang, Y Zheng, J Chen, et al. Facile synthesis of monodisperse magnesium oxide microspheres via seed-induced precipitation and their applications in high-performance liquid chromatography [J]. Advanced Functional Materials,2007,17:2447-2454.
    [30]祁强,李萍,张起凯等.微波技术的最新应用进展[J].化工科技,2009,17(1):60-65.
    [31]黄卡玛,刘宁,刘长军.电磁波辐射下化学反应过程的初步研究[J].科学通报,2000,45(Ⅱ):1217-1220.
    [32]E. K. Barnhardt. Advancing microwave energy to new heights with simultaneous cooling [C]. Scientific Report on Microwave Chemistry and Specific Microwave Effects.
    [33]I. Ahmad, R. Dalton, D. Clark. Unique application of microwave energy to the processing of ceramic materials [J]. Journal of Microwave Power and Electromagnetic Energy,1991,26(3):128-138.
    [34]粱叔全,郑子樵.材料的自蔓延高温合成[J].硅酸盐学报,1993,21(3):261-264.
    [35]杨卜,彭金辉,范兴祥等.微波辐射煅烧碱式碳酸镁制备轻质活性氧化镁[J].无机盐工业,2005,37(11):26-28.
    [36]王飞,黄涛,刘汉范等.微波辐照下铂纳米颗粒的形貌控制合成[J].化学与生物工程,2009,26(3):19-21.
    [37]丁希楼,赵凯,李家等.TiO2晶体的微波水热法制备及光催化性能研究[J].环境工程学报,2010(4):801-804.
    [38]杜春华,郑诗礼,徐红彬等.物理场强化溶液结晶研究进展[J].现代化工,2006(26): 88-91.
    [39]赵岩岩.微波辐照对硫酸钙结晶的影响及特殊效应研究[D].四川大学,2007.
    [40]陈勤芹,刘代俊.微波辐射对硫酸钙粉末表面能影响的研究[J].高校化学工程学报,2009,23(1):178-181.
    [41]汤建伟,钟本和,许秀成.微波作用下的结晶过程分析[J].化工矿物与加工,2002,31(11):7-11,17.
    [42]罗军,吕春绪.3-氯-4-氟硝基苯的微波合成法[J].精细化工中间体,2007,37(1):30-33.
    [43]毛燎原,李萍,张起凯等.氯化钠存在下微波辐射高稠原油脱水研究[J].化工科技,2006,14(3):9-12.
    [44]郭文玲,赵杉林,纪绪强等.微波辐射脱除柴油中碱性氮化物实验研究[J].化工科技,2006,14(2):32-35.
    [45]潘杰.头抱曲松钠结晶过程研究[D].天津大学,2004.
    [46]E.B哈姆斯基.化学工业中的结晶[M].化学工业出版社,1948.
    [47]陈建.新氢化可的松结晶过程研究[D].天津大学,2005.
    [48]L.Zhou, P.O'Brien. Mesocrystals:A new class of solid materials [J]. Small 2008,4(10): 1566-1574.
    [49]H. Colfen. Mesocrystals:Inorganic superstructures made by highly parallel crystallization and controlled alignment [J]. Angew. Chem. Int. Ed,2005,44:2-17.
    [50]Mullin J W. Crystallization,3rd Ed. [M]. Oxford:Butterworth Heinemann Press,1992.
    [51]Mohan R, Boateng K A, Myerson A S. Estimation of crystal growth kinetics using differential scanning calorimetry [J]. Crystal Growth,2000,212:489-499.
    [52]Gabas N, Biscans B, Laguerie C. Growth rate dispersion in seeded batch D-xylose crystallization [J]. Crystal Growth,1990,99:1108-1111.
    [53]Mohameed H A, Abu-Jdayil B, Khateed M A. Effect of cooling rate on undeeded batch crystallization of KCl[J]. Chemical Engineering and Processing,2000,41:297-302.
    [54]Mullin J W, Leci C J. Desupersaturation of seeded citric acid solution in a stirred vessel [J]. AIChE Symposium Series,1972,68(121):8-20.
    [55]Randolph A D, Beckman J R, Kralievich. Crystal size distribution dynamics in a classified crystallizer [J]. AIChE J.,1977,23(4):500-509.
    [56]张小霓,于萍,罗运柏.溶液电导率法对碳酸钙结晶动力学的研究[J].应用化学,2004,21(2):187-191.
    [57]尹晓爽,杨文忠,唐永明,刘瑛.PBTCA对硫酸钡结晶动力学的影响[J].应用化学,2008,25(3):356-360.
    [58]伍川.溶液结晶动力学实验与模型研究[D].南京工业大学,2002.
    [59]Mikker S M. Modelling and quality control strategies for batch cooling crystallizers [D]. The university of Texas at Austin,1993.
    [60]伍川,黄培.结晶过程中溶液浓度的测量方法[J].现代仪器,2007,3:9-11.
    [61]丁绪淮.工业结晶[M].北京,化学工业出版社,1985.
    [62]RandolphA. D, Larson M. A. Theory of particulate processes [M]. New York:Academic Press.1988.
    [63]Chen S G. Handbook of chemical technology [M]. Beijing Chemical Industry Press, 1985.
    [64]Bransom S H. Factors in the design of continuous cyrstallizers [J]. British Chemical Engineering,1960,5:838-844.
    [65]Canning T F, RandolPh A D. Some aspects of crystallization theory:systems that violet McCabe's delta L law [J]. AIChE Journal,1967,13:5-10.
    [66]Abegg C F, Stevens J D, Larson M A. Cyrstal size distributions in continuous cyrstallizers when growth rate is size dependent [J]. AIChE Journal,1968,14:118-122.
    [67]Mydlarz J, Jones A G. On modeling the size-dependent growth rate of potassium sulphate in an MSMPR crystallizer [J]. Chem Eng Commun,1989,90:47-55.
    [68]Mydlarz J, Jones A G. On the estimation of size-dependent crystal growth rate functions in MSMPR cyrstallizers [J]. Chem Eng J.,1993,53:125-136.
    [69]邵平平,李志宝,密建国.碳酸镁水合物在283~363K范围内的晶体组成和晶型[J].过程工程学报,2009,9(3):520-525.
    [70]J.Lanas, J.I.Alvarez. Dolomitic lime:thermal decomposition of nesquehonite [J]. Thermochimica Acta,2004, (421):123-132.
    [71]Zhiping Zhang, Yajun zheng. Temperature-and pH-Dependent Morphology and FT-IR Analysis of Magnesium Carbonate Hydrates [J]. The Journal of Physical Chemistry B, 2006,(110):12969-12973.
    [72]A.Botha, C.A.Strydom. DTA and FT-IR Analysis of the Rehydration of Basic Magnesium Carbonate [J]. Journal of Thermal Analysis and Calorimetry,2003, (71): 987-995.
    [73]周汝勤,葛喜臣,雷一东,李英.白云石灰乳低温碳化试验及其效益分析[J].无机盐工业,1998,30(4):8-10.
    [74]韩维和,宋卫红,谭晓维.碳酸氢镁溶液受热后的产物研究[J].化学通报,2003,8:564-566.
    [75]张登科.氢氧化钠与水氯镁石制备高纯氢氧化镁的研究[D].华东理工大学,2011.
    [76]闫小晶.在微观尺度上研究Mg2+离子的结晶行为[D].大连理工大学,2007.
    [77]宋兴福,杨晨,汪瑾等.玫瑰花状多孔碱式碳酸镁微球的合成[J].无机化学学报,2011,27(5):1008-1014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700