用户名: 密码: 验证码:
城市雨水径流污染物输移规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市的快速发展,降雨形成的径流污染负荷不断升高,由此导致的面源污染成为自然水体的重要污染源。现阶段对降雨径流的研究主要集中于降雨洪峰过程对城市发展的影响,缺少降雨径流污染特征的研究,对降雨径流污染物的冲刷及输移规律的研究较少,缺乏用于指导雨水径流污染控制的相关理论与技术方法。
     论文通过引进径流产流负荷的概念,建立了雨水径流污染物冲刷模型,实现了对雨水过程径流水质的模拟,并结合概率分布模型对降雨污染负荷进行了评价。基于降雨径流量和污染输送过程,对降雨径流污染物的输移规律进行了研究,建立了降雨径流污染初期冲刷效应定量评价模型,实现了对初期冲刷效应强度的定量评价。在径流污染物输移规律和初期冲刷效应研究的基础上,提出了雨水径流污染控制参数计算公式。最后,开发了雨水径流污染生态绿地控制技术,为径流污染控制提供了一条新的途径。论文主要成果包括以下方面:
     (1)建立了雨水径流污染物冲刷模型
     以径流产流负荷替代降雨强度校正了传统的径流污染物冲刷模型,在此基础上建立了雨水径流污染物浓度模型: C(t)=M_0×(0.01+α/(1.1-exp(-H_(ef)/b)×R_(ef)~α)×exp[(-0.01×H_(ef)+(∫_0~t-α/(1.1-exp(-H_(ef)/b))×R_(ef)~(1+α)dt)]
     校正后的冲刷模型能够消除降雨过程和径流输送之间的时间差,提高了降雨径流污染物浓度模型的精度。雨水径流浓度模型对径流污染物浓度模拟结果与实测结果拟合性较好,冲刷模型可用于径流污染冲刷规律研究。建立的雨水径流污染物水质模型,有助于对雨水径流污染输移规律的深入研究。
     (2)提出了地表积累污染物的计算方法
     吸尘器收集的地表积累污染物不能代表实际可冲刷转移至径流中的污染物,因此在提出了地表可冲刷污染物积累量概念,在污染物冲刷模型的协同下实现了可冲刷污染积累量的计算。
     与吸尘器收集的全部积累污染物量相比,可冲刷污染物积累量代表了地表可被冲刷转移至雨水径流中的污染物,因此可冲刷积累量远小于吸尘器收集获得的污染物积累量。污染物可冲刷积累量可以直接应用于径流污染物冲刷模型,减小了因地表积累污染物难以定量所带来的模拟误差。
     (3)实现了雨水径流污染负荷的评价
     基于概率分布模型,建立了雨水径流污染负荷累积概率模型和平均浓度数学期望模型,模型可应用于雨水径流污染负荷状况的评价,并实现了降雨径流污染平均浓度的预测。
     雨水径流污染负荷模型的评价结果表明,西安市主城区年雨水径流COD负荷相当于2500万m~3城市市政污水,是不可忽视的城市水环境污染源。降雨量与雨水径流污染物平均浓度显现负相关过程,随着降雨量的增加雨水径流污染物平均浓度产生下降趋势,初期降雨是雨水径流污染形成的主要时期,是城市雨水径流污染控制的最佳实施期。
     (4)对雨水径流污染物输送过程进行了模拟
     基于降雨—净雨转化模型,通过对净雨强度的恒定化处理,在坡面流的圣维南方程组基础上,实现了降雨径流量的模拟。结合雨水径流污染物冲刷模型,对汇流面雨水径流污染物输移规律进行了研究。以汇流区域污染物输移模型为基础,利用Muskingum流量方程,建立了雨水管道雨水径流污染物流量和浓度模型,模型能够对大区域(含雨水管道)雨水径流污染物输移进行模拟。雨水径流污染物的输移过程研究为雨水径流污染控制提供了技术依据。
     (5)建立了雨水径流初期冲刷效应定量评价模型
     以雨水径流量和污染物输送过程为基础,建立了雨水径流初期冲刷效应间隙函数,从而提出了雨水径流污染初期冲刷效应定量评价模型: SFF=∫_0~1[f(F)-F]dF
     雨水径流污染初期冲刷效应间隙函数存在峰值区域,峰值区域代表的径流深度是雨水径流污染控制的高效区,雨水径流污染物的控制以峰值前径流控制为主。评价模型实现了对雨水径流和季节性初期冲刷效应的定量评价,从而可以针对性的采取相应的污染控制措施,为雨水径流污染物的高效控制提供了理论技术依据。
     (6)开发了雨水径流污染生态绿地控制技术
     在雨水径流污染输移和初期冲刷效应研究的基础上,提出了雨水径流污染控制参数。开发了雨水径流污染物生态绿地控制技术,雨水生态绿地中设置了沉水厌氧区,创造了持续稳定的厌氧环境,促进了反硝化过程。雨水生态绿地中植物吸收只去除了积累TN的20%,但雨水生态绿地中未发生明显的TN积累,因此沉水厌氧区的设置对TN的去除发挥了重要的作用。同时,沉水厌氧区的蓄水通过毛细作用到达土壤表层供给生物生长,提高了土壤含水率,雨水生态绿地中的植物显示了更加优越的景观功能。雨水生态绿地在雨水径流污染控制的基础上,实现了雨水利用,可以广泛的应用于雨水径流污染的控制。
     论文通过雨水径流污染物输移规律的研究,提出了相应的污染控制方案和技术方法,从而为雨水径流污染物的控制提供了理论技术支持。
The rapid urban development experienced in recent decades has led to significant changes in both the volume and quality of rainwater runoff, leading to the eventual eutrophication and the consequent wastage of the water resource. Greater emphasis was now placed on the quantity of storwater runoff, but absence of quality. The theory and technical methods were not available to guide stormwater runoff pollution control, because the wash-off and transportation of pollutants were not investigated deeply in stormwater runoff.
     With the introduction of the concept of runoff load, a new wash-off model was established, which could apply to simulated stormwater runoff quality, and pollution load was evaluated based on probability distribution model. The transportation regular of stormwater runoff pollution was studied with simulation of quantity and quality, which could be used to establish quantitative evaluation for the first flush effect. Then, the pollutants control parameter formula was proposed based on the transportation regular and first flush effect. In the end, stormwater ecological vegetation was built to removal of stormwater pollutants. The major achievements in this paper were expressed as following:
     (1) Establishment the wash-off model of stormwater runoff
     The runoff load was adopted to substitute rainfall intensity, and stormwater runoff quality model was presented with traditional wash-off model calibrated. The quality model was: C(t)=M_0×(0.01+α/(1.1-exp(-H_(ef)/b)×R_(ef)~α)×exp[(-0.01×H_(ef)+(∫_0~t-α/(1.1-exp(-H_(ef)/b))×R_(ef)~(1+α)dt)]
     The new model eliminated the time difference between rainfall and pollutants wash-off, increased the accuracy of simulation. The simulation results of total suspend solid fitted to experiment well, which could be used to investigate the runoff pollution transportation regular. The quality existed direct function relationship with runoff quantity in wash-off model, which was beneficial to study runoff pollution transportation deeply.
     (2) Presentment the new computational model to pollutants build-up
     The vacuuming method usually used to sediment collection, they were not effective for evaluation of the wash-off pollutants because stormwater only removed part of cumulative pollutants. Based on wash-off pollutants in stormwater runoff, the conception of available cumulative wash-off pollutants was presented, and the computational model was established with the wash-off model.
     It was found that available cumulative wash-off pollutants were far below of vacuuming collection, largely because only a small fraction of pollutants was mobilized to runoff. Available cumulative wash-off pollutants mainly focus on the wash-off pollutants which could applied to wash-off model without calibration. The runoff quality model error would be reduced greatly with using available cumulative wash-off pollutants。
     (3) Implement the evaluation of runoff pollutant loads
     With pollutant buildup and washoff functions, the cumulative distribution functions (CDFs) of pollutant loads and the expected value of pollutant event mean concentrations (EMCs) were derived. The model can be used to evaluate the stormwater pollutant loads and calculate the pollutant event mean concentrations. The evaluation for pollutant loads indicated that the COD load of Xi’an city was equivalent to the load of 25 million m~3 of municipal wastewater, which showed that the pollutants in runoff were major source to urban water environment. The rainfall affected on pollutant event mean concentrations, the EMCs of runoff was negative correlation to rainfall. The concentration of pollutants in initial period was substantially higher than later, so it was effective step to control the runoff in initial period.
     (4) Simulation to runoff pollutants transportation
     The runoff flow was simulated with integrating the rainfall-net rainfall transformation and Overland flow of the Saint-Venant equations. Combined by pollutants wash-off, the stormwater runoff pollutants transportation regular was investigated in different catchments. Then, based on Muskingum flow equation, storm sewer runoff quantity and quality model was presented. The simulation of pollutants transportation could be developed to the first flush effect and runoff pollutants control.
     (5) Establishment quantitative evaluation model to the first flush effect Integrating runoff quantity and quality, the difference function was created by the difference between the dimensionless cumulative pollutants and the dimensionless cumulative runoff volume. Based the difference function, the strength of first flush was presented: SFF=∫_0~1[f(F)-F]dF
     The first flush difference function dominated in positive, and there was peak area, which was effective area to control runoff pollutants, the runoff pollutants should be controlled before peak time. The model implemented the quantitative evaluation to the first flush of stormwater runoff and seasonal flush. The quantitative evaluation model to the first flush effect could help to investigate for runoff pollution transportation and be useful development of best management practice.
     (6) Development stormwater ecological vegetation technology
     With modification of standard bioretention by adding a submerged anoxic zone, stormwater ecological vegetation (SWEV) provided excellent nutrient removal from rainwater. Denitrification in submerged anoxic zone may play an important role in the nutrition balance. Microbes provided the denitrification process to promote the conversion of accumulated nitrogen species to nitrogen gas, with the off-gas release of nitrogen to the atmosphere. Plant harvesting removed only 20% of capture nitrogen, but nitrogen was not found accumulation obviously in SWEV, demonstrating that denitrification in submerged anoxic zone was important to nitrogen removal. In SWEV, the stormater was harvested in the submerged zone and utilized by capillary action, which improved the plant growth. Not only can SWEV provide efficient pollutant removal, but it can also supply an additional water resource. SWEV can be designed for widespread implementation of runoff pollution control.
     The runoff pollutants control programs and techniques were presented with the transportation of runoff pollution investigated, which would be helpful development of best management practice for stormwater runoff pollutants.
引文
[1] Davis A P, McCuen R H. Stormwater management for smart growth [M]. Springer Science Business Media, Inc. 2005
    [2] Mitchell J.G.. Urban Sprawl, the American Dream [M]. National Geographic, July 2001: 48-68.
    [3] Pegram G.C., Quibell G., Hinsch M.. The nonpoint source impacts of peri-urban settlements in South Africa: implications for their management [J]. Water Science and Technology, 1999, 39(12): 283-290.
    [4] Tsihrinztzis V. A., Hamid R.. Modeling and Management of Urban Stormwater Runoff Quality: A Review [J]. Water Resources Management, 1997, 11(2):137-164.
    [5] Chen J. Y., Adams B. J.. Analytical urban storm water quanlity models based on pollutant buildup and washoff processed [J]. Journal of Environmental Engineering, 2006, 132(10):1314-1330.
    [6] U. S. Environmental Protection Agency. Stormwater Overview in Mid-Atlantic Stormwater Quick Finder [M]. Http://www.epa.gov/reg3wapd/stormwater/last updated, October 10, 2007.
    [7] U. S. Environmental Protection Agency. Guidance Specifying Management Measure for Source of Nonpoint Pollution in Coastal Waters [M]. EPA, 840-B-92-001 January 1993.
    [8] U. S. Environmental Protection Agency. Permit application Requirements for medium and Large MS4s [M]. Http://www.epa.gov/npdes/stomwater/lgpermit/lgpermit/.cfm Last updated April 09, 2007.
    [9] Dikshit A. K., Loucks D. P.. Estimation Nonpoint Pollutant Loadings In: A Geographical Information Based Nonpoint Source Simulation Model [J]. Journal of Environmental Systems, 1996 ,24 (4) : 395~408.
    [10] Strassler E., Pritts J., Strellec K.. Preliminary Data Summary of Urban Stormwater Best Management Practices [M]. Technical Report EPA-821-R-99-012, US Enviromental Protection Agency.
    [11] Holman-Dodds J. K.. Evaluation of the hydrologic benefits of infiltration-based stormwater management [D]. College of the University of Iowa, 2006.5..
    [12] U. S. Environmental Protection Agency. Proposed guidance specifying management measures for source of non-point pollution in coastal waters [M]. EPA 840-B-92-002, January 1993.
    [13] Athayde D. N., Myers C. F., Tobin P.. EPA’s perspective of urban nonpoint sources. In: Urban runoff quality-impact and quality enhanced technology. Proceeding of an engineering foundation conference. ASCE, 1986, 217-225.
    [14] Charbeneau R. J., Barretti M.. Evaluation of methods for estimating stormwater pollutant loads[J]. Water Environment Research, 1998, 70(7): 1295–1302.
    [15] Sazakli E., Alexopoulos A., Leotsinidis M.. Rainwater harvesting, quality assessment and utilization in Kefalonia Island, Greece [J]. Water research, 2007, 41(9):2039-2047.
    [16] Cordery I.. Quality characteristics of urban storm water in Sydney, Australia [J]. Water resource research, 1977, 13(1):197-202.
    [17] Pitt R., Field R., Lalor M., et al.. Urban stormwater toxic pollutants: assessment, sources, and treatability [J]. Water Environment Research, 1995, 67(3):260-275
    [18]赵剑强,邱艳华.公路路面径流水污染与控制技术探讨[J].长安大学学报(建筑与环境科学版), 2004,21(3):50-53。
    [19] Barrett M. E., Irish L. B., Malina J. F. et al.. Characterization of highway runoff in Austin, Texas, Area [J]. Jouranl of Environmental Engineering, 1998, 124(2): 1121–1128.
    [20] Wu J. S., Allan C. J., Saunders W. J., et al.. Characterization and pollutant loading estimation for highway runoff [J]. Jouranl of Environmental Engineering, 1998, 124(7): 584-592.
    [21]欧阳威,王玮,郝芳华,宋凯宇.北京城区不同下垫面降雨径流产污特征分析[J].中国环境科学, 2010, 30(9): 1249~1256.
    [22] Lopes T. J., Fallon J. D., Rutherford D. W.. Volatile organic compounds in storm water from a parking lot [J]. Jouranl of Environmental Engineering, 2000, 126(12):1137-1143.
    [23] Wu J. S., Holman R. E., Dorney J. R.. Systematic evaluation of pollutant removal by urban wet detention ponds [J]. Jouranl of Environmental Engineering, 1996, 122(11):983-988.
    [24] Granier L., Chevreuil M., Carru A.M., et al. Urban runoff pollution by organochlorines (polychlorinated biphenyls and Lindane) and heavy metals (lead, zinc and chromium) [J]. Chemosphere, 1990, 21(9): 1101-1107.
    [25] Sansalone J. J., Buchberger S.G.. Partitioning and first flush of metals in urban roadway storm water [J]. Jouranl of Environmental Engineering, 1997, 123(2), 134-143.
    [26] Bannerman R.T., Owens D. W., Dodds R. B., et al. Sources of pollutants in Wisconsin stormwater [J]. Water Science and Technology, 1993, 28(3-5)241-259.
    [27] Ruston B.. Low-impact parking lot design reduces runoff and pollutant loads [J]. Journal of Water Resources Planning and Management, 2001, 127(3):172-179.
    [28] Huston R, Chan Y C, Gardner T, et al. Characterisation of atmospheric deposition as a source of contaminants in urban rainwater tanks [J]. Water Research, 2009, 43(6): 1630-1640.
    [29] Wu Z. Y., Han M., Lin Z. C., et al. Chesapeake Bay atmospheric deposition study, Year 1:Source and dry deposition of selected elements in aerosol particles [J]. Atmosphere Environment, 1994, 28:1471-1486.
    [30] Young K. D., Thackston E. L.. Housing density and bacterial loading in urban streams [J]. Jouranl of Environmental Engineering, 1999, 125(12):1177-1180.
    [31] Rauch S., Morrison G. M., Motelica-Heino M., et al. Elemental association and fingerprinting of traffic-related metals in road sediments [J]. Environmental Science and Technology, 2000, 34(15) 3119-3123.
    [32] Lough G. C., Schauer J. J., Park, J. S., Shafer, M. M., Deminter, J. T., Weinstein J. P. Emissions of metals associated with motor vehicle roadways [J]. Environmental Science and Technology, 2005, 39 (3): 826-836.
    [33] Egodawatta P., Thmos E., Goonetilleke A.. Understanding the physical processes of pollutant build-up and wash-off on roof surfaces [J]. Science of the Total Environment, 2009, 407(6): 1834-1841.
    [34] Gromaire-Mertz M.C., Garnaud S., Gonzalez A., Chebbo G.. Characterisation of urban runoff pollution in Paris [J]. Water Science and Technology, 1999, 39(2):1-8.
    [35] James W., Thompson M. K. Contaminants from four new pervious and impervious pavements in a parking lot [C]. Advances in Modeling and Management of Stormwater Impacts, CHI, Guelph, Canada, 1997, 207-222.
    [36] Egodawatta P., Goonetilleke A.. Modeling pollutant build-up and wash-off in urban road and roof surfaces [C]. Proceedings of water down under conference, Adelaide, Australia, 2008.
    [37]张摇蕾,周启星.城市地表径流污染来源的分类与特征[J].生态学杂志, 2010, 29(11):2272-2279.
    [38] Characklis G. W., Wiesner M. R.. Particles, metals, and water quality in runoff from large urban watershed [J]. Jouranl of Environmental Engineering, 1997, 123(8):753-759.
    [39] Bhangu I., Whitfield P. H.. Seasonal and long-term variations in water quality of the Skeena River at Usk, British Columbia [J]. Water Research, 1997, 31(9): 2187-2194
    [40] Vega M., Pardo R., Barrado E., Debán L.. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis [J]. Water Research, 1998, 32(12): 3581-3592.
    [41] Lee H., Lau S.L., Kayhanian M.. Seasonal first flush phenomenon of urban stormwater discharges [J]. Water Research, 2004, 38(19): 4153–4163.
    [42] Seller J., Stephenson J., Olivieri K.. Evaluation of seasonal scale first flush pollutant loading and implications for urban runoff management [J]. Journal of Environmental Management, 2005, 76(4) :309-318.
    [43] Smith E.. Pollutant concentrations of stormwater an captured sediment in flood control sumps draining an urban watershed [J]. Water research, 2001, 35(18):3117-3126.
    [44] Lee J. H., Bang K. W.. Characterization of urban stormwater runoff [J]. Water research, 2000, 34(6):1773- 1780.
    [45] Egodawatta P., Thomas E., Goonetilleke A.. Mathematical interpretation of pollutant wash-off from urban road surfaces using simulated rainfall [J]. Water Research, 2007, 41(13): 3025-3031.
    [46]王宝山,黄廷林,程海涛,聂小保.小区域雨水径流污染物输送研究[J].给水排水, 2010, 36(3):128-131.
    [47] Kang J.. Modeling first flush and particle destabilization: implications for design and operation of stormwater BMPs [D]. University of California, 2005, Doctor of philosophy.
    [48] Deletic A., Maksumovic C. T.. Evaluation of water quality factors in storm water from paved areas [J]. Jouranl of Environmental Engineering, ASCE, 1998, 124(9):869-879.
    [49] Sansalone J. J., Cristina C. M.. First flush concepts for suspended and dissolved solids in small impervious watershed [J]. Jouranl of Environmental Engineering, ASCE, 2004, 130(11):1301-1314.
    [50] Geoger W.. Flushing effects in combined sewer systems [C]. Proceedings of the 4th International Conference Urban Drainage, Lausanne, Switzerland, 1987, pp. 40–46.
    [51] Vorreiter L., Hickey C.. Incidence of the first flush phenomenon in catchments of the Sydney region [C]. National Conference Publication - Institution of Engineers, Australia, 1994, 3(84/15):359 -364.
    [52] Saget A., Chebbo G., Bertrand-Krajewski J. L. The first flush in sewer systems [J]. Water Science and Technology, 1996, 33(9):101-108.
    [53] Gupta K., Saul A. J.. Specific relationship for the first load in combined sewer lows [J]. Water research, 1996, 30(5):1244-1252.
    [54] Ma M., Khan S., Li S., Kim L. H., et al.. Fist flush phenomena for highways: how it can meaningfully defined [C]. Proceedings of 9th international conference on urban drainage, Sep. 2002, Portlnad, Oregon.
    [55] Li L. Q., Yin C. Q., He Q. C., Kong L. L.. First flush of storm runoff pollution from an urban catchment in China [J]. Journal of Environment Science, 2007, 19:295-299.
    [56] Lee J. H., Bang K. W., Ketchum L. H., Choe J.S. First flush analysis of urban storm runoff [J]. The science of the total environment, 2002, 293(1):163-175.
    [57] Kang J. H., Kayhanian M., Stenstrom M. K.. Implication of a kinematic wave model for first flush treatment design [J]. Water research, 2006, 40(20):3820-3830.
    [58]王宝山,黄廷林,聂小保,柴蓓蓓.不透水表面雨水径流污染物冲刷规律研究[J].环境工程学报, 2010, 4(9):1950-1954.
    [59] Obermann M., Rosenwinkel K. H., Tournoud M. G.. Investigation of first flushes in a medium- sized Mediterranean catchment [J]. Journal of Hydrology, 2009, 373(3-4):405-415.
    [60] Zoppou C.. Review of urban storm water models [J]. Environment modeling and software, 2001, 16(3):195-231.
    [61] U. S. Environmental Protection Agency. Statistical support document for proposed effluent limitation guidelines and standards for the metal products and machinery industry [M]. EPA 821-B-00-006, 2000.
    [62] Ha S. J.. Predictive modeling of stormwater runoff quantity and quality from a large urban watershed [D]. University of California, 2006.
    [63] Brezonik P. L., Stadelmann T. H.. Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentration from watersheds in the Twin cities, metropolitan area, Minnesota, USA [J]. Water Research, 2002, 36(7):1743-57.
    [64] Donigian A. S., Huber, W. C.. Modeling of nonpoint source water quality in urban and non-urban areas [M]. EPA600/3-91/039, June 1991.
    [65] Ball J. E.. A review of numerical models for prediction of catchment water quantity and quality [R]. Research Report No. 180, Water Research Laboratory, Dept. of Water Engineering, School of Civil Engineering, The University of New South Wales, 38 pages, 1992.
    [66] Ball J. E., Jenks R., Aubourg D.. An assessment of the availability of pollutant constituents on road surface [J]. The Science of the total environment, 1998, 209(2-3):243-254.
    [67] Behera P. K.. Urban stormwater quality control analysis [D]. University of Toronto, 2002.
    [68] Osuch-Pajdzińska E., Zawilski M.. Model for storm sewer discharge I: Description [J]. Journal of Environmental Engineering, 1998, 124(7): 593-599.
    [69] Soonthornnonda P., Christensen E. R., Liu Y., et al. A wash off model for stormwater pollutants [J]. Science of the Total Environment, 2008, 402(2-3):248-256.
    [70] Shaw S. B., M. Walter T., Steenhuis T. S.. A physical model of particulate wash-off from rough impervious surfaces [J]. Journal of Hydrology, 2006, 327(3-4): 618– 626.
    [71] Goonetilleke A., Egodawatta P., Kitchen B.. Evaluation of pollutant build-up and wash-off from selected land uses at the Port of Brisbane, Australia [J]. Marine Pollution Bulletin, 2009, 58(2):213-221.
    [72] Roesner L.A., Aldrich J.A. and Dickinson R.E.. Storm Water Management Model, User's Manual, Version 4: Addendum I, EXTRAN [M]. EPA-600/3-88-001b, U.S. EPA, 1988.
    [73]张伟,周永潮.城市雨水径流污染负荷计算及评价模型[J].湖南城市学院学报(自然科学版), 2005, 14(3):27-29.
    [74] Vaze J., Chiew Farancis H. S.. Experimental study of pollutant accumulation on an urban road surface [J]. Urban Water, 2002, 4: 379-389.
    [75] Taebi A., Droste R. L.. First flush pollution load of urban stormwater runoff [J]. Journal of Environmental Engineering and Science, 2004, 3:301-309.
    [76] Lee J. H., Yu M. J., Bang K.W., Choe J. S.. Evaluation of the methods for first flush analysis in urban watersheds [J]. Water Science and Technology, 2003, 48 (10): 167-176.
    [77] Brodie I., Rosewell C.. Theoretical relationships between rainfall intensity and kinetic energy associated with stormwater particle washoff [J]. Journal of Hydrology, 2007, 340:40-47.
    [78] Wüst W., Kern U., Hermann R.. Street wash-off behaviour of heavy metals, polyaromatic hydrocarbons and nitrophenols[J]. The science of the total environment, 1994, 146/147: 457-463.
    [79] Pariente S.. Soluble salts dynamics in the soil under different climatic conditions [J]. Catena, 2001, 43: 307–321.
    [80] Hairsine P.B., Rose C.W.. Rainfall detachment and deposition: sediment transport in the absence of flow-driven processes [J]. Soil Science Society of America Journal, 1991, 55:320–324.
    [81] Lisle I. G., Rose C. W., Hogarth W. L., Hairsine P. B., Sanders G. C., Parlange J. Y.. Stochastic sediment transport in soil erosion [J]. Journal of Hydrology, 1998, 204: 217–230.
    [82] Gao B., Walter M.T., Steenhuis T.S., Parlange J. Y., Nakano K., Hogarth W. L., Rose C.W.. Investigating ponding depth and soil detachability for a mechanistic erosion model using a simple experiment [J]. Journal of Hydrology, 2003, 277 (1–2): 116–124.
    [83] Kim L. H., Kayhanian M., Zoh K. D., et al. Modeling of highway stormwater runoff [J]. Science of the Total Environment, 2005, 348 :1– 18.
    [84] Teemusk A., Manderü. Rainwater runoff quantity and quality performance from a greenroof: The effects of short-term events [J]. Ecological engineering, 2007, 30(3): 271–277.
    [85]文康.地表径流过程的数学模拟[M].水利电力出版社,1991年,北京。
    [86]岑国平,沈晋,范荣生.马斯京根法在雨水管道流量验算中的应用[J].西安理工大学学报,1995,11(4):275-279.
    [87] Wang G. T., Yao C. M., Okoren C., Chen S.. 4-Point FDF of Muskingum method based on the complete St Venant equations [J]. Journal of Hydrology, 2006, 324(1-4):339–349.
    [88]任伯帜.城市设计暴雨及雨水径流计算模型研究[D].重庆大学博士论文,2004.
    [89] Elliott A. H., Trowsdale S. A.. A review of models for low impact urban stormwater drainage [J]. Environmental modeling and software, 2007, 22(3):394-405.
    [90] Tchobanoglous G., Schroeder E. D.. Water quality: characteristics modeling modification [M].Addison-Wesley, Reading, MA, 1987.
    [91] Roesner L.A.. Storm Water Management Model, User's Manual, Version 5 [M]. EPA-600/R-05/ 040, U.S. EPA, 2008.
    [92] Serrano L., DeLorenzo M.. Water quality and restoration in a coastal subdivision stormwater pond [J]. Journal of Environmental Management, 2008, 88(1):43-52.
    [93] Kim G., Yur J., Kim J.. Diffuse pollution loading from urban stormwater runoff in Daejeon city, Korea [J]. Journal of Environmental Management, 2007, 85(1): 9–16.
    [94] Barrett M. E., Walsh P. M, Malina J. F., et al. Performance of vegetative controls for treating highway runoff [J]. Journal of Environmental Engineering, 1998, 124 (11) :1121 - 1128.
    [95] Hatt B. E., Deletic A., Fletcher T. D.. Stormwater reuse: designing biofiltration systems for reliable treatment [J]. Water Science and Technology, 2007, 55(3-4): 201–209.
    [96] Deletic A., Fletcher T. D.. Performance of grass filters used for stormwater treatment-a field modeling study[J]. Journal of Hydrology, 2006, 317 (3-4): 216-275.
    [97] Davis A. P., Shokouhian M., Sharma H. and Minami C. Laboratory study of biological retention for urban stormwater management [J]. Water Environment Research, 2001, 73 (1), 5–14.
    [98] Henderson C., Greenway M., Phillips I.. Removal of dissolved nitrogen, phosphorus and carbon from stormwater by biofiltration mesocosms [J]. Water Science and Technology, 2007, 55 (3-4): 183–191.
    [99] Davis A. P., Shokouhian M., Sharma H., Minami C.. Water quality improvement through bioretention media: nitrogen and phosphorus removal [J]. Water Environment research, 2006, 78 (3): 284-293.
    [100] Hatt B. E., Fletcher T. D., Deletic A.. Treatment performance of gravel filter media: Implications for design and application of stormwater infiltration systems [J]. Water Research, 2007, 41 (12): 2513– 2524.
    [101] Read J., Wevill T., Fletcher T., Deletic A.. Variation among plant species in pollutant removal from stormwater in biofiltration systems [J]. Water Research, 2008, 42 (4-5): 893– 902.
    [102] Denman L., May P., Breen P. F.. An investigation of the potential to use street trees and their root zone soils to remove nitrogen from urban stormwater [J]. Australian Journal of Water Resources, 2007, 10 (3): 303-311.
    [103] Persson J., Wittgren H. B.. How hydrological and hydraulic conditions affect performance of ponds [J]. Ecological engineering, 2003, 21 (4 - 5): 259 - 269.
    [104] Kim R. H., Lee S., Jeong J., et al. Reuse of greywater and rainwater using fiber filter media and metal membrane [J]. Desalination, 2007, 202(1-3): 326–332.
    [105] Singhal N., Elefsiniotis T., Weeraratne N., Johnson A.. Sediment Retention by Alternative Filtration Media Configurations in Stormwater Treatment [J]. Water Air and Soil Pollution, 2008, 187(1-4):173–180.
    [106] Sansalone J. J., Kim J. Y.. Suspended particle destabilization in retained urban stormwater as a function of coagulant dosage and redox conditions [J]. Water Research, 2008, 42(4-5):909-922.
    [107] Park S. J.,Yoon T.. Weighted Coagulation with Glass and Diatomite for StormWater Treatment and Sludge Disposal [J]. Environmental Engineering Science, 2003, 20(4): 307-317.
    [108] Carleton J. N., Grizzard T. J., Godrej A. N. and Post H. E.. Factors affecting the performance of stormwater treating wetlands. Water Research, 2001, 35(6):1552–1562.
    [109] Greenway M.. Constructed wetlands for water pollution control processes, parameters and performance [J]. Developments in Chemical Engineering and Mineral Processing, 2004, 12 (5 - 6): 491 - 504.
    [110] Jenkins G. A., Greenway M.. The hydraulic efficiency of fringing versus banded vegetation in constructed wet-lands [J]. Ecological engineering, 2005, 25 (1): 61 - 72.
    [111]徐丽花,周琪.暴雨径流人工湿地处理系统设计的几个问题[J].给水排水, 2001, 27 (8) : 32 - 34.
    [112]崔保山,刘兴土.湿地生态系统设计的一些基本问题探讨[J].应用生态学报, 2001, 12 (1) : 145 - 150.
    [113] Ferguson B. K.. Stormwater Infiltration [M ]. Boca Raton, US: Lewis Publishers, 1994.
    [114] Warnaars E., Larsen A. V., Jacobsen P., et al. Hydrologic behavior of stormwater infiltration trenches in a central urban area during 2 3 /4 years of operation [J]. Water Science and Technology, 1999, 39 (2): 217 - 224.
    [115] Sieker F.. On-site stormwater management as an alternative to conventional sewer systems: a new concept spreading in Germany [J]. Water Science and Technology, 1998, 38 (10): 65 - 71.
    [116] Pitt R.. Characterizing and controlling urban runoff through street and sewerage cleaning [R]. Project summary for U. S. Environmental Protection Agency, EPA/600/S2-85/038, 1985.
    [117] Deketic A., David W.. Pollution buildup on road surfaces [J]. Journal of Environmental Engineering, 2005, 131(1): 49-59.
    [118] Park M. Y., Swamikannu X., Stenstrom M. K.. Accuracy and precision of volume- concentration method for urban stormwater modeling [J]. Water Research, 2009, 43(11):2773-2786.
    [119] Li M. H., Barrett M. E.. Relationship between antecedent dry period and highway pollutant:conceptual models of buildup and removal processes [J]. Water Environment Research, 2008, 80(8):740-747.
    [120] Akan A. O., Houghtalen R. J.. Urban hydrology, hydraulics and stormwater quality-engineering application and computer modeling [M]. Wiley, New Jersey, 2003.
    [121] Egodawatta P., Goonetilleke A.. Understanding road surface pollutant wash-off and underlying physical processes using simulated rainfall [J]. Water Science and Technology, 2008, 57(8): 1241-1246.
    [122] Osuch-Pajdzińska E., Zawilski M.. Model for storm sewer discharge II: Calibration and Verification [J]. Journal of Environmental Engineering, 1998, 124(7): 600-611.
    [123] Osuch-Pajdzińska E.. The method of forecasting the pollution in storm water [C]. Proceeding 4th conference on urban storm drainage, Laussanne, 1987, 27-33.
    [124] Waschbusch R. J., Selbig W. R., Bannerman R. T.. Source of phosphorus in stormwater and street dirt from two urban residential basins in Madison, Wisconsin, 1994-95 [R]. Water resources investigations: Report 99-4021, USA: U. S. Geological survey, 1999.
    [125] Kahinda J. M., Taigbenu A. E., Boroto J. R.. Domestic rainwater harvesting to improve water supply in rural South Africa [J]. Physics and Chemistry of the Earth, 2007, 32(15-18): 1050–1057。
    [126] Goonetilleke A., Thomas E., Ginn S., Gilbert D.. Understanding the role of land use in urban stormwater quality management [J]. Journal of Environmental Management , 2005, 74(1):31–42.
    [127] Chen J. Y., Adams B. J.. A derived probability distribution approach to stornwater quality modeling [J]. Advances in Water Resources, 2007, 30(1):80-100.
    [128] House M. A., Ellis J. B., Herricks E. E., et al. Urban drainage impact on receiving water quality [J]. Water Science and Technology, 1993, 27(12):117–58.
    [129] Burian S. J., Streit G. E., Mcpherson T. N., et al. Modeling the atmospheric deposition and stormwater washoff of nitrogen compounds [J]. Environment Modeling and Software, 2001, 16(5):467-479.
    [130] Egodawatta P., Goonnetilleke A.. Characteristics of pollutants build-up on residential road surfaces [C]. Proceeding of the 7th international conference on HydroScience and Engineering, Philadelphia, USA September 10-13, 2006.
    [131] Sartor J. D., Boyd G. B.. Water pollution aspects of street surface contaminants [M]. United States Environmental Protection Agency, Washing D.C., 1972.
    [132] Metre P.C. V., Mahler B. J.. The contribution of particles washed from rooftops to contaminant loading to urban streams [J]. Chemosphere, 2003, 52(10):1727-1741.
    [133] Lloyd S. D., Wong T. H. F.. Particulates associated pollutants and urban stormwater treatment [C]. Proceeding of the Eighth International Conference on Urban Storm Drainage , Sydney, Australia, 1999:1833-1840.
    [134] Chan Y. C., Cohen D. D., Hawas O., et al. Apportionment of sources of fine and coarse particles in four major Australian cities by positive matrix factorization [J]. Atmospheric Environment, 2008, 42(2): 374-389.
    [135] Lohse K. A., Hope D., Sponseller R.. Atmospheric deposition of carbon and nutrients across an arid metropolitan area [J]. Science of the total environment, 2008, 402(1): 95-105.
    [136] Gallo M. E., Porras-Alfaro A., Odenbach K. J., et al. Photoacceleration of plant litter decomposition in an arid environment [J]. Soil Biology & Biochemistry, 2009, 41(7):1433–1441
    [137] Koukoura Z., Mamolos A. P. , Kalburtji K. L.. Decomposition of dominant plant species litter in a semi-arid grassland [J]. Applied Soil Ecology, 2003, 23(1):13–23.
    [138] Ball J. E., Abustan I.. An investigation of particle size distribution during storm events from an urban catchment [C]. Proceeding of the Second International Symposium on Urban Stormwater Managemen, NCP, NO.95/03(2):531-535, 1995.1
    [139] Wood E. F., Hebson C. S.. On hydrologic similarity 2, derivation of the dimensionless flood frequency curve [J]. Water Resource Research, 1986, 22(11):1549-1554.
    [140] Cadavid L., Obeysekera J. T. B., Shen H. W.. Flood frequency derivation from kinematic wave [J]. Journal of Hydrology Engineering ASCE, 1991, 117(4):489-510.
    [141] Ditoro D. M.. Probability model of stream quality due to runoff [J]. Journal of Environment Engineering ASCE, 1984, 110(3):607-628.
    [142] Loganathan G. V., Watkins J. W.. Sizing stormwater detention basins for pollutant removal [J]. Journal of Environment Engineering ASCE, 1994, 120(6):1380-1399.
    [143] Segarra-Garcia R., Loganathan G. V.. Stormwater detention storage design under random pollutant loading [J]. Journal of Water Resources Planning and Management, 1992, 118(5):475-490.
    [144] Loganathan G. V., Delleur J. W.. Effects of urbanization on frequencies of overflows and pollutant loadings from storm sewer overflows: a derived distribution approach [J]. Water Resource Research, 1984, 20(7):857-865.
    [145] Li J. Y., Adams B. J.. Probabilistic models for analysis of urban runoff control systems [J]. Journal of Environment Engineering ASCE, 2000, 126(3):217-224.
    [146] Adams B. J., Papa F.. Urban stormwater management planning with analytical probabilistic models [M]. Wiley, New York, 2000.
    [147] Chen J. Y., Adams B. J.. Development of analytical models for estimation of urban stormwater runoff [J]. Journal of Hydrology, 2007, 336(3-4):458-469.
    [148] Shaheen, D. C.. Contributions of urban roadways to water pollution [M]. EPA-600/2-75-004, USA EPA, Washington D. C., 1975.
    [149] Alley W. M.. Estimation of impervious-area washoff parameters [J]. Water Resource Research, 1981, 17(4):1161-1166.
    [150] Adams B. J., Fraser H. G., Howard C. D. D., Hanafy M. S.. Meteorological data analysis for urban drainage system design [J]. Journal of Environment Engineering, 1986, 112(5):827-848.
    [151] DiBlasi C. J.. The Effectiveness of Street Sweeping and Bioretention in Reducing Pollutants in Stormwater [D]. University of Maryland, 2008.
    [152] Brinkman R. and Tobin G. A.. Urban Sediment Removal: The Science, Policy, and Management of Street Sweeping. Boston [M]. Kluwer Academic Presses, 2001.
    [153] Hillel D.. Environmental Soil Physics [M]. Academic Press, New York, 1998.
    [154] Lei T. W., Pan Y. H., Liu H., et al. A run off-on-ponding method and models for the transient infiltration capability process of sloped soil surface under rainfall and erosion impacts [J]. Journal of Hydrology, 2006, 319(1-4):216–226.
    [155] Diskin M. Nazimov H., N.. Ponding time and infiltration capacity variation during steady rainfall [J]. Journal of Hydrology, 1996, 178(1-4):369-380.
    [156] Govindaraju R. S., Jones S. E., Kavvas M. L.. On the diffusion wave model for overland flow [J] . Water Resources Research , 1998 , 24 (5) :734 - 754.
    [157]李占斌,鲁克新.透水坡面降雨径流过程的运动波近似解析解[J].水利学报,2003, 6: 8-13, 21.
    [158]岑国平,沈晋,范荣生,王彦斌.城市地面产流的试验研究[J].水利学报,1997,10:47-52,71.
    [159] Joo-Hyon K., Masoud K., Michael K. S.. Predicting the existence of stormwater first flush from the time of concentration [J]. Water Research, 2008, 42 (1-2):220– 228.
    [160] Arentsen P. R.. The effects of urbanization on watershed functions: The relationship between impervious surface area and water quality in Cache County, Utah [D]. Utah State University, Logan Utah, 2005.
    [161]张明亮,沈永明,沈丹.城市小区雨水管网非恒定数学模型的对比研究.水力发电学报,2007,26(5):80-85.
    [162] Deletic A.. The first flush load of urban surface runoff [J]. Water Research, 1998, 32(8):2462-2470.
    [163] Sansalone J. J.. Physical characteristics of urban roadway solids transported during rain events
    [J]. Journal of Environment Engineering, 1998, 124(5):427-440.
    [164] Bach P. M., McCarthy D. T., Deletic A.. Redefining the stormwater first flush phenomenon [J]. Water Research, 2010, 44(8):2487-2498.
    [165] Hollinger E., Cornish P.S., Baginska B., Mann R., Kuczera G.. Farm-scale stormwater losses of sediment and nutrients from a market garden near Sydney, Australia [J]. Agricultural Water Management, 2001, 47(3):227-241.
    [166] Buffleben M.S., Zayeed K., Kimbrough D., Stenstrom M.K., Suffet I.H.. Evaluation of urban non-point source runoff of hazardous metals entering Santa Monica Bay, California [J]. Water Science and Technology, 2002, 45 (9):263–268.
    [167] Barbosa A.E., Hvitved-Jacobsen T.. Highway runoff and potential for removal of heavy metals in an infiltration pond in Portugal [J]. The Science of The Total Environment, 1999, 235(1-3):151–159.
    [168]王红斌,陈杰,刘鹤,张小曳,史宝忠.西安市夏季空气颗粒物污染特征及来源分析[J].气候与环境研究, 2000, 5(1): 51-57.
    [169] USEPA. Our Built and Natural Environments: A Technical Review of the Interactions Between Land Use, Transportation, and Environmental Quality [M]. 2001.
    [170] Chen W. B.. Optimal allocation of stormwater pollution control technology in a watershed [D]. The Ohio State University, 2006
    [171] Olivera F.. Spatially Distributed Modeling of Storm Runoff and Non-Point Source Pollution Using Geographic Information Systems [D]. University of Texas at Austin, Austin, 1996.
    [172] Tam V. W. Y., Tamb L., Leona and Zengc S.X.. Cost effectiveness and tradeoff on the use of rainwater tank: An empirical study in Australian residential decision-making [J]. Resources, Conservation and Recycling, 2010, 54(3):178-186.
    [173] Helmreich B., Horn H.. Opportunities in rainwater harvesting [J]. Desalination, 2009, 248(1-3):118-124.
    [174] Collins K. A., Lawrence T. J., Stander E. K., et al. Opportunities and challenges for managing nitrogen in urban stormwater: A review and synthesis [J]. Ecological Engineering, 2010, 36(11):1507–1519.
    [175] Holman-Dodds J. K., Bradley A. A., Potter, K. W.. Evaluation of hydrologic benefits of infiltration based urban storm water management [J]. Journal of the America Water Resource Association, 2003, 39(1):205-215.
    [176] Hatt B.E.,, Fletcher T.D., Deletic A.. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale [J]. Journal of Hydrology, 2009, 365 (3-4), 310–321.
    [177] Davis A.P., Shokouhian M., Sharma H., Minami C., Winogradoff D.. Water quality improvement through bioretention: lead, copper, and zinc removal [J]. Water Environmental Research, 2003, 75 (1), 73–82.
    [178] Dietz M. E., Clausen J. C.. A field evaluation of rain garden flow and pollutant treatment [J]. Water, Air, Soil Pollution, 2005, 167 (1-4), 123–138
    [179] 1Bratieres K., Fletcher T.D., Deletic A., Zinger Y.. Nutrient and sediment removal by stormwater biofilters: A large-scale design optimisation study [J]. Water Research, 2008, 42 (14), 3930– 3940.
    [180] Mason Y., Ammann A. A., Ulrich A. and Sigg L.. Behavior of heavy metals, nutrients, and major components during roof runoff infiltration [J]. Environmental Science and Technology, 1999, 33 (10), 1588–1597.
    [181] 181. Zinger Y., Deletic A., Fletcher T.D.. The effect of various intermittent dry–wet cycles of nitrogen removal capacity in biofilter systems [C]. 13th International Rainwater Catchment Systems Conference and 5th International Water Sensitive Urban Design Conference, Sydney, Australia, 2007.
    [182] Kim H., Seagren E.A., Davis A.P.. Engineered bioretention for removal of nitrate from stormwater runoff [J]. Water Environment Research, 2003, 75 (4), 355–367.
    [183] Sharma N.C., Sahi S.V., Jain J.C., Raghothama K.G.. Enhanced accumulation of phosphate by Lolium multiflorum cultivars grown in phosphate-enriched medium [J]. Environmental Science and Technology, 2004, 38 (8), 2443–2448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700