用户名: 密码: 验证码:
有序无机纳米线薄膜的可控组装组装体功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,一维纳米材料的合成方法和技术已经取得飞速进步。所谓纳米线是其直径在纳米尺度的一类纳米材料结构。当纳米线直径的尺寸等于或小于物质的本征长度,如波尔半径、光波波长、声子自由程等,量子效应变得非常显著。同时由于其拥有大比表面积以及二维受限一维导通的特性,纳米线具有很多独特的光学、电学、磁学性质,也是一种理想的能量传输材料,使其可以传输电子、光子、声子等量子化粒子,促进其在技术领域的应用。一维纳米材料的物理化学性质不仅取决于自身的形状和尺寸,也取决于组装体的协同作用。一维纳米材料结构表面或界面的功能化和通过纳米基元组装实现不同功能的集成是解决纳米材料未来应用的关键科学问题之一,对一维纳米材料的表面与界面进行人工的、可控的功能化从而改变一维纳米材料表面和界面性质,不但可以改进一维纳米材料的本征性能,而且可以创造出新的纳米特性和功能。因此,开展一维纳米材料的组装和功能集成的基础研究具有重要的理论和实际的意义。
     本论文将着重探讨纳米线做为组装基元的可控合成、规模化组装、以及纳米线组装体的功能研究。通过利用微波、水热等合成手段,可控合成高质量的纳米线,并对其直径和长度进行调控;同时利用气液界面的朗格缪尔—布吉特技术、液液界面、毛细管诱导、电子束诱导等方法组装纳米线,成功制备了多种有序的纳米线薄膜;并且系统研究了有序的纳米线功能薄膜器件化制备。论文取得的研究成果总结如下:
     1、发展了碲纳米线制备技术,探索了其形态、尺度调控的规律。利用微波辅助,在15分种内,成功制备了直径在20纳米,长度在几百微米的单晶碲纳米线,并研究了聚乙烯吡咯烷酮的用量、溶液酸碱度、反应时间、表面活性剂种类对产物的影响;于室温下,使用同步辐射真空紫外光源研究了高度亲水性的碲纳米线的荧光性质。因合成的碲纳米线具有很强的反应活性,我们还使用紫外吸收光谱实时追踪技术,研究了其在水中的稳定性,讨论了不同合成方法对其反应活性的影响。除了微波反应,我们还通过向反应体系中加入丙酮和调控反应时间,首次成功制备了尺寸均一的碲纳米晶、纳米棒、纳米线、纳米管等,为今后研究其化学转化制备一系列碲化物和贵金属纳米结构等提供了良好的前驱物,并为实现其可控组装奠定了物质基础。
     2、发展了超细纳米线及不同维度纳米构筑单元的可控组装技术,成功制备了不同功能的宏观尺度纳米线组装体。利用首先利用朗格缪尔—布吉特(Langmuir-Blodgett)法采用双亲性溶剂与非极性溶剂混合液来分散亲水性碲纳米线,克服了传统朗格缪尔技术需要前期疏水化处理步骤的缺陷,从而可有效可控地组装高长径比(大于104)的一维柔性纳米材料,节约了时间和能源,并通过层层组装的转移方式,通过控制层数达到对纳米线薄膜厚度的控制,通过控制相邻两层膜的夹角而得到具有有序周期性结构的纳米线薄膜;还可以把组装形成的有序纳米线膜转移到任意衬底上,包括硅片、云母等光滑基片或滤纸等不平整衬底上;在此工作基础上,我们利用一维碲纳米线薄膜的化学反应特性,简单高效地宏量制备了有序的碲化物纳米线薄膜,以及得到碲.碲化物异质纳米线薄膜并灵活连续的控制了纳米线薄膜的组分。液液界面是一个经济有效的自组装平台,我们在前人的工作基础上,提出了一种加入新溶剂诱导的液液界面组装方法,该方法经济高效的组装银纳米有序薄膜,做为一种通用的纳米材料组装方法,可以利用液液界面组装包括,零维纳米颗粒、纳米方块、二维纳米片等各种纳米材料,并且可以实现一维纳米线和零维纳米颗粒的共组装;利用朗格缪尔—布吉特技术组装超细的钨的氧化物(w18049)纳米线,共组装组装碲纳米线.银纳米线,利用不同的纳米线具有不同的稳定性,通过刻蚀得到距离可控的纳米线组装薄膜。
     3、发展了毛细管诱导纳米线的组装及电子束诱导纳米线的组装技术。成功在普通毛细管内壁制备了纳米线有序组装体,并在原位电子束下,纳米线和导电碳膜卷曲行为。其中利用毛细管内溶液流动诱导银纳米线的组装,在毛细管内壁形成致密有序的银纳米线有序薄膜。通过控制流速、溶液分散浓度、组装距离等因素,纳米线薄膜的紧密程度可以调控。这个内壁有银纳米银薄膜的毛细管可以用作便携式的、可重复利用的表面增强拉曼衬底。偏振光谱证实了一维纳米线薄膜的高度有序性;利用一种新型电子束诱导方法原位快速的制备碳基的复合纳米管,包括碳.纳米线复合纳米管、碳.纳米棒复合纳米管、碳.纳米片复合纳米管、碳.纳米颗粒复合纳米管。增加辐射时间,可以得到多壁的纳米管,在纳米尺度上实现了能量的转换,达到了对弹性势能的存储。
     4、发展了基于有序纳米线薄膜的几种纳米器件的制备方法;包括,有序碲纳米线的光电器件制备、有序碲化物纳米线的光电器件制备、有序碲化银纳米线薄膜的记忆器件制备、碲.碲化银异质有序纳米线记忆器件的制备、碲.金异质有序纳米线柔性电极的制备、有序w18049纳米线薄膜的电致变色器件的制备、间距可控的有序纳米线薄膜的柔性透明电极的制备、贵金属纳米线的表面增强拉曼衬底的制备。系统研究了纳米线组装体结构和性能的相互关系,实现将有序纳米线组装体在刚性的衬底和柔性的高分子衬底上的有效复合与集成,探索其在研制具有优越光磁、光导、存储器件、生物传感等多重功能的纳米功能器件中的应用。
A nanowire is a structure with a diameter of the order of a nanometer. When the diameter puts the radial dimension of the nanowire at or below certain characteristic lengths, such as the Bohr radius, the wavelength of the light, phonon mean-free path, and others, quantum mechanical effects become important. With a large surface-to-volume ratio and two-dimensional confinement, nanowires show unique optical, magnetic, and electronic properties. Macroscopic-scale nanofabrication using wire-like nanostructures has become one of the most active research areas of materials science. Integrating these nanowires in wafer scale as key components will require the development of appropriate methods to assemble these materials. Rational assembly strategies are needed not only to build complex structures with novel collective properties and device fabrication using wire-based film is sometimes pursued out of necessity.
     Herein, we intend to demonstrate the process in the field of emerging nanowires. Overall, the objectives of this thesis are (i) to synthesis nanowires with controlled mophology;(ii) to assembly nanowires in wafer scale by interface, including LB technique, liquid-liquid interface;(iii) to assembly nanowires by capillary;(iv) to assembly nanowires by in situ electro beam irradiation, and (v) nanodevice fabrication based on the well-defined nanowire film.
     1. Uniform and ultralong single-crystalline tellurium (Te) nanowires with a diameter of20nm and length of tens of micrometers can be rapidly synthesized by a microwave-assisted method. Besides microwave assisted method, we have carried out systematic studies to synthesis of Tellurium nanostruc-tures from sub10nm particles, nanorods, and nanowires, to nanotubes by a simple solution process.
     2. Well-defined periodic mesostructures of hydrophilic ultrathin Te nanowires with aspect ratios of at least104can be produced by the Langmuir-Blodgett technique without any extra hydrophobic pretreatment or functionalization; Based on the reacity of Te nanowries, macroscale ultrathin telluride nanowire films, such as Ag2Te, Cu2Te, and PbTe, can be rapidly fabricated by chemical transformation at room temperature. Furthermore, this versatile strategy can also be used to fabricate tellurium/telluride hetero-nanowire films (Te-Ag2Te and Cu2Te-Te-Ag2Te-PbTe). The properties of the ultrathin hetero-nanowire films obtained could also be tuned by changing the composition of the hetero-nanowire films through chemical transformation. A family of water/oil interfaces is introduced to provide effective platforms for rapid fabrication of large-area self-assembled nanofi lms composed of various nanosized building blocks, including nanoparticles (NPs), nanocubes (NC), nanowires (NWs), and nanosheets, at room temperature. As a general interfacial assembly method, NWs and NPs are co-assembled at the liquid/liquid interface; well-defined W18O49nanowires were fabricated by LB technique; space control of the ordered nanowire film.
     3. A new route for ordering hydrophilic Ag nanowires with high aspect ratio by flowing through a glass capillary. By controlling the flow parameters of nanowire suspensions, initially random Ag nanowires can be aligned to form nanowire arrays with tunable density, forming cambered nanowire films adhered onto the inner wall of the capillary; Fabrication of a family of curling tubular nanostructures rapidly created by a rolling up of carbonmembranes under in situ TEM electron beam irradiation. Multiwall tubes can also be created if irradiation by electron beam is performed long enough.
     4. Nanodevice fabrication based on the ordered nanowire films, including ordered Tellurium, Telluride and Te-Telluride hetero-nanowire films for photoconductive nanodevice; ordered Ag2Te and Te-Ag2Te nanowries for memory device; ultrathin Te-Au hetero-nanowire based flexible electronics; ultrathin W18O49nanowire assemblies for electrochromic devices; Tunable assembly of silver nanowires for high-performance flexible transparent electrodes; Noble metal nanowrie films for for surface-enhanced Raman spectroscopy (SERS).
引文
[1]. Yang, P. D.; Law, M.; Goldberger, J.,2004. Semiconductor nanowires and nanotubes [J], Ann. Rev. Mater. Res.34:83-122.
    [2]. Pan, H.; Feng, Y. P.,2008. Semiconductor Nanowires and Nanotubes:Effects of Size and Surface-to-Volume Ratio [J], Acs Nano 2:2410-2414.
    [3]. Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H.,2003. One-Dimensional Nanostructures:Synthesis, Characterization, and Applications [J], Adv. Mater. 15:353-389.
    [4]. Hochbaum, A. I.; Yang, P. D.,2010. Semiconductor Nanowires for Energy Conversion [J], Chem.Rev.110:527-546.
    [5]. Yang, P. D.; Yan, R. X.; Fardy, M.,2010. Semiconductor Nanowire:What's Next? [J], Nano Lett.10:1529-1536.
    [6]. Tang, J. Y.; Huo, Z. Y.; Brittman, S.; Gao, H. W.; Yang, P. D.,2011. Solution-processed core-shell nanowires for efficient photovoltaic cells [J], Nat. Nanotechnol.6:568-572.
    [7]. Qin, Y.; Wang, X. D.; Wang, Z. L.,2008. Microfibre-nanowire hybrid structure for energy scavenging [J], Nature 451:809-U5.
    [8]. Pauzauskie, P. J.; Radenovic, A.; Trepagnier, E.; Shroff, H.; Yang, P. D.; Liphardt, J.,2006. Optical trapping and integration of semiconductor nanowire assemblies in water [J], Nat. Mater. 5:97-101.
    [9]. Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G; Yang, R. S.; Wang, Z. L.,2010. Self-powered nanowire devices [J], Nat. Nanotechnol.5:366-373.
    [10]. Qing, Q.; Pal, S. K.; Tian, B. Z.; Duan, X. J.; Timko, B. P.; Cohen-Karmi, T.; Murthy, V. N.; Lieber, C. M.,2010. Nanowire transistor arrays for mapping neural circuits in acute brain slices [J], Proc. Natl. Acad. Sci. U. S. A.107:1882-1887.
    [11]. Xie, C.; Cui, Y.,2010. Nanowire platform for mapping neural circuits [J], Proc. Natl. Acad. Sci. U. S. A.107:4489-4490.
    [12]. Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H.,2003. DNA-templated self-assembly of protein arrays and highly conductive nanowires [J], Science 301:1882-1884.
    [13]. Xu, W. H.; Zhang, Y. X.; Guo, Z.; Chen, X.; Liu, J. H.; Huang, X. J.; Yu, S. H.,2012. Conduction Performance of Individual Cu@C Coaxial Nanocable Connectors [J], Small 8: 53-58.
    [14]. Yan, R. X.; Gargas, D.; Yang, P. D.,2009. Nanowire photonics [J], Nat. Photonics 3: 569-576.
    [15]. Feng, M.; Zhang, M.; Song, J. M.; Li, X. G.; Yu, S. H.,2011. Ultralong Silver Trimolybdate Nanowires:Synthesis, Phase Transformation, Stability, and Their Photocatalytic, Optical, and Electrical Properties [J], Acs Nano 5:6726-6735.
    [16]. Cui, X. J.; Yu, S. H.; Li, L. L.; Biao, L.; Li, H. B.; Mo, M. S.; Liu, X. M.,2004. Selective synthesis and characterization of single-crystal silver molybdate/tungstate nanowires by a hydrothermal process [J], Chem.-Eur. J.10:218-223.
    [17]. Qian, H. S.; Yu, S. H.; Luo, L. B.; Gong, J. Y.; Fei, L. F.; Liu, X. M.,2006. Synthesis of uniform Te@Carbon-Rich composite nanocables with photoluminescence properties and Carbonaceous nanofibers by the hydrothermal carbonization of glucose [J], Chem. Mater.18: 2102-2108.
    [18]. Qian, H. S.; Yu, S. H.; Gong, J. Y.; Luo, L. B.; Fei, L. F.,2006. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process [J], Langmuir 22:3830-3835.
    [19]. Wang, K.; Liang, H.-W.; Yao, W.-T.; Yu, S.-H.,2011. Templating synthesis of uniform Bi2Te3 nanowires with high aspect ratio in triethylene glycol (TEG) and their thermoelectric performance [J],J. Mater. Chem.
    [20]. Liu, J. W.; Chen, F.; Zhang, M.; Qi, H.; Zhang, C. L.; Yu, S. H.,2010. Rapid Microwave-Assisted Synthesis of Uniform Ultra long Te Nanowires, Optical Property, and Chemical Stability [J], Langmuir 26:11372-11377.
    [21]. Pauzauskie, P. J.; Yang, P.,2006. Nanowire photonics [J], Mater. Today 9:36-45.
    [22]. Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E., 1995. SOLUTION-LIQUID-SOLID GROWTH OF CRYSTALLINE III-V SEMICONDUCTORS-AN ANALOGY TO VAPOR-LIQUID-SOLID GROWTH [J], Science 270:1791-1794.
    [23]. Dai, H. J.; Wong, E. W.; Lu, Y. Z.; Fan, S. S.; Lieber, C. M.,1995. SYNTHESIS AND CHARACTERIZATION OF CARBIDE NANORODS [J], Nature 375:769-772.
    [24]. Yang, P. D.; Lieber, C. M.,1996. Nanorod-superconductor composites:A pathway to materials with high critical current densities [J], Science 273:1836-1840.
    [25]. Lieber, C. M.; Wang, Z. L.,2007. Functional nanowires [J], MRS Bull.32:99-108.
    [26]. Kolmakov, A.; Moskovits, M.,2004. Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures [J], Ann. Rev. Mater. Res.34:151-180.
    [27]. Zhang, S.; Pelligra, C. I.; Keskar, G.; Jiang, J.; Majewski, P. W.; Taylor, A. D.; Ismail-Beigi, S.; Pfefferle, L. D.; Osuji, C. O.,2012. Directed Self-Assembly of Hybrid Oxide/Polymer Core/Shell Nanowires with Transport Optimized Morphology for Photovoltaics [J], Adv. Mater. 24:82-+.
    [28]. Yao, H. B.; Fang, H. Y.; Wang, X. H.; Yu, S. H.,2011. Hierarchical assembly of micro-/nano-building blocks:bio-inspired rigid structural functional materials [J], Chem. Soc. Rev.40:3764-3785.
    [29]. Li, Y.; Tokizono, T.; Liao, M.; Zhong, M.; Koide, Y.; Yamada, I.; Delaunay, J.-J.,2010. Efficient Assembly of Bridged beta-Ga2O3 Nanowires for Solar-Blind Photodetection [J], Adv. Funct. Mater.20:3972-3978.
    [30]. Liao, L.; Lin, Y. C.; Bao, M. Q.; Cheng, R.; Bai, J. W.; Liu, Y. A.; Qu, Y. Q.; Wang, K. L.; Huang, Y.; Duan, X. F.,2010. High-speed graphene transistors with a self-aligned nanowire gate [J], Nature 467:305-308.
    [31]. Goldberger, J.; Hochbaum, A. I.; Fan, R.; Yang, P. D.,2006. Silicon vertically integrated nanowire field effect transistors [J], Nano Lett.6:973-977.
    [32]. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. D.,2005. Nanowire dye-sensitized solar cells [J], Nat. Mater.4:455-459.
    [33]. Yuan, J. K.; Liu, X. G.; Akbulut, O.; Hu, J. Q.; Suib, S. L; Kong, J.; Stellacci, F.,2008. Superwetting nanowire membranes for selective absorption [J], Nat. Nanotechnol.3:332-336.
    [34]. Tang, S. K. Y.; Derda, R.; Mazzeo, A. D.; Whitesides, G. M.,2011. Reconfigurable Self-Assembly of Mesoscale Optical Components at a Liquid-Liquid Interface [J], Adv. Mater.23: 2413-+.
    [35]. Grzybowski, B. A.; Wilmer, C. E.; Kim, J.; Browne, K. P.; Bishop, K. J. M.,2009. Self-assembly:from crystals to cells [J], Soft Matter 5:1110-1128.
    [36]. Triplett, D. A.; Quimby, L. M.; Smith, B. D.; Rodriguez, D. H.; St Angelo, S. K.; Gonzalez, P.; Keating, C. D.; Fichthorn, K. A.,2010. Assembly of Gold Nanowires by Sedimentation from Suspension:Experiments and Simulation [S],J. Phys. Chem. C 114:7346-7355.
    [37]. Sakakibara, K.; Hill, J. P.; Ariga, K.,2011. Thin-Film-Based Nanoarchitecrures for Soft Matter:Controlled Assemblies into Two-Dimensional Worlds [J], Small 7:1288-1308.
    [38]. Law, M.; Goldberger, J.; Yang, P. D.,2004. Semiconductor nanowires and nanotubes [J], Ann. Rev. Mater. Res.34:83-122.
    [39]. Hu, J. T.; Odom, T. W.; Lieber, C. M.,1999. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes [J],Acc. Chem. Res.32:435-445.
    [40]. Acharya, S.; Hill, J. P.; Ariga, K.,2009. Soft Langmuir-Blodgett Technique for Hard Nanomaterials [J],Adv. Mater.21:2959-2981.
    [41]. Tao, A. R.; Huang, J. X.; Yang, P. D.,2008. Langmuir-Blodgettry of Nanocrystals and Nanowires [J], Acc. Chem. Res.41:1662-1673.
    [42]. Yu, G. H.; Lieber, C. M.,2010. Assembly and integration of semiconductor nanowires for functional nanosystems [J], Pure and Applied Chemistry 82:2295-2314.
    [43]. Jiang, L.; Dong, H. L.; Hu, W. P.,2011. Controlled growth and assembly of one-dimensional ordered nanostructures of organic functional materials [J], Soft Matter 7: 1615-1630.
    [44]. Lieber, C. M.; Jin, S.; Whang, D. M.; McAlpine, M. C.; Friedman, R. S.; Wu, Y.,2004. Scalable interconnection and integration of nanowire devices without registration [J], Nano Lett. 4:915-919.
    [45]. Yan, H.; Choe, H. S.; Nam, S. W.; Hu, Y. J.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C. M.,2011. Programmable nanowire circuits for nanoprocessors [J], Nature 470:240-244.
    [46]. Lu, W.; Lieber, C. M.,2007. Nanoelectronics from the bottom up [J], Nat. Mater.6: 841-850.
    [47]. Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M.,2001. Logic gates and computation from assembled nanowire building blocks [J], Science 294:1313-1317.
    [48]. Huang, Y.; Duan, X. F.; Wei, Q. Q.; Lieber, C. M.,2001. Directed assembly of one-dimensional nanostructures into functional networks [J], Science 291:630-633.
    [49]. Kumar, P.,2010. Directed Self-Assembly:Expectations and Achievements [J], Nanoscale Research Letters 5:1367-1376.
    [50]. Ziegler, K. J.; Polyakov, B.; Kulkarni, J. S.; Crowley, T. A.; Ryan, K. M.; Morris, M. A.; Erts, D.; Holmes, J. D.,2004. Conductive films of ordered nanowire arrays [J], J. Mater. Chem. 14:585-589.
    [51]. Wang, M. C. P.; Gates, B. D.,2009. Directed assembly of nanowires [J], Mater. Today 12: 34-43.
    [52]. Zhuang, X. J.; Ning, C. Z.; Pan, A. L.,2012. Composition and Bandgap-Graded Semiconductor Alloy Nanowires [J], Adv. Mater.24:13-33.
    [53]. Gratton, S. E. A.; Williams, S. S.; Napier, M. E.; Pohlhaus, P. D.; Zhou, Z.; Wiles, K. B.; Maynor, B. W.; Shen, C.; Olafsen, T.; Samulski, E. T.; Desimone, J. M.,2008. The Pursuit of a Scalable Nanofabrication Platform for Use in Material and Life Science Applications [J], Acc. Chem. Res.41:1685-1695.
    [54]. Liu, J.-W.; Xu, J.; Liang, H.-W.; Wang, K.; Yu, S.-H.,2012. Macroscale Ordered Ultrathin Telluride Nanowire Films, and Tellurium/Telluride Hetero-Nanowire Films [J], Angew. Chem. Int. Ed.51:7420-7425.
    [55]. Liu, J. W.; Zhu, J. H.; Zhang, C. L.; Liang, H. W.; Yu, S. H.,2010. Mesostructured Assemblies of Ultrathin Superlong Tellurium Nanowires and Their Photoconductivity [J], J. Am. Chem.Soc.132:8945-8952.
    [56]. Kim, F.; Kwan, S.; Akana, J.; Yang, P. D.,2001. Langmuir-Blodgett nanorod assembly [J], J. Am. Chem. Soc.123:4360-4361.
    [57]. Tao, A.; Kim, F.; Hess, G.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D., 2003. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy [J], Nano Lett.3:1229-1233.
    [58]. Wang, D. W.; Chang, Y. L.; Liu, Z.; Dai, H. J.,2005. Oxidation resistant germanium nanowires:Bulk synthesis, long chain alkanethiol functionalization, and Langmuir-Blodgett assembly [J],J. Am. Chem. Soc.127:11871-11875.
    [59]. Patla, I.; Acharya, S.; Zeiri, L.; Israelachvili, J.; Efrima, S.; Golan, Y,2007. Synthesis, two-dimensional assembly, and surface pressure-induced coalescence of ultranarrow PbS nanowires [J], Nano Lett.7:1459-1462.
    [60]. Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O'Brien, S.; Murray, C. B.,2006. Structural diversity in binary nanoparticle superlattices [J], Nature 439:55-59.
    [61]. Zheng, R.; Popov, Y. O.; Witten, T. A.,2005. Deposit growth in the wetting of an angular region with uniform evaporation [J],-Phys. Rev. E 72.
    [62]. Gotkis, Y.; Ivanov, I.; Murisic, N.; Kondic, L.,2006. Dynamic structure formation at the fronts of volatile liquid drops [J], Phys. Rev. Lett.97.
    [63]. Maheshwari, S.; Zhang, L.; Zhu, Y. X.; Chang, H. C.,2008. Coupling between precipitation and contact-line dynamics:Multiring stains and stick-slip motion [J], Phys. Rev. Lett.100:
    [64]. Zhang, C. Y.; Zhang, X. J.; Zhang, X. H.; Fan, X.; Jie, J. S.; Chang, J. C.; Lee, C. S.; Zhang, W. J.; Lee, S. T.,2008. Facile one-step growth and patterning of aligned squaraine nanowires via evaporation-induced self-assembly [J], Adv. Mater.20:1716-+.
    [65]. Ming, T.; Kou, X. S.; Chen, H. J.; Wang, T.; Tam, H. L.; Cheah, K. W.; Chen, J. Y.; Wang, J. F.,2008. Ordered Gold Nanostructure Assemblies Formed By Droplet Evaporation [J], Angewandte Chemie-International Edition 47:9685-9690.
    [66]. Li, H. X.; Cheng, C. W.; Li, X. L.; Liu, J. P.; Guan, C.; Tay, Y. Y.; Fan, H. J.,2012. Composition-Graded ZnxCdl-xSe@ZnO Core-Shell Nanowire Array Electrodes for Photoelectrochemical Hydrogen Generation [J], J. Phys. Chem. C 116:3802-3807.
    [67]. Wu, J. H.; Xu, T. Z.; Ang, S. G.; Xu, Q. H.; Xu, G. Q.,2011. Radially oriented anthracene nanowire arrays:preparation, growth mechanism, and optical fluorescence [J], Nanoscale 3: 1855-1860.
    [68]. Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M.; Grzybowski, B. A.,2006. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice [J], Science 312:420-424.
    [69]. Lin, X. M.; Cui, Y.; Xu, Y. H.; Ren, B.; Tian, Z. Q.,2009. Surface-enhanced Raman spectroscopy:substrate-related issues [J], Analytical and Bioanalytical Chemistry 394: 1729-1745.
    [70]. Huo, Z. Y.; Tsung, C. K.; Huang, W. Y.; Zhang, X. F.; Yang, P. D.,2008. Sub-two nanometer single crystal Au nanowires [J], Nano Lett.8:2041-2044.
    [71]. Hung, A. M.; Konopliv, N. A.; Cha, J. N.,2011. Solvent-Based Assembly of CdSe Nanorods in Solution [J], Langmuir 27:12322-12328.
    [72]. Du, Y. P.; Zhang, Y W.; Yan, Z. G.; Sun, L. D.; Yan, C. H.,2009. Highly Luminescent Self-Organized Sub-2-nm EuOF Nanowires [J], J. Am. Chem. Soc.131:16364-+.
    [73]. Kim, T. Y.; Kwon, S. W.; Park, S. J.; Yoon, D. H.; Suh, K. S.; Yang, W. S.,2011. Self-Organized Graphene Patterns [J], Adv. Mater:n/a-n/a.
    [74]. Kwon, S. W.; Byun, M.; Yoon, D. H.; Park, J.-H.; Kim, W.-K.; Lin, Z.; Yang, W. S.,2011. Simple route to ridge optical waveguide fabricated via controlled evaporative self-assembly [J], J. Mater Chem.21:5230-5233.
    [75]. Kwon, S. W.; Yoon, D. H.; Yang, W. S.,2011. A simple route of ordered high quality mesoscale stripe polymer patterns [J], Soft Matter 7:1682-1685.
    [76]. Hong, S. W.; Jeong, W.; Ko, H.; Kessler, M. R.; Tsukruk, V. V.; Lin, Z.,2008. Directed self-assembly of gradient concentric carbon nanotube rings [J], Adv. Funct. Mater.18: 2114-2122.
    [77]. Wang, Z.; Bao, R.; Zhang, X.; Ou, X.; Lee, C.-S.; Chang, J. C.; Zhang, X.,2011. One-Step Self-Assembly, Alignment, and Patterning of Organic Semiconductor Nanowires by Controlled Evaporation of Confined Microfluids [J],Angew. Chem. Int. Ed.50:2811-2815.
    [78]. Grzelczak, M.; Vermant, J.; Furst, E. M.; Liz-Marzan, L. M.,2010. Directed Self-Assembly of Nanoparticles [J], Acs Nano 4:3591-3605.
    [79]. Sanchez-Iglesias, A.; Grzelczak, M.; Perez-Juste, J.; Liz-Marzan, L. M.,2010. Binary Self-Assembly of Gold Nanowires with Nanospheres and Nanorods [J], Angew. Chem.-Int. Edit.: n/a-n/a.
    [80]. Xu, W.; Leeladhar, R.; Tsai, Y. T.; Yang, E. H.; Choi, C. H.,2011. Evaporative self-assembly of nanowires on superhydrophobic surfaces of nanotip latching structures [J], Appl. Phys. Lett.98.
    [81]. Knowles, T. P. J.; Oppenheim, T. W.; Buell, A. K.; Chirgadze, D. Y.; Welland, M. E.,2010. Nanostructured films from hierarchical self-assembly of amyloidogenic proteins [J], Nat. Nanotechnol.5:204-207.
    [82]. Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A.,1997. Capillary flow as the cause of ring stains from dried liquid drops [J], Nature 389:827-829.
    [83]. Bernard, C.; Aime, J. P.; Marsaudon, S.; Levy, R.; Bonnot, A. M.; Nguyen, C.; Mariolle, D.; Bertin, F.; Chabli, A.,2007. Drying nano particles solution on an oscillating tip at an air liquid interface:what we can learn, what we can do [J], Nanoscale Research Letters 2:309-318.
    [84]. Ma, H.; Hao, J.,2011. Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings [J], Chem. Soc. Rev.40:5457-5471.
    [85]. Duan, H. W.; Wang, D. Y.; Kurth, D. G.; Mohwald, H.,2004. Directing self-assembly of nanoparticles at water/oil interfaces [J],Angew. Chem.-Int. Edit.43:5639-5642.
    [86]. Reincke, F.; Hickey, S. G.; Kegel, W. K.; Vanmaekelbergh, D.,2004. Spontaneous Assembly of a Monolayer of Charged Gold Nanocrystals at the Water/Oil Interface [J], Angew. Chem.-Int. Edit.43:458-462.
    [87]. Choi, C. H.; Tsai, Y. T.; Xu, W.; Yang, E. H.,2010. Self-Assembly of Nanowires at Three-Phase Contact Lines on Superhydrophobic Surfaces [J], Nanoscience and Nanotechnology Letters 2:150-156.
    [88]. Zhang, C. Y.; Zhang, X. J.; Zhang, X. H.; Ou, X. M.; Zhang, W. F.; Jie, J. S.; Chang, J. C.; Lee, C. S.; Lee, S. T.,2009. Facile One-Step Fabrication of Ordered Organic Nanowire Films [J], Adv. Mater.21:4172-+.
    [89]. Elemans, J. A. A. W.; van Hameren, R.; Schon, P.; van Buul, A. M.; Hoogboom, J.; Lazarenko, S. V.; Gerritsen, J. W.; Engelkamp, H.; Christianen, P. C. M.; Heus, H. A.; Maan, J. C.; Rasing, T.; Speller, S.; Rowan, A. E.; Nolte, R. J. M.,2006. Macroscopic hierarchical surface patterning of porphyrin trimers via self-assembly and dewetting [J], Science 314:1433-1436.
    [90]. Shi, H. Y.; Hu, B.; Yu, X. C.; Zhao, R. L.; Ren, X. F.; Liu, S. L.; Liu, J. W.; Feng, M.; Xu, A. W.; Yu, S. H.,2010. Ordering of Disordered Nanowires:Spontaneous Formation of Highly Aligned, Ultralong Ag Nanowire Films at Oil-Water-Air Interface [J], Adv. Funct. Mater.20: 958-964.
    [91]. Liu, J.-W.; Zhang, S.-Y.; Qi, H.; Wen, W.-C.; Yu, S.-H.,2012. A General Strategy for Self-Assembly of Nanosized Building Blocks on Liquid/Liquid Interfaces [J], Small 8: 2412-2420.
    [92]. Javey, A.; Nam, S.; Friedman, R. S.; Yan, H.; Lieber, C. M.,2007. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics [J], Nano Lett.7:773-777.
    [93]. Fan, Z. Y.; Ho, J. C.; Jacobson, Z. A.; Yerushalmi, R.; Alley, R. L.; Razavi, H.; Javey, A., 2008. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing [J], Nano Lett.8:20-25.
    [94]. Pevzner, A.; Engel, Y.; Elnathan, R.; Ducobni, T.; Ben-Ishai, M.; Reddy, K..; Shpaisman, N.; Tsukernik, A.; Oksman, M.; Patolsky, F.,2010. Knocking Down Highly-Ordered Large-Scale Nanowire Arrays [J], Nano Lett.10:1202-1208.
    [95]. Xu, F.; Durham, J. W.; Wiley, B. J.; Zhu, Y.,2011. Strain-Release Assembly of Nanowires on Stretchable Substrates [J], Acs Nano 5:1556-1563.
    [96]. Wen, L.; Wong, K. M.; Fang, Y.; Wu, M.; Lei, Y.,2011. Fabrication and characterization of well-aligned, high density ZnO nanowire arrays and their realizations in Schottky device applications using a two-step approach [J],J. Mater. Chem.21:7090-7097.
    [97]. Watanabe, K.; Kim, B.-S.; Enomoto, Y.; Kim, I.-S.,2011. Fabrication of Uniaxially Aligned Poly(propylene) Nanofibers via Handspinning [J], Macromolecular Materials and Engineering 296:568-573.
    [98]. Ji, C.; Li, H.; Zhang, L.; Liu, Y.; Li, Y.; Jia, Y.; Li, Z.; Li, P.; Shi, E.; Wei, J.; Wang, K.; Zhu, H.; Wu, D.; Cao, A.,2011. Suspended, Straightened Carbon Nanorube Arrays by Gel Chapping [J], Acs Nano 5:5656-5661.
    [99]. McAlpine, M. C.; Ahmad. H.; Wang, D.; Heath, J. R.,2007. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors [J], Nat. Mater.6: 379-384.
    [100]. Li, Y. G.; Wu, Y. Y.,2009. Coassembly of Graphene Oxide and Nanowires for Large-Area Nanowire Alignment [J],J.Am. Chem. Soc.131:5851-5857.
    [101]. Onsager, L.,1949. THE EFFECTS OF SHAPE ON THE INTERACTION OP COLLOIDAL PARTICLES [J], Annals of the New York Academy of Sciences 51:627-659.
    [102]. Yang, W.; Qu, L; Zheng, R.; Liu, Z.; Ratinac, K. R.; Shen, L.; Yu, D.; Yang, L.; J. Barrow, C.; Ringer, S. P.; Dai, L.; Braet, F.,2011. Self-Assembly of Gold Nanowires along Carbon Nanotubes for Ultrahigh-Aspect-Ratio Hybrids [J], Chem. Mater.23:2760-2765.
    [103]. Cisneros, D. A.; Friedrichs, J.:Taubenberger, A.; Franz, C. M.; Muller, D. J.,2007. Creating Ultrathin Nanoscopic Collagen Matrices For Biological And Biotechnological Applications [J], Small 3:956-963.
    [104]. Leow, W. W.; Hwang, W.,2011. Epitaxially guided assembly of collagen layers on mica surfaces [J], Langmuir 27:10907-109113.
    [105]. Niu, H. L.; Chen, Q. W.; Zhu, H. F.; Lin, Y. S.; Zhang, X.,2003. Magnetic field-induced growth and self-assembly of cobalt nanocrystallites [J],J. Mater. Chem.13:1803-1805.
    [106]. Mertl, M.,1999. Magnetic Cells:Stuff of Legend? [J], Science 283:775.
    [107]. da Silva, T. L.; Varanda, L. C.,2011. Perpendicularly self-oriented and shape-controlled L1(0)-FePt nanorods directly synthesized by a temperature-modulated process [J], Nano Res.4: 666-674.
    [108]. Ooi, C.; Yellen, B. B.,2008. Field gradients can control the alignment of nanorods [J], Langmuir 24:8514-8521.
    [109]. Chen, M.; Sun, L.; Bonevich, J. E.; Reich, D. H.; Chien, C. L.; Searson, P. C.,2003. Tuning the response of magnetic suspensions [J], Appl. Phys. Lett.82:3310-3312.
    [110]. Gao, F.; Gu, Z. Y.,2010. Nano-soldering of magnetically aligned three-dimensional nanowire networks [J], Nanotechnology 21.
    [111]. Yuan, J. Y.; Gao, H. T.; Schacher, F.; Xu, Y. Y.; Richter, R.; Tremel, W.; Muller, A. H. E., 2009. Alignment of Tellurium Nanorods via a Magnetization-Alignment-Demagnetization ("MAD") Process Assisted by an External Magnetic Field [J], Acs Nano 3:1441-1450.
    [112]. Heo, K.; Cho, E.; Yang, J. E.; Kim, M. H.; Lee, M.; Lee, B. Y.; Kwon, S. G.; Lee, M. S.; Jo, M. H.; Choi, H. J.; Hyeon, T.; Hong, S.,2008. Large-Scale Assembly of Silicon Nanowire Network-Based Devices Using Conventional Microfabrication Facilities [J], Nano Lett.8: 4523-4527.
    [113]. Hangarter, C. M.; Rheem, Y.; Yoo, B.; Yang, E. H.; Myung, N. V.,2007. Hierarchical magnetic assembly of nanowires [J], Nanotechnology 18:205305-205312.
    [114]. Hangarter, C. M.; Myung, N. V.,2005. [J], Chem. Mater.17:1320.
    [115]. Srivastava, S.; Kotov, N. A.,2008. Composite Layer-by-Layer (LBL) Assembly with Inorganic Nanoparticles and Nanowires [J],Acc. Chem. Res.41:1831-1841.
    [116]. Wang, B.; Ma, Y. F.; Li, N.; Wu, Y. P.; Li, F. F.; Chen, Y. S.,2010. Facile and Scalable Fabrication of Well-Aligned and Closely Packed Single-Walled Carbon Nanotube Films on Various Substrates [J], Adv. Mater.22:3067-3070.
    [117]. Fragouli, D.; Buonsanti, R.; Bertoni, G.; Sangregorio, C.; Innocenti, C.; Falqui, A.; Gatteschi, D.; Cozzoli, P. D.; Athanassiou, A.; Cingolani, R.,2010. Dynamical Formation of Spatially Localized Arrays of Aligned Nanowires in Plastic Films with Magnetic Anisotropy [J], ACS Nano 4:1873-1878.
    [118]. Stupp, S. I.; Zhang, S. M.; Greenfield, M. A.; Mata, A.; Palmer, L. C.; Bitton, R.; Mantei, J. R.; Aparicio, C.; de la Cruz, M. O.,2010. A self-assembly pathway to aligned monodomain gels [J], Nat. Mater.9:594-601.
    [119]. Puigmarti-Luis, J.; Schaffhauser, D.; Burg, B. R.; Dittrich, P. S.,2010. A Microfluidic Approach for the Formation of Conductive Nanowires and Hollow Hybrid Structures [J], Adv. Mater.22:2255-+.
    [120]. Smith, P. A.; Nordquist, C. D.; Jackson, T. N.; Mayer, T. S.; Martin, B. R.; Mbindyo, J.; Mallouk, T. E.,2000. Electric-field assisted assembly and alignment of metallic nanowires [J], Appl. Phys. Lett.77:1399-1401.
    [121]. Tiano, A. L.; Koenigsmann, C.; Santulli, A. C.; Wong, S. S.,2010. Solution-based synthetic strategies for one-dimensional metal-containing nanostructures [J], Chem. Commun.46: 8093-8130.
    [122]. Qiao, Y.; Lin, Y. Y.; Yang, Z. Y.; Chen, H. F.; Zhang, S. F.; Yan, Y.; Huang, J. B.,2010. Unique Temperature-Dependent Supramolecular Self-Assembly:From Hierarchical ID Nanostructures to Super Hydrogel [J],J. Phys. Chem. B 114:11725-11730.
    [123]. Kawasaki, J. K.; Arnold, C. B.,2011. Synthesis of Platinum Dendrites and Nanowires Via Directed Electrochemical Nanowire Assembly [J], Nano Lett.11:781-785.
    [124]. Lee, C. H.; Kim, D. R.; Zheng, X. L.,2010. Orientation-Controlled Alignment of Axially Modulated pn Silicon Nanowires [J], Nano Lett.10:5116-5122.
    [125]. Ryan, K. M.; Mastroianni, A.; Stancil, K. A.; Liu, H. T.; Alivisatos, A. P.,2006. Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices [J], Nano Lett. 6:1479-1482.
    [126]. Duan, X. F.; Huang, Y.; Cui, Y.:Wang, J. F.; Lieber, C. M.,2001. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J], Nature 409: 66-69.
    [127]. Freer, E. M.; Grachev, O.; Duan, X. F.; Martin, S.; Stumbo, D. P.,2010. High-yield self-limiting single-nanowire assembly with dielectrophoresis [J], Nat. Nanotechnol.5:525-530.
    [128]. Li, M. W.; Bhiladvala, R. B.; Morrow, T. J.; Sioss, J. A.; Lew, K. K.; Redwing, J. M.; Keating, C. D.; Mayer, T. S.,2008. Bottom-up assembly of large-area nanowire resonator arrays [J],Nat. Nanotechnol.3:88-92.
    [129]. Pohl, H. A.,1951. THE MOTION AND PRECIPITATION OF SUSPENSOIDS IN DIVERGENT ELECTRIC FIELDS [J], J. Appl. Phys.22:869-871.
    [130]. Shekhar, S.; Stokes, P.; Khondaker, S. I.,2011. Ultrahigh density alignment of carbon nanotube arrays by dielectrophoresis [J], ACS Nano 5:1739-46.
    [131]. Ruda, H. E.; Shik, A.,2011. Principles of nanowire alignment in an electric field [J], Journal of Applied Physics 109.
    [132]. Papadakis, S. J.; Hoffmann, J. A.; Deglau, D.; Chen, A.; Tyagi, P.; Gracias, D. H.,2011. Quantitative analysis of parallel nanowire array assembly by dielectrophoresis [J], Nanoscale 3: 1059-1065.
    [133]. O'Riordan, A.; Iacopino, D.; Lovera, P.; Floyd, L.; Reynolds, K.; Redmond, G.,2011. Dielectrophoretic self-assembly of polarized light emitting poly(9,9-dioctylfluorene) nanofibre arrays [J], Nanotechnology 22.
    [134]. Oh, K.; Chung, J. H.; Riley, J. J.; Liu, Y. L.; Liu, W. K.,2007. Fluid flow-assisted dielectrophoretic assembly of nanowires [J], Langmuir 23:11932-11940.
    [135]. Maijenburg, A. W.; Maas, M. G.; Rodijk, E. J. B.; Ahmed, W.; Kooij, E. S.; Carlen, E. T.; Blank, D. H. A.; ten Elshof, J. E.,2011. Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes:A universal set of parameters for bridging prepatterned microelectrodes [J], Journal of Colloid and Interface Science 355:486-493.
    [136]. Gates, B.; Mayers, B.; Grossman, A.; Xia, Y. N.,2002. A sonochemical approach to the synthesis of crystalline selenium nanowires in solutions and on solid supports [J], Adv. Mater. 14:1749-+.
    [137]. Xu, D.; Shou, K.; Nelson, B. J.,2011. Dielectrophoretic assembly of carbon nanotube-based NEMS devices using floating electrodes [J], Microelectronic Engineering 88: 2703-2706.
    [138]. Raychaudhuri, S.; Dayeh, S. A.; Wang, D. L.; Yu, E. T.,2009. Precise Semiconductor Nanowire Placement Through Dielectrophoresis [J], Nano Lett.9:2260-2266.
    [139]. Fan, D. L.; Cammarata, R. C.; Chien, C. L.,2008. Precision transport and assembling of nanowires in suspension by electric fields [J], Appl. Phys. Lett.92:-.
    [140]. Vijayaraghavan, A.; Blatt, S.; Weissenberger, D.; Oron-Carl, M.; Hennrich, F.; Gerthsen, D.; Hahn, H.; Krupke, R.,2007. Ultra-large-scale directed assembly of single-walled carbon nanotube devices [J], Nano Lett.7:1556-1560.
    [141]. Boote, J. J.; Critchley, K.; Evans, S. D.,2006. Surfactant mediated assembly of gold nanowires on surfaces [J], Journal of Experimental Nanoscience 1:125-142.
    [142]. Myoung, J. M.; Il Lee, T.; Choi, W. J.; Moon, K. J.; Choi, J. H.; Kar, J. P.; Das, S. N.; Kim, Y. S.; Baik, H. K.,2010. Programmable Direct-Printing Nanowire Electronic Components [J], Nano Lett.10:1016-1021.
    [143]. Morrow, T. J.; Li, M. W.; Kim, J.; Mayer, T. S.; Keating, C. D.,2009. Programmed Assembly of DNA-Coated Nanowire Devices [J], Science 323:352-352.
    [144]. Liu, X.; Long, Y.-Z.; Liao, L.; Duan, X.; Fan, Z.,2012. Large-Scale Integration of Semiconductor Nanowires for High-Performance Flexible Electronics [J], ACS Nano 6: 1888-1900.
    [145]. Yang, P. D.,2003. Wires on water [J], Nature 425:243-244.
    [146]. Pabst, W.; Gregorova, E.; Berthold, C.,2006. Particle shape and suspension rheology of short-fiber systems [J], Journal of the European Ceramic Society 26:149-160.
    [147]. Hobbie, E. K.; Fagan, J. A.; Becker, M. L.; Hudson, S. D.; Fakhri, N.; Pasquali, M.,2009. Self-Assembly of Ordered Nanowires in Biological Suspensions of Single-Wall Carbon Nanotubes [J], ACS Nano 3:189-196.
    [148]. Martin, J. E.; Adolf, D.; Wilcoxon, J. P.,1988. VISCOELASTICITY OF NEAR-CRITICAL GELS [J],Phys. Rev. Lett.61:2620-2623.
    [149]. Fry, D.; Langhorst, B.; Wang, H.; Becker, M. L.; Bauer, B. J.; Grulke, E. A.; Hobbie, E. K., 2006. Rheo-optical studies of carbon nanotube suspensions [J], Journal of Chemical Physics 124.
    [150]. Kharchenko, S. B.; Douglas, J. F.; Obrzut, J.; Grulke, E. A.; Migler, K. B.,2004. Flow-induced properties of nanotube-filled polymer materials [J], Nat. Mater.3:564-568.
    [151]. Seo, M.; Gorelikov, I.; Williams, R.; Matsuura, N.,2010. Microfluidic Assembly of Monodisperse, Nanoparticle-Incorporated Perfluorocarbon Microbubbles for Medical Imaging and Therapy [J], Langmuir 26:13855-13860.
    [152]. Hong, J. S.; Stavis, S. M.; Lacerda, S. H. D.; Locascio, L. E.; Raghavan, S. R.; Gaitan, M., 2010. Microfluidic Directed Self-Assembly of Liposome-Hydrogel Hybrid Nanoparticles [J], Langmuir 26:11581-11588.
    [153]. Bai, J. W.; Huang, S. X.; Wang, L. Y.; Chen, Y.; Huang, Y.,2009. Fluid assisted assembly of one-dimensional nanoparticle array inside inorganic nanotubes [J], J. Mater. Chem.19: 921-923.
    [154]. Zhou, H.; Heyer, P.; Kim, H.-J.; Song, J.-H.; Piao, L.; Kim, S.-H.,2011. Reversible Macroscopic Alignment of Ag Nanowires [J], Chem. Mater.23:3622-3627.
    [155]. Dittrich, P. S.; Kuhn, P.; Puigmarti-Luis, J.; Imaz, I.; Maspoch, D.,2011. Controlling the length and location of in situ formed nanowires by means of microfluidic tools [J], Lab on a Chip 11:753-757.
    [156]. Liu, M.; Chen, Y.; Guo, Q. Q.; Li, R. Y.; Sun, X. L.; Yang, J.,2011. Controllable positioning and alignment of silver nanowires by tunable hydrodynamic focusing [J], Nanotechnology 22.
    [157]. Su, B.; Wang, S. T.; Ma, J.; Wu, Y. C.; Chen, X.; Song, Y. L.; Jiang, L.,2012. Elaborate Positioning of Nanowire Arrays Contributed by Highly Adhesive Superhydrophobic Pillar-Structured Substrates [J], Adv. Mater.24:559-564.
    [158]. Yu, G. H.; Li, X. L.; Lieber, C. M.; Cao, A. Y,2008. Nanomaterial-incorporated blown bubble films for large-area, aligned nanostructures [J],J.Mater. Chem.18:728-734.
    [159]. Yu, G. H.; Cao, A. Y; Lieber, C. M.,2007. [J], Nat. Nanotechnol.2:372.
    [160]. Wang, C.; Lu, X. F.; Wei, Y.,2009. One-Dimensional Composite Nanomaterials:Synthesis by Electrospinning and Their Applications [J], Small 5:2349-2370.
    [161]. Li, D.; Wang, Y. L.; Xia, Y. N.,2004. Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films [J], Adv. Mater.16:361-366.
    [162]. Xia, Y. N.; Li, D.,2004. Direct fabrication of composite and ceramic hollow nanofibers by electrospinning [J], Nano Lett.4:933-938.
    [163]. Lu, X. F.; Wang, C.; Wei, Y.,2009. One-Dimensional Composite Nanomaterials:Synthesis by Electrospinning and Their Applications [J], Small 5:2349-2370.
    [164]. Greiner, A.; Wendorff, J. H.,2007. Electrospinning:A fascinating method for the preparation of ultrathin fibres [J], Angewandte Chemie-International Edition 46:5670-5703.
    [165]. He, D.; Hu, B.; Yao, Q. F.; Wang, K.; Yu, S. H.,2009. Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity:Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles [J], ACS Nano 3:3993-4002.
    [166]. Zhang, C. L.; Lv, K. P.; Cong, H. P.; Yu, S. H.,2012. Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning [J], Small 8:648-653.
    [167]. Roskov, K. E.; Kozek, K. A.; Wu, W. C.; Chhetri, R. K.; Oldenburg, A. L.; Spontak, R. J.; Tracy, J. B.,2011. Long-range alignment of gold nanorods in electrospun polymer nano/microfibers [J],Langmuir 27:13965-9.
    [168]. Gu, Z. Z.; Yao, Y. F.; Zhang, J. Z.; Pan, C.; Zhang, Y. Y.; Wei, H. M.,2007. Fiber-oriented liquid crystal polarizers based on anisotropic electrospinning [J], Adv. Mater.19:3707-3711.
    [169]. Liu, Y. Q.; Zhang, X. P.; Xia, Y. N.; Yang, H.,2010. Magnetic-Field-Assisted Electrospinning of Aligned Straight and Wavy Polymeric Nanofibers [J], Adv. Mater.22: 2454-2457.
    [170]. Yang, D. Y.; Lu, B.; Zhao, Y.; Jiang, X. Y.,2007. Fabrication of aligned fibirous arrays by magnetic electrospinning [J],Adv. Mater.19:3702-+.
    [171]. Baji, A.; Mai, Y. W.; Wong, S. C.; Abtahi, M.; Chen, P.,2010. Electrospinning of polymer nanofibers:Effects on oriented morphology, structures and tensile properties [J], Compos. Sci. Technol.70:703-718.
    [172]. Kakade, M. V.; Givens, S.; Gardner, K.; Lee, K. H.; Chase, D. B.; Rabolt, J. F.,2007. Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers [J], J. Am. Chem. Soc.129:2777-2782.
    [173]. Katta, P.; Alessandro, M.; Ramsier, R. D.; Chase, G. G,2004. Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector [J], Nano Lett.4:2215-2218.
    [174]. Lipomi, D. J.; Chiechi, R. C.; Dickey, M. D.; Whitesides, G. M.,2008. Fabrication of conjugated polymer nanowires by edge lithography [J], Nano Lett.8:2100-2105.
    [175]. Tamura, T.; Kawakami, H.,2010. Aligned Electrospun Nanofiber Composite Membranes for Fuel Cell Electrolytes [J], Nano Lett.10:1324-1328.
    [176]. Xu, C. Y.; Inai, R.; Kotaki, M.; Ramakrishna, S.,2004. Aligned biodegradable nanotibrous structure:a potential scaffold for blood vessel engineering [J], Biomaterials 25:877-886.
    [177]. Wendorff, J. H.; Dersch, R.; Liu, T. Q.; Schaper, A. K.; Greiner, A.,2003. Electrospun nanofibers:Internal structure and intrinsic orientation [J], Journal of Polymer Science Part a-Polymer Chemistry 41:545-553.
    [178]. Chase, G. G.; Katta, P.; Alessandro, M.; Ramsier, R. D.,2004. Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector [J], Nano Lett.4:2215-2218.
    [179]. Yang, H.; Liu, Y. Q.; Zhang, X. P.; Xia, Y. N.,2010. Magnetic-Field-Assisted Electrospinning of Aligned Straight and Wavy Polymeric Nanofibers [J], Adv. Mater.22: 2454-2457.
    [180]. Rabolt, J. F.; Kakade, M. V.; Givens, S.; Gardner, K.; Lee, K. H.; Chase, D. B.,2007. Electric field induced orientation of polymer chains in macroscopically aligned electrospun polymer nanofibers [J], J. Am. Chent. Soc.129:2777-2782.
    [181]. Xia, Y. N.; Li, D.; Ouyang, G.; McCann, J. T.,2005. Collecting electrospun nanofibers with patterned electrodes [J], Nano Lett.5:913-916.
    [182]. Zhang, D. M.; Chang, J.,2008. Electrospinning of Three-Dimensional Nanofibrous Tubes with Controllable Architectures [J], Nano Lett.8:3283-3287.
    [183]. Bisht, G. S.; Canton, G.; Mirsepassi, A.; Kulinsky, L.; Oh, S.; Dunn-Rankin, D.; Madou, M. J.,2011. Controlled Continuous Patterning of Polymeric Nanofibers on Three-Dimensional Substrates Using Low-Voltage Near-Field Electrospinning [J], Nano Lett.11:1831-1837.
    [184]. Xia, Y. N.; Li, D.; Herricks, T.,2003. Magnetic nanofibers of nickel ferrite prepared by electrospinning [J],Appl. Phys. Lett.83:4586-4588.
    [185]. Chen, K. I.; Li, B. R.; Chen, Y. T.,2011. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation [J], Nano Today 6: 131-154.
    [186]. Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y; Cheung, C. L.; Lieber, C. M.,2000. Carbon nanotube-based nonvolatile random access memory for molecular computing [J], Science 289:94-97.
    [187]. Dong, Y. J.; Yu, G. H.; McAlpine, M. C.; Lu, W.; Lieber, C. M.,2008. Si/a-Si core/shell nanowires as nonvolatile crossbar switches [J], Nano Lett.8:386-391.
    [188]. Liao, L.; Lin, Y.-C.; Bao, M.; Cheng, R.; Bai, J.; Liu, Y.; Qu, Y.; Wang, K. L.; Huang, Y.; Duan, X.,2010. High-speed graphene transistors with a self-aligned nanowire gate [J], Nature 467:305-308.
    [189]. McAlpine, M. C.; Ahmad, H.; Wang, D. W.; Heath, J. R.,2007. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors [J], Nat. Mater.6: 379-384.
    [1]. Hochbaum, A. I.; Yang, P. D.,2010. Semiconductor Nanowires for Energy Conversion [J], Chem.Rev.110:527-546.
    [2]. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q.,2003. One-dimensional nanostructures:Synthesis, characterization, and applications [J], Adv. Mater.15:353-389.
    [3]. Tangney, P.; Fahy, S.,2002. Density-functional theory approach to ultrafast laser excitation of semiconductors:Application to the A_{1} phonon in tellurium [J], Physical Review B 65: 054302.
    [4]. Wang, Y.; Tang, Z.; Podsiadlo, P.; Elkasabi, Y.; Lahann, J.; Kotov, N. A.,2006. Mirror-Like Photoconductive Layer-by-Layer Thin Films of Te Nanowires:The Fusion of Semiconductor, Metal, and Insulator Properties [J], Adv. Mater.18:518-522.
    [5]. Frank, S.; Poncharal, P.; Wang, Z. L.; de Heer, W. A.,1998. Carbon nanotube quantum resistors [J], Science 280:1744-1746.
    [6]. Duan, X. F.; Huang, Y.; Cui, Y.; Wang, J. F.; Lieber, C. M.,2001. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices [J], Nature 409: 66-69.
    [7]. Zhao, A. W.; Ye, C. H.; Meng, G. W.; Zhang, L. D.; Ajayan, P. M.,2003. Tellurium nanowire arrays synthesized by electrochemical and electrophoretic deposition [J], Journal of Materials Research 18:2318-2322.
    [8]. Li, X. L.; Cao, G. H.; Feng, C. M.; Li, Y. D.,2004. Synthesis and magnetoresistance measurement of tellurium microtubes [J], J. Mater. Chem.14:244-247.
    [9]. Yu, H.; Gibbons, P. C.; Buhro, W. E.,2004. Bismuth, tellurium, and bismuth telluride nanowires [J], J. Mater. Chem.14:595-602.
    [10]. Tang, Z. Y.; Wang, Y.; Sun, K.; Kotov, N. A.,2005. Spontaneous transformation of stabilizer-depleted binary semiconductor nanoparticles into selenium and tellurium nanowires [J], Adv. Mater.17:358-+.
    [11]. Gautam, U. K.; Rao, C. N. R.,2004. Controlled synthesis of crystalline tellurium nanorods, nanowires, nanobelts and related structures by a self-seeding solution process [J], J. Mater. Chem. 14:2530-2535.
    [12]. Mayers, B.; Xia, Y.,2002. Formation of Tellurium Nanotubes Through Concentration Depletion at the Surfaces of Seeds [J], Adv. Mater.14:279-282.
    [13]. Liu, Z. P.; Peng, S.; Xie, Q.; Hu, Z. K.; Yang, Y.; Zhang, S. Y.; Qian, Y T.,2003. Large-scale synthesis of ultralong Bi2S3 nanoribbons via a solvothermal process [J],Adv. Mater. 15:936-+.
    [14]. Zhu, Y. J.; Wang, W. W.; Qi, R. J.; Hu, X. L.,2004. Microwave-assisted synthesis of single-crystalline tellurium nanorods and nanowires in ionic liquids [J], Angewandte Chemie-International Edition 43:1410-1414.
    [15]. Dallinger, D.; Kappe, C. O.,2007. Microwave-assisted synthesis in water as solvent [J], Chem.Rev.107:2563-2591.
    [16]. Liu, J. W.; Chen, F.; Zhang, M.; Qi, H.; Zhang, C. L.; Yu, S. H.,2010. Rapid Microwave-Assisted Synthesis of Uniform Ultra long Te Nanowires, Optical Property, and Chemical Stability [J], Langmuir 26:11372-11377.
    [17]. Sanchez-Iglesias, A.; Grzelczak, M.; Rodriguez-Gonzalez, B.; Alvarez-Puebla, R. n. A.; Liz-Marzan, L. M.; Kotov, N. A.,2009. Gold Colloids with Unconventional Angled Shapes [J], Langmuir 25:11431-11435.
    [18]. Xiong, Y. J.; Washio, I.; Chen, J. Y.; Cai, H. G.; Li, Z. Y.; Xia, Y N.,2006. Poly(vinyl pyrrolidone):A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions [J], Langmuir 22:8563-8570.
    [19]. Qian, H. S.; Yu, S. H.; Gong, J. Y.; Luo, L. B.; Fei, L. F.,2006. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process [J], Langmuir 22:3830-3835.
    [20]. Sun, Y.; Xia, Y,2002. Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process [J], Adv. Mater.14:833-837.
    [1]. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q.,2003. One-dimensional nanostructures:Synthesis, characterization, and applications [J], Adv. Mater.15:353-389.
    [2]. Cademartiri, L.; Ozin, G. A.,2009. Ultrathin Nanowires-A Materials Chemistry Perspective [J], Advanced Materials 21:1013-1020.
    [3]. Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M.,2001. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J], Science 293:1289-1292.
    [4]. Yuan, J.; Liu, X.; Akbulut, O.; Hu, J.; Suib, S. L.; Kong, J.; Stellacci, F.,2008. Superwetting nanowire membranes for selective absorption [J], Nat. Nanotechnol.3:332-336.
    [5]. Lu, W.; Lieber, C. M.,2007. Nanoelectronics from the bottom up [J], Nat. Mater.6: 841-850.
    [6]. Yaman, M.; Khudiyev, T.; Ozgur, E.; Kanik, M.; Aktas, O.; Ozgur, E. O.; Deniz, H.; Korkut, E.; Bayindir, M.,2011. Arrays of indefinitely long uniform nanowires and nanotubes [J], Nature Materials 10:494-501.
    [7]. Yan, H.; Choe, H. S.; Nam, S.; Hu, Y.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C. M.,2011. Programmable nanowire circuits for nanoprocessors [J], Nature 470:240-244.
    [8]. Liu, J.-W.; Liang, H.-W.; Yu, S.-H.,2012. Macroscopic-Scale Assembled Nanowire Thin Films and Their Functionalities [J], Chem. Rev.112:4770-4799.
    [9]. Ozin, G. A.; Hou, K.; Lotsch, B. V.; Cademartiri, L.; Puzzo, D. P.; Scotognella, F.; Ghadimi, A.; Thomson, J.,2009. Nanofabrication by self-assembly [J], Mater Today 12:12-23.
    [10]. Goldberger, J.; Hochbaum, A. I.; Fan, R.; Yang, P. D.,2006. Silicon vertically integrated nanowire field effect transistors [J], Nano Lett 6:973-977.
    [11]. Sun, X.; Chen, T.; Yang, Z.; Peng, H.,2012. The Alignment of Carbon Nanotubes:An Effective Route To Extend Their Excellent Properties to Macroscopic Scale [J], Acc. Chem. Res.
    [12]. Tao, A. R.; Huang, J. X.; Yang, P. D.,2008. Langmuir-Blodgettry of Nanocrystals and Nanowires [J],Acc. Chem. Res.41:1662-1673.
    [13]. Liu, J. W.; Zhu, J. H.; Zhang, C. L.; Liang, H. W.; Yu, S. H.,2010. Mesostructured Assemblies of Ultrathin Superlong Tellurium Nanowires and Their Photoconductivity [J], Journal of the American Chemical Society 132:8945-8952.
    [14]. Bai, C.; Liu, M.,2012. Implantation of nanomaterials and nanostructures on surface and their applications [J], Nano Today.
    [15]. Yan, H.; Choe, H. S.; Nam, S. W.; Hu, Y. J.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C. M.,2011. Programmable nanowire circuits for nanoprocessors [J], Nature 470: 240-244.
    [16]. Liu, J.-W.; Xu, J.; Liang, H.-W.; Wang, K.; Yu, S.-H.,2012. Macroscale Ordered Ultrathin Telluride Nanowire Films, and Tellurium/Telluride Hetero-Nanowire Films [J], Angew. Chem. Int. Ed.51:7420-7425.
    [17]. Tao, A. R.; Huang, J.; Yang, P.,2008. Langmuir-Blodgettry of Nanocrystals and Nanowires [J],Acc. Chem. Res.41:1662-1673.
    [18]. Acharya, S.; Panda, A. B.; Belman, N.; Efrima, S.; Golan, Y.,2006. A semiconductor-nanowire assembly of ultrahigh junction density by the Langmuir-Blodgett technique [J], Advanced Materials 18:210-+.
    [19]. Guo, Q. J.; Teng, X. W.; Rahman, S.; Yang, H.,2003. Patterned Langmuir-Blodgett films of mondisperse nanoparticles of iron oxide using soft lithography [J], Journal of the American Chemical Society 125:630-631.
    [20]. Cote, L. J.; Kim, F.; Huang, J.,2009. Langmuir-Blodgett Assembly of Graphite Oxide Single Layers [J],J. Am. Chem. Soc.131:1043-1049.
    [21]. Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D., 2003. Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy [J], nano letters 3:1229-1233.
    [22]. Kim, F.; Kwan, S.; Akana, J.; Yang, P. D.,2001. Langmuir-Blodgett nanorod assembly [J], Journal of the American Chemical Society 123:4360-4361.
    [23]. Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M.,2003. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems [J], nano letters 3:1255-1259.
    [24]. Patla, I.; Acharya, S.; Zeiri, L.; Israelachvili, J.; Efrima, S.; Golan, Y.,2007. Synthesis, two-dimensional assembly, and surface pressure-induced coalescence of ultranarrow PbS nanowires [J], Nano Lett.7:1459-1462.
    [25]. Mai, L.; Gu, Y.; Han, C.; Hu, B.; Chen, W.; Zhang, P.; Xu, L.; Guo, W.; Dai, Y.,2009. Orientated Langmuir-Blodgett Assembly of VO2 Nanowires [J], Nano Lett.9:826-830.
    [26]. Wang, D. W.; Chang, Y. L.; Liu, Z.; Dai, H. J.,2005. Oxidation resistant germanium nanowires:Bulk synthesis, long chain alkanethiol functionalization, and Langmuir-Blodgett assembly [J],J. Am. Chem. Soc.127:11871-11875.
    [27]. Qian, H. S.; Yu, S. H.; Gong, J. Y.; Luo, L. B.; Fei, L. F.,2006. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process [J], Langmuir 22:3830-3835.
    [28]. Liang, H.-W.; Liu, S.; Gong, J.-Y.; Wang, S.-B.; Wang, L.; Yu, S.-H.,2009. Ultrathin Te Nanowires:An Excellent Platform for Controlled Synthesis of Ultrathin Platinum and Palladium Nanowires/Nanotubes with Very High Aspect Ratio [J], Advanced Materials 21:1850-+.
    [29]. Pastoriza-Santos, I.; Liz-Marzan, L. M.,2009. N,N-Dimethylformamide as a Reaction Medium for Metal Nanoparticle Synthesis [J], Advanced Functional Materials 19:679-688.
    [30]. Li, Y. J.; Huang, W. I. J.; Sun, S. G.,2006. A universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface [J], Angewandte Chemie-International Edition 45:2537-2539.
    [31]. Corso, M.; Auwarter, W.; Muntwiler, M.; Tamai, A.; Greber, T.; Osterwalder, J.,2004. Boron nitride nanomesh [J], Science 303:217-220.
    [32]. Wang, Y.; Tang, Z. Y.; Podsiadlo, P.; Elkasabi, Y.; Lahann, J.; Kotov, N. A.,2006. Mirror-like photoconductive layer-by-layer thin films of Te nanowires:The fusion of semiconductor, metal, and insulator properties [J], Advanced Materials 18:518-+.
    [33]. Kong, D.; Cui, Y.,2011. Opportunities in chemistry and materials science for topological insulators and their nanostructures [J], Nature Chemistry 3:845-849.
    [34]. Kong, D.; Chen, Y.; Cha, J. J.; Zhang, Q.; Analytis, J. G.; Lai, K.; Liu, Z.; Hong, S. S.; Koski, K. J.; Mo, S.-K.; Hussain, Z.; Fisher, I. R.; Shen, Z.-X.; Cui, Y.,2011. Ambipolar field effect in the ternary topological insulator (BixSbl-x)(2)Te-3 by composition tuning [J], Nature Nanotechnology 6:705-709.
    [35]. Tangney, P.; Fahy, S.,2002. Density-functional theory approach to ultrafast laser excitation of semiconductors:Application to the A(1) phonon in tellurium [J], Physical Review B 65.
    [36]. Moshofsky, B.; Mokari, T.,2012. Length and Diameter Control of Ultrathin Nanowires of Substoichiometric Tungsten Oxide with Insights into the Growth Mechanism [J], Chemistry of Materials.
    [37]. Zhang, J.; Tu, J. P.; Xia, X. H.; Wang, X. L.; Gu, C. D.,2011. Hydrothermally synthesized WO3 nanowire arrays with highly improved electrochromic performance [J], Journal of Materials Chemistry 21:5492-5498.
    [38]. Lu, X.; Zhai, T.; Zhang, X.; Shen, Y.; Yuan, L.; Hu, B.; Gong, L.; Chen, J.; Gao, Y.; Zhou, J.; Tong, Y.; Wang, Z. L.,2012. WO3-x@Au@MnO2 Core-Shell Nanowires on Carbon Fabric for High-Performance Flexible Supercapacitors [J], Advanced Materials 24:938-944.
    [39]. Li, X.-L.; Lou, T.-J.; Sun, X.-M.; Li, Y.-D.,2004. Highly Sensitive WO3 Hollow-Sphere Gas Sensors [J], Inorganic Chemistry 43:5442-5449.
    [40]. Li, X. Z.; Li, F. B.; Yang, C. L.; Ge, W. K.,2001. Photocatalytic activity of WOx-TiO2 under visible light irradiation [J], Journal of Photochemistry and Photobiology A:Chemistry 141: 209-217.
    [41]. Liao, C.-C.; Chen, F.-R.; Kai, J.-J.,2006. W03-x nanowires based electrochromic devices [J], Solar Energy Materials and Solar Cells 90:1147-1155.
    [42]. Yao, C. J.; Zhong, Y. W.; Nie, H. J.; Abruna, H. D.; Yao, J. N.,2011. Near-IR Electrochromism in Electropolymerized Films of a Biscyclometalated Ruthenium Complex Bridged by 1,2,4,5-Tetra(2-pyridyl)benzene [J], J Am Chem Soc 133:20720-20723.
    [43]. Granqvist, C.-G.,2006. Electrochromic materials:Out of a niche [J], Nat Mater 5:89-90.
    [44]. Deb, S. K.,1969. A Novel Electrophotographic System [J],Appl. Opt.8:192-195.
    [45]. Niklasson, G. A.; Granqvist, C. G.,2007. Electrochromics for smart windows:thin films of tungsten oxide and nickel oxide, and devices based on these [J], Journal of Materials Chemistry 17:127-156.
    [46]. Sun, Y.,2013. Controlled synthesis of colloidal silver nanoparticles in organic solutions: empirical rules for nucleation engineering [J], Chem. Soc. Rev.
    [47]. Liu, J. W.; Wang, J. L.; Huang, W. L.; Yu, L.; Ren, X. F.; Wen, W. C.; Yu, S. H.,2012. Ordering Ag nanowire arrays by a glass capillary:A portable, reusable and durable SERS substrate [J], Scientific Reports 2:987-993.
    [48]. Xi, G.; Ouyang, S.; Li, P.; Ye, J.; Ma, Q.; Su, N.; Bai, H.; Wang, C.,2012. Ultrathin W18O49 Nanowires with Diameters below 1 nm:Synthesis, Near-Infrared Absorption, Photoluminescence, and Photochemical Reduction of Carbon Dioxide [J], Angewandte Chemie International Edition 51:2395-2399.
    [49], Nakanishi, H.; Bishop, K. J. M.; Kowalczyk, B.; Nitzan, A.; Weiss, E. A.; Tretiakov, K. V.; Apodaca, M. M.; Klajn, R.; Stoddart, J. F.; Grzybowski, B. A.,2009. Photoconductance and inverse photoconductance in films of functionalized metal nanoparticles [J], Nature 460: 371-375.
    [50]. Mueggenburg, K. E.; Lin, X. M.; Goldsmith, R. H.; Jaeger, H. M.,2007. Elastic membranes of close-packed nanoparticle arrays [J], Nat Mater 6:656-660.
    [51]. Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requicha, A. A. G.,2003. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides [J], Nat Mater 2:229-232.
    [52]. Nie, Z. H.; Petukhova, A.; Kumacheva, E.,2010. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles [J], Nat. Nanotechnol.5:15-25.
    [53]. Shen, X.; Chen, L.; Li, D.; Zhu, L.; Wang, H.; Liu, C.; Wang, Y.; Xiong, Q.; Chen, H., 2011. Assembly of Colloidal Nanoparticles Directed by the Microstructures of Polycrystalline Ice [J],Acs Nano 5:8426-8433.
    [54]. Srivastava, S.; Kotov, N. A.,2008. Composite Layer-by-Layer (LBL) Assembly with Inorganic Nanoparticles and Nanowires [J],Acc. Chem. Res.41:1831-1841.
    [55]. Malaquin, L.; Kraus, T.; Schmid, H.; Delamarche, E.; Wolf, H.,2007. Controlled Particle Placement through Convective and Capillary Assembly [J], Langmuir 23:11513-11521.
    [56]. Coe-Sullivan, S.; Steckel, J. S.; Woo, W. K.; Bawendi, M. G.; Bulovic, V.,2005. Large-area ordered quantum-dot monolayers via phase separation during spin-casting [J], Adv Funct Mater 15:1117-1124.
    [57]. Cote, L. J.; Kim, F.; Huang, J. X.,2009. Langmuir-Blodgett Assembly of Graphite Oxide Single Layers [J], J. Am. Chem. Soc.131:1043-1049.
    [58]. Ahniyaz, A.; Sakamoto, Y.; Bergstrom, L.,2007. Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes [J], P Natl Acad Sci USA 104:17570-17574.
    [59]. Lee, S. H.; Liddell, C. M.,2009. Anisotropic Magnetic Colloids:A Strategy to Form Complex Structures Using Nonspherical Building Blocks [J], Small 5:1957-1962.
    [60]. Whitesides, G. M.; Tang, S. K. Y.; Derda, R.; Mazzeo, A. D.,2011. Reconfigurable Self-Assembly of Mesoscale Optical Components at a Liquid-Liquid Interface [J], Adv Mater 23: 2413-+.
    [61]. Shi, H. Y.; Hu, B.; Yu, X. C.; Zhao, R. L.; Ren, X. F.; Liu, S. L.; Liu, J. W.; Feng, M.; Xu, A. W.; Yu, S. H.,2010. Ordering of Disordered Nanowires:Spontaneous Formation of Highly Aligned, Ultralong Ag Nanowire Films at Oil-Water-Air Interface [J], Adv Funct Mater 20: 958-964.
    [62]. Korgel, B. A.,2010. NANOCRYSTAL SUPERLATTICES Assembly at liquid interfaces [J], Nat. Mater.9:101-703.
    [63]. Dong, A. G.; Chen, J.; Vora, P. M.; Kikkawa, J. M.; Murray, C. B.,2010. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface [J], Nature 466: 474-477.
    [64]. Duan, H. W.; Wang, D. Y.; Kurth, D. G.; Mohwald, H.,2004. Directing self-assembly of nanoparticles at water/oil interfaces [J], Angew Chem Int Edit 43:5639-5642.
    [65]. Cheng, L.; Liu, A. P.; Peng, S.; Duan, H. W.,2010. Responsive Plasmonic Assemblies of Amphiphilic Nanocrystals at Oil-Water Interfaces [J], Acs Nano 4:6098-6104.
    [1]. Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y., Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q.,2003. One-dimensional nanostructures:Synthesis, characterization, and applications [J], Adv. Mater.15:353-389.
    [2]. Hochbaum, A. I.; Yang, P. D.,2010. Semiconductor Nanowires for Energy Conversion [J], Chem.Rev.110:527-546.
    [3]. Qin, Y.; Wang, X. D.; Wang, Z. L.,2008. Microfibre-nanowire hybrid structure for energy scavenging [J], Nature 451:809-U5.
    [4]. Liu, J. W.; Liang, H. W.; Yu, S. H.,2012. Macroscopic Scale Assembled Nanowire Thin Films and Their Functionalities [J], Chem. Rev.
    [5]. Sanchez-Iglesias, A.; Grzelczak, M.; Perez-Juste, J.; Liz-Marzan, L. M.,2010. Binary Self-Assembly of Gold Nanowires with Nanospheres and Nanorods [J], Angew. Chem. Int. Ed.: 9985-9989.
    [6]. Yan, H.; Choe, H. S.; Nam, S. W.; Hu, Y. J.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C. M.,2011. Programmable nanowire circuits for nanoprocessors [J], Nature 470:240-244.
    [7]. Rogers, J. A.; Ahn, J. H.; Kim, H. S.; Lee, K. J.; Jeon, S.; Kang, S. J.; Sun, Y. G.; Nuzzo, R. G.,2006. Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials [J], Science 314:1754-1757.
    [8]. Freer, E. M.; Grachev, O.; Duan, X. F.; Martin, S.; Stumbo, D. P.,2010. High-yield self-limiting single-nanowire assembly with dielectrophoresis [J], Nat. Nanotechnol.5:525-530.
    [9]. Wang, B.; Ma, Y. F.; Li, N.; Wu, Y. P.; Li, F. F.; Chen, Y. S.,2010. Facile and Scalable Fabrication of Well-Aligned and Closely Packed Single-Walled Carbon Nanotube Films on Various Substrates [J], Adv. Mater.22:3067-3070.
    [10]. Wang, Z.; Bao, R.; Zhang, X.; Ou, X.; Lee, C.-S.; Chang, J. C.; Zhang, X.,2011. One-Step Self-Assembly, Alignment, and Patterning of Organic Semiconductor Nanowires by Controlled Evaporation of Confined Microfluids [J], Angew. Chem. Int. Ed.50:2811-2815.
    [11]. Kim, F.; Kwan, S.; Akana, J.; Yang, P. D.,2001. Langmuir-Blodgett nanorod assembly [J], J. Am. Chem. Soc.123:4360-4361.
    [12]. Liu, J. W.; Zhu, J. H.; Zhang, C. L.; Liang, H. W.; Yu, S. H.,2010. Mesostructured Assemblies of Ultrathin Superlong Tellurium Nanowires and Their Photoconductivity [J], J. Am. Chem. Soc.132:8945-8952.
    [13]. Shi, H. Y.; Hu, B.; Yu, X. C.; Zhao, R. L.; Ren, X. F.; Liu, S. L.; Liu, J. W.; Feng, M.; Xu, A. W.; Yu, S. H.,2010. Ordering of Disordered Nanowires:Spontaneous Formation of Highly Aligned, Ultralong Ag Nanowire Films at Oil-Water-Air Interface [J], Advanced Functional Materials 20:958-964.
    [14]. Duan, H. W.; Wang, D. Y.; Kurth, D. G.; Mohwald, H.,2004. Directing self-assembly of nanoparticles at water/oil interfaces [J], Angewandte Chemie-International Edition 43: 5639-5642.
    [15]. Reincke, F.; Hickey, S. G.; Kegel, W. K.; Vanmaekelbergh, D.,2004. Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface [J], Angewandte Chemie-International Edition 43:458-462.
    [16]. Liu, J. W.; Zhang, S. Y.; Qi, H.; Wen, W. C.; Yu, S. H.,2012. A General Strategy for Macroscopic Scale Self-Assembly of Nano-Building Blocks on Liquid-Liquid Interface [J], Small.
    [17]. Whang, D.; Jin, S.; Lieber, C. M.,2003. Nanolithography using hierarchically assembled nanowire masks [J], Nano Lett.3:951-954.
    [18]. Whang, D.; Jin, S.; Wu, Y.; Lieber, C. M.,2003. Large-scale hierarchical organization of nanowire arrays for integrated nanosystems [J], Nano Lett.3:1255-1259.
    [19]. Huang, Y.; Duan, X. F.; Wei, Q. Q.; Lieber, C. M.,2001. Directed assembly of one-dimensional nanostructures into functional networks [J], Science 291:630-633.
    [20]. Li, Y.; Yuan, B.; Ji, H.; Han, D.; Chen, S.; Tian, F.; Jiang, X.,2007. A Method for Patterning Multiple Types of Cells by Using Electrochemical Desorption of Self-Assembled Monolayers within Microfluidic Channels [J],Angew. Chem.-Int. Edit.46:1094-1096.
    [21]. Park, J. S.; Han, T. H.; Oh, J. K.; Kim, S. O.,2010. Capillarity Induced Large Area Patterning of Peptide Nanowires [J], J. Nanosci. Nanotechnol.10:6954-6957.
    [22]. Liu, J. W.; Xu, J.; Liang, H. W.; Wang, K.; Yu, S. H.,2012. Macroscopic Ordered Ultrathin Telluride Hetero-Nanowire Films [J], Angewandte Chemie-International Edition.
    [23]. Yu, G. H.; Cao, A. Y.; Lieber, C. M.,2007. Large-area blown bubble films of aligned nanowires and carbon nanotubes [J], Nat. Nanotechnol.2:372-377.
    [24]. Yang, H.; Liu, Y. Q.; Zhang, X. P.; Xia, Y. N.,2010. Magnetic-Field-Assisted Electrospinning of Aligned Straight and Wavy Polymeric Nanofibers [J], Adv. Mater.22: 2454-2457.
    [25]. Yang, D. Y.; Lu, B.; Zhao, Y.; Jiang, X. Y,2007. Fabrication of aligned fibirous arrays by magnetic electrospinning [J],Adv. Mater.19:3702-+.
    [26]. Li, D.; Xia, Y N.,2004. Electrospinning of nanofibers:Reinventing the wheel? [J], Adv. Mater.16:1151-1170.
    [27]. Fan, Z. Y.; Ho, J. C.; Jacobson, Z. A.; Yerushalmi, R.; Alley, R. L.; Razavi, H.; Javey, A., 2008. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing [J], Nano Lett.8:20-25.
    [28]. Pevzner, A.; Engel, Y.; Elnathan, R.; Ducobni, T.; Ben-Ishai, M.; Reddy, K.; Shpaisman, N.; Tsukernik, A.; Oksman, M.; Patolsky, F.,2010. [J], Nano Lett.10:1202.
    [29]. Cui, X. J.; Li, L. M.; Xu, J.; Xu, F.,2010. Fabrication of Continuous Aligned Polyvinylpyrrolidone Fibers via Electrospinning by Elimination of the Jet Bending Instability [J], Journal of Applied Polymer Science 116:3676-3681.
    [30]. Ji, C.; Li, H.; Zhang, L.; Liu, Y.; Li, Y.; Jia, Y.; Li, Z.; Li, P.; Shi, E.; Wei, J.; Wang, K_; Zhu, H.; Wu, D.; Cao, A.,2011. Suspended, Straightened Carbon Nanotube Arrays by Gel Chapping [J], Acs Nano 5:5656-5661.
    [31]. Srivastava, S.; Santos, A.; Critchley, K.; Kim, K. S.; Podsiadlo, P.; Sun, K.; Lee, J.; Xu, C. L.; Lilly, G. D.; Glotzer, S. C.; Kotov, N. A.,2010. Light-Controlled Self-Assembly of Semiconductor Nanoparticles into Twisted Ribbons [J], Science 327:1355-1359.
    [32]. Gates, B. D.; Xu, Q. B.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G. M.,2005. New approaches to nanofabrication:Molding, printing, and other techniques [J], Chem. Rev.105: 1171-1196.
    [33]. Liu, J. W.; Xu, J.; Ni, Y.; Fan, F. J.; Zhang, C. L.; Yu, S. H.,2012. A Family of Carbon Based Nanocomposite Tubular Structures Created by In Situ Electron Beam Irradiation [J], Acs Nano.
    [34]. Banholzer, M. J.; Millstone, J. E.; Qin, L.; Mirkin, C. A.,2008. Rationally designed nanostructures for surface-enhanced Raman spectroscopy [J], Chemical Society Reviews 37: 885-897.
    [35]. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J.,1974. Raman spectra of pyridine adsorbed at a silver electrode [J], Chem Phys Lett 26:163-166.
    [36]. Lu, G.; Li, H.; Liusman, C.; Yin, Z. Y.; Wu, S. X.; Zhang, H.,2011. Surface enhanced Raman scattering of Ag or Au nanoparticle-decorated reduced graphene oxide for detection of aromatic molecules [J], Chemical Science 2:1817-1821.
    [37]. Tao, A. R.; Yang, P. D.,2005. Polarized surface-enhanced Raman spectroscopy on coupled metallic nanowires [J], Journal of Physical Chemistry B 109:15687-15690.
    [38]. Gunawidjaja, R.; Peleshanko, S.; Ko, H.; Tsukruk, V. V.,2008. Bimetallic nanocobs: Decorating silver nanowires with gold nanoparticles [J], Adv. Mater.20:1544-+.
    [39]. Chang, S.; Ko, H.; Gunawidjaja, R.; Tsukruk, V. V.,2011. Raman Markers from Silver Nanowire Crossbars [J], J. Phys. Chem. C 115:4387-4394.
    [40]. Scholes, G. D.; Rumbles, G.,2006. Excitons in nanoscale systems [J], Nat Mater 5: 683-696.
    [41]. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S.,2005. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics [J], Science 307:538-544.
    [42]. Daniel, M.-C.; Astruc, D.,2003. Gold Nanoparticles:Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology [J], Chemical Reviews 104:293-346.
    [43]. Gates, B. D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G M.,2005. New Approaches to Nanofabrication:Molding, Printing, and Other Techniques [J], Chemical Reviews 105:1171-1196.
    [44]. Overgaag, K.; Evers, W.; de Nijs, B.; Koole, R.; Meeldijk, J.; Vanmaekelbergh, D.,2008. Binary superlattices of PbSe and CdSe nanocrystals [J], Journal of the American Chemical Society 130:7833-7835.
    [45]. Urban, J. J.; Talapin, D. V.; Shevchenko, E. V.; Kagan, C. R.; Murray, C. B.,2007. Synergismin binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag-2 Te thin films [J], Nat. Mater,6:115-121.
    [46]. Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O'Brien, S.; Murray, C. B.,2006. Structural diversity in binary nanoparticle superlattices [J], Nature 439:55-59.
    [47]. Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M.; Grzybowski, B. A.,2006. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice [J], Science 312:420-424.
    [48]. Peng, H. S.; Sun, X. M.; Cai, F. J.; Chen, X. L.; Zhu, Y. C.; Liao, G. P.; Chen, D. Y.; Li, Q. W.; Lu, Y. F.; Zhu, Y. T.; Jia, Q. X.,2009. Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres [J], Nat Nanotechnol 4:738-741.
    [49]. Song, G T.; Chen, C.; Qu, X. G.; Miyoshi, D.; Ren, J. S.; Sugimoto, N.,2008. Small-molecule-directed assembly:A gold nanoparticle-based strategy for screening of homo-adenine DNA duplex binders [J], Advanced Materials 20:706-710.
    [50]. Zhao, Y.; Thorkelsson, K.; Mastroianni, A. J.; Schilling, T.; Luther, J. M.; Rancatore, B. J.; Matsunaga, K.; Jinnai, H.; Wu, Y.; Poulsen, D.; Frechet, J. M. J.; Alivisatos, A. P.; Xu, T.,2009. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites [J], Nat. Mater.8:979-985.
    [51]. Yao, H. B.; Fang, H. Y.; Tan, Z. H.; Wu, L. H.; Yu, S. H.,2010. Biologically Inspired, Strong, Transparent, and Functional Layered Organic-Inorganic Hybrid Films [J], Angew Chem Int Edit 49:2140-2145.
    [52]. Srivastava, S.; Kotov, N. A.,2008. Composite Layer-by-Layer (LBL) Assembly with inorganic Nanoparticles and Nanowires [J], Acc. Chem. Res.41:1831-1841.
    [53]. Hu, M. J.; Lu, Y.; Zhang, S.; Guo, S. R.; Lin, B.; Zhang, M.; Yu, S. H.,2008. High yield synthesis of bracelet-like hydrophilic Ni-Co magnetic alloy flux-closure nanorings [J], J. Am. Chem.Soc.130:11606-+.
    [54]. Shi, H. Y.; Hu, B.; Yu, X. C.; Zhao, R. L.; Ren. X. F.; Liu, S. L.; Liu, J. W.; Feng, M.; Xu, A. W.; Yu, S. H.,2010. Ordering of Disordered Nanowires:Spontaneous Formation of Highly Aligned, Ultralong Ag Nanowire Films at Oil-Water-Air Interface [J]. Advanced Functional Materials 20:958-964.
    [55]. Maheshwari. S.; Zhang. L.; Zhu, Y.; Chang. H.-C.,2008. Coupling Between Precipitation and Contact-Line Dynamics:Multiring Stains and Stick-Slip Motion [J]. Physical Review Letters 100:044503.
    [56]. Ming. T.; Kou. X.; Chen, H.; Wang. T.; Tam, H.-L.; Cheah. K.-W.; Chen, J.-Y.; Wang, J., 2008. Ordered Gold Nanostructure Assemblies Formed By Droplet Evaporation [J], Angewandte Chemie International Edition 47:9685-9690.
    [57]. Kim, W. J.; Kim, S. J.; Lee, K. S.; Samoc, M.; Cartwright, A. N.; Prasad, P. N.,2008. Robust Microstructures Using UV Photopatternable Semiconductor Nanocrystals [J], Nano Lett 8:3262-3265.
    [58]. Smith, A. R.; Watson, D. F.,2010. Photochemically Triggered Assembly of Composite Nanomaterials through the Photodimerization of Adsorbed Anthracene Derivatives [J], Chemistry of Materials 22:294-304.
    [59]. Qi, X.; Huang, Y.; Klapper, M.; Boey, F.; Huang, W.; Feyter, S. D.; Mu□llen, K.; Zhang, H.,2010. In Situ Modification of Three-Dimensional Polyphenylene Dendrimer-Templated CuO Rice-Shaped Architectures with Electron Beam Irradiation [J], The Journal of Physical Chemistry C 114:13465-13470.
    [60]. Son, J. G.; Chang, J. B.; Berggren, K. K.; Ross, C. A.,2011. Assembly of Sub-10-nm Block Copolymer Patterns with Mixed Morphology and Period Using Electron Irradiation and Solvent Annealing [J], Nano Lett 11:5079-5084.
    [61]. Warner, J. H.,2008. Self-assembly of ligand-free PbS nanocrystals into nanorods and their nanosculpturing by electron-beam irradiation [J], Advanced Materials 20:784-787.
    [62]. de Jonge, N.; Ross, F. M.,2011. Electron microscopy of specimens in liquid [J], Nat Nano 6:695-704.
    [63]. Zheng, H.; Smith, R. K.; Jun, Y.-w.; Kisielowski, C.; Dahmen. U.; Alivisatos, A. P.,2009. Observation of Single Colloidal Platinum Nanocrystal Growth Trajectories [J], Science 324: 1309-1312.
    [64]. Dong, Z.; Lai, X.; Halpert, J. E.; Yang, N.; Yi, L.; Zhai, J.; Wang, D.; Tang, Z.; Jiang, L. 2012. Accurate Control of Multishelled ZnO Hollow Microspheres for Dye-Sensitized Solar Cells with High Efficiency [J], Advanced Materials 24:1046-1049.
    [65]. Tao, A.; Kim, F.; Hess, C.; Goldberger, J.; He, R. R.; Sun, Y. G.; Xia, Y. N.; Yang, P. D., 2003. Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy [J], Nano Lett 3:1229-1233.
    [66]. Steinhagen, C.; Panthani, M. G.; Akhavan, V.; Goodfellow, B.; Koo, B.; Korgel, B. A.,2009. Synthesis of Cu2ZnSnS4 Nanocrystals for Use in Low-Cost Photovoltaics [J], Journal of the American Chemical Society 131:12554-12555.
    [67]. Xiao, M.; Chen, H. J.; Ming, T.; Shao, L.; Wang, J. F.,2010. Plasmon-Modulated Light Scattering from Gold Nanocrystal-Decorated Hollow Mesoporous Silica Microspheres [J], ACS Nano 4:6565-6572.
    [68]. Yang, C.; Gu, H. W.; Lin, W.; Yuen, M. M.; Wong, C. P.; Xiong, M. Y.; Gao, B.,2011. Silver Nanowires:From Scalable Synthesis to Recyclable Foldable Electronics [J], Advanced Materials 23:3052-3056.
    [69]. Qian, H. S.; Yu, S. H.; Gong, J. Y.; Luo, L. B.; Fei, L. F.,2006. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process [J], Langmuir 22:3830-3835.
    [70]. Xu, Y. X.; Bai, H.; Lu, G. W.; Li, C.; Shi, G Q.,2008. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets [J], Journal of the American Chemical Society 130:5856-+.
    [71]. Hummers, W. S.; Offeman, R. E.,1958. Preparation of Graphitic Oxide [J], Journal of the American Chemical Society 80:1339.
    [72]. Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B.,2009. High-throughput solution processing of large-scale graphene [J], Nat Nanotechnol 4:25-29.
    [73]. Sun, X. M.; Chen, X.; Li, Y. D.,2002. Large-scale synthesis of sodium and potassium titanate nanobelts [J], Inorg. Chem.41:4996-4998.
    [74]. Schmidt, O. G.; Eberl, K.,2001. Nanotechnology-Thin solid films roll up into nanorubes [J], Nature 410:168-168.
    [75]. Shenoy, V. B.; Reddy, C. D.; Zhang, Y. W.,2010. Spontaneous Curling of Graphene Sheets with Reconstructed Edges [J], ACS Nano 4:4840-4844.
    [76]. Schmidt, O. G; Schmarje, N.; Deneke, C.; Muller, C.; Jin-Phillipp, N. Y,2001. Three-dimensional nano-objects evolving from a two-dimensional layer technology [J], Adv. Mater.13:756-759.
    [77]. Mei, Y. F.; Thurmer, D. J.; Deneke, C.; Kiravittaya, S.; Chen, Y. F.; Dadgar, A.; Bertram, F.; Bastek, B.; Krost, A.; Christen, J.; Reindl, T.; Stoffel, M.; Coric, E.; Schmidt, O. G.,2009. Fabrication, Self-Assembly, and Properties of Ultrathin AIN/GaN Porous Crystalline Nanomembranes:Tubes, Spirals, and Curved Sheets [J], Acs Nano 3:1663-1668.
    [78]. Cho, J. H.; James, T.; Gracias, D. H.,2010. Curving Nanostructures Using Extrinsic Stress [J], Advanced Materials 22:2320-2324.
    [79]. Guo, X. H.; Yu, S. H.; Lu, Y.; Yuan, G. B.; Sedlak, M.; Colfen, H.,2010. Spontaneous Formation of Hierarchically Structured Curly Films of Nickel Carbonate Hydrate through Drying [J], Langmuir 26:10102-10110.
    [80]. Stoney, G. G,1909. The tension of metallic films deposited by electrolysis [J], Proceedings of the Royal Society of London, Ser. A 82:172-175.
    [81]. Banhart, F.,2006. Irradiation of carbon nanotubes with a focused electron beam in the electron microscope [J], Journal of Materials Science 41:4505-4511.
    [82]. Banhart, F., 1999. Irradiation effects in carbon nanostructures [J], Rep Prog Phys 62: 1181-1221.
    [83]. Ugarte, D.,1992. Curling and Closure of Graphitic Networks under Electron-Beam Irradiation [J], Nature 359:707-709.
    [84]. Nikishkov, G. P.,2003. Curvature estimation for multilayer hinged structures with initial strains [J], Journal of Applied Physics 94:5333-5336.
    [85]. Cendula, P.; Kiravittaya, S.; Mei, Y. F.; Deneke, C.; Schmidt, O. G,2009. Bending and wrinkling as competing relaxation pathways for strained free-hanging films [J], Physical Review B 79:085429.
    [1]. Chen, K. I.; Li, B. R.; Chen, Y. T.,2011. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation [J], Nano Today 6: 131-154.
    [2]. Guihua Yu, C. M. L.,2010. Assembly and integration of semiconductor nanowires for functional nanosystems [J], Pure Appl. Chem.82:2295-2314.
    [3]. Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M.,2000. Carbon nanotube-based nonvolatile random access memory for molecular computing [J], Science 289:94-97.
    [4]. Das, S.; Gates, A. J.; Abdu, H. A.; Rose, G. S.; Picconatto, C. A.; Ellenbogen, J. C.,2007. Designs for ultra-tiny, special-purpose nanoelectronic circuits [J], IEEE Trans. Circuits Syst. I-Regul. Pap.54:2528-2540.
    [5]. Cui, Y.; Lieber, C. M.,2001. Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J], Science 291:851-853.
    [6]. Huang, Y.; Duan, X. F.; Cui, Y.; Lauhon, L. J.; Kim, K. H.; Lieber, C. M.,2001. Logic gates and computation from assembled nanowire building blocks [J], Science 294:1313-1317.
    [7]. Lu, W.; Lieber, C. M.,2007. Nanoelectronics from the bottom up [J], Nat. Mater.6:841-850.
    [8]. Zhong, Z. H.; Wang, D. L.; Cui, Y.; Bockrath, M. W.; Lieber, C. M.,2003. Nanowire crossbar arrays as address decoders for integrated nanosystems [J], Science 302:1377-1379.
    [9]. Lu, W.; Xie, P.; Lieber, C. M.,2008. Nanowire Transistor Performance Limits and Applications [J], Ieee Transactions on Electron Devices 55:2859-2876.
    [10]. Yan, H.; Choe, H. S.; Nam, S. W.; Hu, Y J.; Das, S.; Klemic, J. F.; Ellenbogen, J. C.; Lieber, C. M.,2011. Programmable nanowire circuits for nanoprocessors [J], Nature 470:240-244.
    [11]. Dong, Y. J.; Yu, G. H.; McAlpine, M. C.; Lu, W.; Lieber, C. M.,2008. Si/a-Si core/shell nanowires as nonvolatile crossbar switches [J], Nano Letters 8:386-391.
    [12]. McAlpine, M. C.; Ahmad, H.; Wang, D. W.; Heath, J. R.,2007. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors [J], Nat. Mater.6: 379-384.
    [13]. Shimizu, K. T.; Fabbri, J. D.; Jelincic, J. J.; Melosh, N. A.,2006. Soft deposition of large-area metal contacts for molecular electronics [J], Advanced Materials 18:1499-+.
    [14]. Wang, L. M.; Chen, D. J.,2006. A one-pot approach to the preparation of silver-PMMA "shell-core" nanocomposite [J], Colloid and Polymer Science 284:449-454.
    [15]. Liu, H.; Lalanne, P.,2008. Microscopic theory of the extraordinary optical transmission [J], Nature 452:728-731.
    [16]. Gordon, R.; Sinton, D.; Kavanagh, K. L.; Brolo, A. G.,2008. A New Generation of Sensors Based on Extraordinary Optical Transmission [J], Accounts of Chemical Research 41: 1049-1057.
    [17]. Freitag, M.; Martin, Y.; Misewich, J. A.; Martel, R.; Avouris, P. H.,2003. Photoconductivity of single carbon nanotubes [J], Nano Lett.3:1067-1071.
    [18]. Lang, D. V.; Logan, R. A.; Jaros, M.,1979. TRAPPING CHARACTERISTICS AND A DONOR-COMPLEX (DX) MODEL FOR THE PERSISTENT PHOTOCONDUCTIVITY TRAPPING CENTER IN TE-DOPED ALXGA1-XAS [J], Physical Review B 19:1015-1030.
    [19]. Lang, D. V.; Logan, R. A.,1977. LARGE-LATTICE-RELAXATION MODEL FOR PERSISTENT PHOTOCONDUCTIVITY IN COMPOUND SEMICONDUCTORS [J], Phys. Rev. Lett.39:635-639.
    [20]. Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D.,2002. Nanowire ultraviolet photodetectors and optical switches [J], Advanced Materials 14:158-+.
    [21]. Iwasaki, A.; Hu, L.; Suizu, R.; Nomura, K.; Yoshikawa, H.; Awaga, K.; Noda, Y.; Kanai, K.; Ouchi, Y.; Seki, K.; Ito, H.,2009. Interactive Radical Dimers in Photoconductive Organic Thin Films [J], Angewandte Chemie-International Edition 48:4022-4024.
    [22]. Wang, Y.; Tang, Z. Y.; Podsiadlo, P.; Elkasabi, Y.; Lahann, J.; Kotov, N. A.,2006. Mirror-like photoconductive layer-by-layer thin films of Te nanowires:The fusion of semiconductor, metal, and insulator properties [J], Advanced Materials 18:518-+.
    [23]. Armstrong, A.; Li, Q.; Lin, Y.; Talin, A. A.; Wang, G. T.,2010. GaN nanowire surface state observed using deep level optical spectroscopy [J], Applied Physics Letters 96.
    [24]. Lan, W.-J.; Yu, S.-H.; Qian, H.-S.; Wan, Y,2007. Dispersibility, stabilization, and chemical stability of ultrathin tellurium nanowires in acetone:Morphology change, crystallization, and transformation into TeO2 in different solvents [J], Langmuir 23:3409-3417.
    [25]. Chua, L. O.,1971. [J],IEEE Trans. Circ. Th.18:507-519.
    [26]. Di Ventra, M.; Pershin, Y. V.,2011. Memory materials:a unifying description [J], Materials Today 14:584-591.
    [27]. Granqvist, C. G.; Lansaker, P. C.; Mlyuka, N. R.; Niklasson, G. A.; Avendano, E.,2009. Progress in chromogenics:New results for electrochromic and thermochromic materials and devices [J], Solar Energy Materials and Solar Cells 93:2032-2039.
    [28]. Deb, S. K.,2008. Opportunities and challenges in science and technology of WO3 for electrochromic and related applications [J], Solar Energy Materials and Solar Cells 92:245-258.
    [29]. Yoo, S. J.; Lim, J. W.; Sung, Y. E.; Jung, Y H.; Choi, H. G.; Kim, D. K.,2007. Fast switchable electrochromic properties of tungsten oxide nanowire bundles [J], Appl. Phys. Lett. 90.
    [30]. Liu, J. W.; Zhu, J. H.; Zhang, C. L.; Liang, H. W.; Yu, S. H.,2010. Mesostructured Assemblies of Ultrathin Superlong Tellurium Nanowires and Their Photoconductivity [J],J. Am. Chcm.Soc.132:8945-8952.
    [31]. Yao, C. J.; Zhong, Y. W.; Nie, H. J.; Abruna, H. D.; Yao, J. N.,2011. Near-IR Electrochromism in Electropolymerized Films of a Biscyclometalated Ruthenium Complex Bridged by 1,2,4,5-Tetra(2-pyridyl)benzene [J],JAm Chem Soc 133:20720-20723.
    [32]. Granqvist, C.-G.,2006. Electrochromic materials:Out of a niche [J], Nat Mater 5:89-90.
    [33]. Deb, S. K.,1969. A Novel Electrophotographic System [J],Appl. Opt.8:192-195.
    [34]. Niklasson, G. A.; Granqvist, C. G.,2007. Electrochromics for smart windows:thin films of tungsten oxide and nickel oxide, and devices based on these [J], Journal of Materials Chemistry 17:127-156.
    [35]. Wang, J. M.; Khoo, E.; Lee, P. S.; Ma, J.,2008. Synthesis, assembly, and electrochromic properties of uniform crystalline WO3 nanorods [J], JPhys Chem C 112:14306-14312.
    [36]. Subrahmanyam, A.; Karuppasamy, A.,2007. Optical and electrochromic properties of oxygen sputtered tungsten oxide (WO3) thin films [J], Solar Energy Materials and Solar Cells 91:266-274.
    [37]. Chen, J. Z.; Ko, W. Y.; Yen, Y. C.; Chen, P. H.; Lin, K. J.,2012. Hydrothermally Processed TiO2 Nanowire Electrodes with Antireflective and Electrochromic Properties [J], Acs Nano 6: 6633-6639.
    [38]. Shi, H. Y.; Hu, B.; Yu, X. C.; Zhao, R. L.; Ren, X. F.; Liu, S. L.; Liu, J. W.; Feng, M.; Xu, A. W.; Yu, S. H.,2010. Ordering of Disordered Nanowires:Spontaneous Formation of Highly Aligned, Ultralong Ag Nanowire Films at Oil-Water-Air Interface [J], Advanced Functional Materials 20:958-964.
    [39]. Tao, A. R.; Yang, P. D.,2005. Polarized surface-enhanced Raman spectroscopy on coupled metallic nanowires [J], Journal of Physical Chemistry B 109:15687-15690.
    [40]. Wang, H. H.; Liu, C. Y.; Wu, S. B.; Liu, N. W.; Peng, C. Y.; Chan, T. H.; Hsu, C. F.; Wang, J. K.; Wang, Y. L.,2006. Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10 nm Gaps [J], Adv. Mater.18:491-495.
    [41]. Song, C.; Abell, J. L.; He, Y.; Hunyadi Murph, S.; Cui, Y.; Zhao, Y.,2012. Gold-modified silver nanorod arrays:growth dynamics and improved SERS properties [J], J. Mater. Chem.22: 1150-1159.
    [42]. Singh, J. P.; Lanier, T. E.; Zhu, H.; Dennis, W. M.; Tripp, R. A.; Zhao, Y.,2012. Highly Sensitive and Transparent Surface Enhanced Raman Scattering Substrates Made by Active Coldly Condensed Ag Nanorod Arrays [J], The Journal of Physical Chemistry C 116: 20550-20557.
    [43]. Sun, Y.; Wiederrecht, G P.,2007. Surfactantless Synthesis of Silver Nanoplates and Their Application in SERS [J], Small 3:1964-1975.
    [44]. Hsiao, W.-H.; Chen, H.-Y.; Yang, Y.-C.; Chen, Y.-L.; Lee, C.-Y.; Chiu, H.-T.,2011. Surface-Enhanced Raman Scattering Imaging of a Single Molecule on Urchin-like Silver Nanowires [J], Acs Applied Materials & Interfaces 3:3280-3284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700