用户名: 密码: 验证码:
金、碳纳米功能材料的制备及其色度和荧光传感方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以金、碳纳米材料为研究基础,以重要生物活性组分为研究对象,利用金纳米粒子(Gold nanoparticles, AuNPs)具有特殊的表面等离子体共振吸收、荧光金纳米簇(Gold nanoclusters, AuNCs)发射光波长随团簇尺寸可调、碳纳米材料(Carbon nanomaterials, CNMs)在能量转移特别是作为能量受体方面表现出来的优越性质,在合成制备的基础上,就基于金、碳纳米功能材料的色度和荧光传感方法开展研究,主要研究内容如下:
     1.众所周知,ssDNA在AuNPs表面的选择性吸附能够稳定AuNPs,阻止高盐浓度诱导AuNPs的聚集,我们的研究表明,在精胺存在下,即使没有盐的额外加入,也能导致任意序列ssDNA包被的AuNPs发生非交联聚集。其机制在于精胺作为多价反离子,起到电荷屏蔽和“离子桥”的双重作用。就我们目前所知,由于阳离子多胺既没有吸收,也没有荧光等本征性光学特性,在发展关于阳离子多胺的光学分析方法方面,之前很少有成功的案例。因此,与传统的色谱和毛细管电泳相比,本文建立的方法将为生物体液和发酵食品中精胺的特异性检测提供一种简单方便的新选择。
     2.碘离子作为一种生物重要活性阴离子,发展其简单、灵敏和特异性的检测方法仍然是一项有价值且富有挑战性的工作。在本文中,我们发现碘离子能够诱导组氨酸介导合成的荧光AuNCs的融合和各向异性生长,同时伴随AuNCs荧光的猝灭和裸眼可见溶液颜色的变化,据此建立了一种新的色度和荧光传感策略用于碘离子的特异性检测。与目前文献报道的方法相比,该方法具有简单和可视化检测的优点。其猝灭的荧光强度和增强表面等离子体共振吸收与碘离子浓度,分别在0.8~60和1.2~50μM具有线性关系,检测限(36)分别为118和215nM.
     3.发现盐酸四环素能够在Nafion膜上产生非凡吸附,进一步研究表明其吸附是与浓度相关并由扩散控制的一级动力学过程,且是多层吸附并遵循BET吸附等温线。进一步,我们发现吸附在Nafion膜上的盐酸四环素,在合适浓度的氯金酸溶液中,能够介导金纳米晶体在Nafion膜上的生长,初步试验表明金纳米晶体的大小和形态可以通过改变氯金酸溶液的浓度进行简单调控。我们目前的初步试验结果,为金属纳米材料Nafion复合膜的制备提供了新的思路,相信这种金纳米材料Nafion聚合物复合膜在化学生物传感器设计和材料科学领域将具有潜在应用价值。
     4.碳纳米管(Carbon nanotubes, CNTs)能够有效猝灭吸附到其表面荧光团的荧光,且ssDNA能够通过非共价相互作用缠绕到CNTs的表面。因此,荧光标记的ssDNA与碳纳米管能够形成自组装能量转移猝灭体系,基于采用核酸酶破坏该组装体的形成,可以观察到荧光恢复。基于这种机制,我们建立了一种荧光传感策略用于核酸酶活性的检测,其初始切割反应速率与核酸酶S1浓度在0.6~8.0U m1-1范围内具有线性关系,其检测限可达0.08U m1-1。进一步,我们以焦磷酸为例,用该方法去评价其对核酸酶活性的抑制效应,发现在0.2-1.4mM范围内,随着焦磷酸浓度的增加,荧光恢复的程度逐步减小,说明核酸酶对荧光标记的ssDNA切割反应受到了抑制,因此,发展的这种荧光核酸酶活性分析策略也可用于其潜在抑制剂的筛选。
     5.分别比较研究了不同卟啉分子在GO和RGO上的组装,发现阳离子卟啉分子均能通过静电和π-π堆积作用自组装到两种石墨烯的表面,但由于卟啉分子在两种石墨烯上展平程度的差异,导致组装到RGO表面的卟啉分子出现更加明显的荧光猝灭和Soret吸收带的红移。随后,有趣的发现在于,阳离子卟啉与GO形成的复合物,能够易化和促进Fe(Ⅲ)螯合进入卟啉环,而阳离子卟啉与RGO形成的复合物却不能,原因在于与RGO相比,GO表面存在多种含氧功能基,可能起到辅助配位的作用。更有意思的是,Fe(Ⅲ)螯合进入卟啉环能够高效阻断从激态卟啉到GO的电子转移过程,从而导致卟啉分子荧光的恢复。据此,我们用阳离子卟啉与GO自组装形成的纳米杂交体作为光学探针,建立了Fe(Ⅲ)的荧光Turn-on传感方法,该方法对Fe(Ⅲ)展现出快速、灵敏的响应及高的选择性。
     上述结果对深入认识两类纳米材料的功能性质,以进一步拓展其在纳米分析化学领域中的应用,具有重要的意义。
The various research results upon the nanomaterials reveal that they can open many good opportunities in an extremely multidisciplinary environment for promoting the rapid developments of different research fields. For example, gold nanoparticles have wide-range use as a fertile ground for analytical purpose due to the character of strong surface plasmon resonance and ease of observation by naked eyes, and gold nanoclusters have molecule-like characteristics which make it give rise to unique and size dependent fluorescent properties. Additionally, it is well known that carbon nanotubes (CNTs) and graphene can nonconvalently interact with soft single-stranded DNA (ssDNA) by means of π-stacking interactions between nucleotide bases and carbon nanomaterials described above, and can also act collectively as quenchers for the fluorophores owing to energy-transfer and electron-transfer processes. Therefore, considering their promising optical charaters, in this conribution we attempt to develope the colorimetric and fluorometric sensing for the biologically important molecules based on the gold and carbon nanomaterials. The main contains are listed as follows:
     1. The selective adsorption of single-stranded oligonucleotides (ssDNA) on gold nanoparticles (AuNPs) is well known for stabilizing the AuNPs against aggregation even at high salt concentrations. Our investigation shows that the non-crosslinking aggregation of arbitrary ssDNA-capped AuNPs occurs due to their interaction with the cationic polyamine, spermine (Spm), even without any addition of NaCl. The non-crosslinking aggregation mechanism is that the Spm, served as multivalent counterions, plays the dual roles of charge shielding and ion bridging among the ssDNA-capped AuNPs, which jointly result in the aggregation of the ssDNA-capped AuNPs. Therefore, a sensitive and highly selective colorimetric method for the detection of Spm was developed. To the best of our knowledge, it is the first successful case as to the efforts towards the development of optical assays for cationic polyamine, showing neither natural UV absorption nor fluorescence. Compared with the traditional methods of chromatography and capillary electrophoresis, the approach described here would provide a convenient alternative and new train of thought for the specific detection of Spm in both biological fluid and fermented products.
     2. Iodide, as a biologically important anion, it remains a worthwhile yet challenging undertaking to find a sensitive and specific approach to provide a technically simple iodide detection. In this article, it was found that no other ions than iodide-induced anisotropic growth of AuNCs originated from a small molecule, histidine-mediated synthesis of AuNCs, were observed. Simultaneously, it is accompanied by the fluorescence quenching of AuNCs and the naked-eye visible color change. Therefore, a new colorimetric and fluorometric sensing strategy was developed for the iodide-specific detection. Compared with currently reported methods, the present one displays the advantages of the visual detection and simplicity. The quenched fluorescence and enhanced surface plasmon resonance absorbance were found to be proportional to the iodide concentration over the range of0.8-60and1.2-50μM with a detection limit (3a) of118nM and215nM, respectively.
     3. Tetracycline hydrochloride (Tc) was found to be adsorbed well into a Nafion (Nf) film. The kenetic analysis suggested that the adsorption of Tc into the Nf film is controlled by its diffusion in the Nf film with a diffusion coefficient of D=8.5x10-9cm2s-1The adsorption isothermal was analyzed by a Brunauer-Emmett-Teller (BET) equation suggertion multilayer adsorption of Tc into the film. Further, the growth of gold nanocrystals could be observed if the Nf film adsorbed the Tc was dipped into the HAuCl4solution, and the preliminary experimental results demonstrate that the shape of gold nanocrystals can be controlled by simply changing the concentration of HAuCl4solution. The research results are significant and the approach described here would provide new train of thought to develope nanocomposites consisting of metal nanoparticles embedded in a polymer matrix, considering that they could make new materials with novel properties originating from the combination of the inorganic components and the polymer and have promising applications in the field of optical sensing.
     4. Carbon nanotubes (CNTs) can efficiently quench the fluorescence of the adsorbed fluorophores and nonconvalently interact with soft single-stranded DNA (ssDNA). Upon disruption of CNTs-fluorescent oligonucleotides hybrid by nuclease S1, fluorescence turn-on was observed. Using this strategy, a platform based on fluorescence signal for monitoring the activity of nuclease with advantages of high sensitivity and commonality was established, and a linear relationship between initial cleavage reaction rate and nuclease S1concentration is found in the range of0.6-8.0U ml-1with a detection limit of0.08U ml-1. Furthermore, by taking pyrophosphate as an example, we use the assay to evaluate the prohibition effect on nuclease, and the extent of fluorescence recovery decreased linearly with increasing the concentration of pyrophosphate in the range of0.2-1.4mM, implying that the cleavage reaction by nuclease S1was prohibited, and therefore this fluorescence assay can also be conveniently utilized for inhibitor screening of nuclease.
     5. A comparative reaserch of the assembly of different porphyrin molecules on graphene oxide (GO) and reduced graphene oxide (RGO) was carried out, respectively. Despite the cationic porphyrin molecules can be assembled onto the surfaces of graphene sheets, including GO and RGO, to form complexes through electrostatic and π-π stacking interactions, the more obvious fluorescence quenching and the larger red-shift of the Soret band of porphyrin molecule in RGO-bound states were observed than those in GO-bound states, due to the differenc of molecular flattening in degree. Further, more interesting finding was that the complexes formed between cationic porphyrin and GO, rather than RGO sheets, can facilitate the incorporation of iron (Ⅲ) ions into the porphyrin moieties, due to the presence of the oxygen-contained groups at the basal plane of GO sheets served as auxiliary coordination units, which can high-efficiently obstruct the electron transfer from excited porphyrin to GO sheets and result in the occurrence of fluorescence restoration. Thus, a fluorescence sensing platform has been developed for iron (Ⅲ) ions detection in this contribution by using the porphyrin/GO nanohybrids as an optical probe, and our present one exhibited rapid and sensitive responses and high selectivity toward iron (Ⅲ) ions.
     In summary, we suppose that the research results describes above would be beneficial for us to understand deeply their characters of the two kinds of nanomaterials, and it is very important for us to enlarge their applications in nanomaterial-based analytical chemistry.
引文
[1]Alivisatos, A. P. Semiconductor clusters, nanocrystals, and quantum dots. Science,1996,271, 933-937.
    [2]Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater.2005,4,435-446.
    [3]Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y. Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chem. Rev.2011,111,3669-3712.
    [4]Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L. V.; Muller, R. N. Magnetic iron oxide nanoparticles:Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev.2008,108,2064-2110.
    [5]Karousis, N.; Tagmatarchis, N.; Tasis, D. Current Progress on the Chemical Modification of Carbon Nanotubes. Chem. Rev.2010,110,5366-5397.
    [6]Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb Carbon:A Review of Graphene. Chem. Rev. 2010,110,132-145.
    [7]Murphy, C. J.; Gole, A. M.; Stone, J. W. et al. Gold Nanoparticles in Biology:Beyond Toxicity to Cellular Imaging. Acc. Chem. Res.2008,41,1721-1730.
    [8]Yang, D.-P.; Cui, D. X. Advances and Prospects of Gold Nanorods. Chem. Asian J.2008,3, 2010-2022.
    [9]Alkilany, A. M.; Thompson, L. B.; Boulos, S. P.; et al. Gold Nanorods:Their Potential for Photothermal Therapeutics and Drug Delivery, Tempered by the Complexity of Their Biological Interactions.Adv. Drug Deliver. Rev.2012,64,190-199.
    [10]Huang, X. H.; Neretina, S.; El-Sayed, M. A. Gold Nanorods:From Synthesis and Properties to Biological and Biomedical Applications. Adv. Mater.2009,21,4880-4910.
    [11]Perez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzan, L. M.; et al. Gold Nanorods:Synthesis, Characterization and Applications. Coordin. Chem. Rev.2005,249,1870-1901.
    [12]Wang, Z.; Zhang, J.; Ekman, J. M; et al. DNA-Mediated Control of Metal Nanoparticle Shape: One-Pot Synthesis and Cellular Uptake of Highly Stable and Functional Gold Nanoflowers. NanoLett.2010,10,1886-1891.
    [13]Kuroda, Y.; Sakamoto, Y.; Kuroda, K. Selective Cleavage of Periodic Mesoscale Structures: Two-Dimensional Replication of Binary Colloidal Crystals into Dimpled Gold Nanoplates. J. Am. Chem. Soc.2012,134,8684-8692.
    [14]Xia, Y; Li, W.; Cobley, C. M.; et al. Gold Nanocages:From Synthesis to Theranostic Applications. Acc. Chem. Res.2011,44,914-924.
    [15]Lin, C. A. J.; Lee, C. H.; Hsieh, J. T.; Wang, H. H.; Li, J. K.; Shen, J. L.; Chan, W. H.; Yeh, H. I.; Chang, W. H. Synthesis of fluorescent metallic nanoclusters toward biomedical application:Recent progress and present challenges. J Med Biol Eng,2009,29,276-283.
    [16]Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. C60: Buckminsterfullerene. Nature,1985,318,162-163.
    [17]Iijima, S. Helical microtubules of graphitic carbon. Nature,1991,354,56-58.
    [18]Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science, 2004,306,666-669.
    [19]Daniel, M. C.; Astruc, D., Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.2004,104,293-346.
    [20]Link, S. E. S.; Mostafa A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nano-dots and Nano-rods. J. Phys. Chem. B 1999, 103,8410-8426.
    [21]Cobley, C. M.; Chen, J. Y.; Cho, E. C; Wang, L.; Xia, Y. N. Gold nanostructures:a class of multifunctional materials for biomedical applications. Chem. Soc. Rev.2011,40,44-56.
    [22]Skrabalak, S.; Chen, J.; Sun, Y.; Lu, X.; Au, L.; Cobley, L.; Xia, Y. Gold nanocages:synthesis, properties, and applications. Acc. Chem. Res.2008,41,1587-1595.
    [23]Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; L. Gou, L.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles:synthesis, assembly, and optical applications. J. Phys. Chem.52005,109,1385-13870.
    [24]Wang, C.; Zhang J.; Zhou, C. Macroelectronic integrated circuits using high-performance separated carbn nanotube thin-film transistors. ACS Nano,2010,4,7123-7132.
    [25]Engel, M.; Small, J. P.; Steiner, M.; Freitag, M.; Green, A. A.; Hersam, M. C. and Avouris, P. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotubes arrays. ACS Nano,2008,2,2445-2452.
    [26]Shastry, T. A.; Seo, J. W. T.; Lopez, J. J.; Arnold, H. N.; Kelter, J. Z.; Sangwan, V. K.; Lauhon, L. J.; Marks, T. J. and Hersam, M. C. Large-area, electronically monodisperse, aligned single-walled carbon nanotube thin films fabricated by evaporation-driven self-assembly. Small, 2012,9,45-51.
    [27]Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon:a review of graphene. Chem. Rev. 2010,110,132-145.
    [28]Peigney, A.; Laurent, C.; Flahaut, E.; Bacsa, R. R.; Rousset, A., Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 2001,39,507-514.
    [29]Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008,321,385-388.
    [30]Jiang, D.; Cooper, V. R.; Dai, S. Porous graphene as the ultimate membrane for gas separation. Nano Letter.2009,9,4019-4024.
    [31]Ghosh, A.; Subrahmanyam, K. S.; Krishna, K. S.; Datta, S.; Govindaraj, A.; Pati, S. K.; Rao, C. N. R. Uptake of H2 and CO2 by graphene. J. Phys. Chem. C 2008,112,15704-15707.
    [32]Chen, J. H.; Jang, C; Xiao, S.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol.2008,3,206-209.
    [33]Service, R. F. Carbon sheets an atom thick give rise to graphene dreams. Science 2009,324, 875-877.
    [34]Bonaccorso, F.; Sun, Z.; Hasan, T. and Ferrari, A. C. Graphene photonics and optoelectronics. Nat. Photonics,2010,4,611-622.
    [35]Guo, C. X.; Guai, G. H. and Li, C. M. Graphene based materials:enhancing solar energy harvesting. Adv. Energy Mater.2011,1,448-452.
    [36]Wan, X.; Long, G.; Huang, L. and Chen, Y. Graphene-a promising material for organic photovoltaic cells. Adv. Mater.2011,23,5342-5358.
    [37]Daniel, M. C.; Astruc, D. Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev.2004,104,293-346.
    [38]Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci.1973,241,20-22.
    [39]Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X. Size control of gold nanocrystals in citrate reduction:the third role of citrate. J. Am. Chem. Soc.2007,14,14949-13948.
    [40]Guo, S.; Wang, E. One-pot, high-yied synthesis of size controlled gold particles with narrow size distribution, lnorg. Chem.2007,46,6740-6743.
    [41]Jana, N. R.; Gearheart, L.; Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 2001,105,4065-4067.
    [42]Busbee, B. D.; Obare, S. O.; Murphy, C. J. An improved synthesis of high-aspect-ratio gold nanorods. Adv. Mater.2003,15,414-416.
    [43]Khanal, B. P.; Zubarev, E. R. Purification of high aspect ratio gold nanorods:complete removal of platelets. J. Am. Chem. Soc.2008,130,12634-12635.
    [44]Kim, F.; Song, J. H.; Yang, P. Photochemical synthesis of gold nanorods. J. Am. Chem. Soc. 2002,124,14316-14317.
    [45]Yu, Y. Y; Chang, S. S.; Lee, C. L.; et al. Gold nanorods:electrochemical synthesis and optical properties. J. Phys. Chem. B 1997,101,6661-6664.
    [46]Zijlstra, P.; Bullen, C.; Chon, J. W. M.; et al. High-temperature seedless synthesis of gold nanorods. J. Phys. Chem. B 2006,110,19315-19318.
    [47]Gao, C.; Zhang, Q.; Lu, Z.; et al. Templated synthesis of metal nanorods in silica nanotubes. J. Am. Chem. Soc.2011,133,19706-19709.
    [48]Lu, X.; Yavuz, M. S.; Tuan, H. Y.; Korgel, B. A.; Xia, Y. Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction. J. Am. Chem. Soc.2008,130,8900-8901.
    [49]Wang, C.; Hu, Y.; Lieber, C. M.; Sun, S. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc.2008,130,8902-8903.
    [50]Huo, Z.; Tsung, C. K.; Huang, W.; Zhang, X. F.; Yang, P. D. Sub-two nanometer single crystal Au nanowires. Nano Lett.,2008,8,2041-2044.
    [51]Feng, H.; Yang, Y.; You, Y.; Li, G.; Guo, J.; Yu, T.; Shen, Z.; Wu, T.; Xing, B. Simple and rapid synthesis of ultrathin gold nanowires, their self-assembly and application in surface-enhanced raman scattering. Chem. Commun.2009,45,1984-1986.
    [52]Niu, W.; Zheng, S.; Wang, D.; Liu, X.; Li, H.; Han, S.; Chen, J.; Tang, Z.; Xu, G. Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. J. Am. Chem. Soc.2008,131,697-703.
    [53]Yeh, H. C.; Sharma, J.; Han, J. J.; Martinez, J. S.; Werner, J. H. A DNA-silver nanocluster probe that fluoresces upon hybridization. Nano Lett.,2010,10,3106-3110.
    [54]Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly fluorescent noble-metal quantum dots. Annu. Rev. Phys. Chem.2007,58,409-431.
    [55]Negishi, Y.; Takasugi, Y.; Sato, S.; Yao, H.; Kimura, K.; Tsukuda, T. Magic-numbered Au (n) clusters protected by glutathione monolayers (n= 18,21,25,28,32,39):isolation and spectroscopic characterization. J. Am. Chem. Soc,2004,126,6518-6519.
    [56]Wang, G.; Huang, T.; Murray, R. W.; Menard, L.; Nuzzo, R. G. Near-IR luminescence of monolayer-protected metal clusters. J. Am. Chem. Soc.,2005,127,812-813.
    [57]Zheng, J.; Zhang, C. W.; Dickson, R. M. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys. Rev. Lett.,2004,93,077402.
    [58]Duan, H.; Nie, S. Etching colloidal gold nanocrystals with hyperbranched and multivalent polymers:a new route to fluorescent and water-soluble atomic clusters. J. Am. Chem. Soc., 2007,129,2412-2413.
    [59]Lin, C. A.; Yang, T. Y.; Lee, C. H.; Huang, S. H.; Sperling, R. A.; Zanella, M; Li, J. K.; Shen, J. L.; Wang, H. H.; Yeh, H. I.; Parak, W. J.; Chang, W. H. Synthesis, characterization, and bioconjugation of fluorescent gold nanoclusters toward biological labeling applications. ACS Nano.2009,3,395-401.
    [60]Xie, J.; Zheng, Y.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc.,2009,131,888-889.
    [61]Wei, H.; Wang, Z. D.; Yang, L. M.; Tian, S. L.; Hou, C. J.; Lu, Y. Lysozyme-stabilized gold fluorescent cluster:synthesis and application as Hg2+ sensor. Analyst,2010,135,1406-1410.
    [62]Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature,1996,382,607-609.
    [63]Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L. Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science,1997,277,1078-1080.
    [64]Rosi,N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev.2005,105,1547-1546.
    [65]Liu, J.; Lu, Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat. Protoc.2006,1,246-252.
    [66]Li, H. X.; Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. U.S.A.,2004,101, 14036-14039.
    [67]Wei, H.; Li, B. L.; Li, J.; Wang, E. K.; Dong, S. J. Simple and sensitive aptamer-based colorimetric sensing of protein using unmodified gold nanoparticle probe. Chem. Commun. 2007,43,3735-3737.
    [68]Xia, F.; Zuo, X.; Yang, R.; Xiao, Y.; Kang, D.; Valllisle, A.; Gong, X.; Yuen, J. D.; Hsu, B.; Heeger, A.; Plaxco, K. W. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc. Natl. Acad. Sci. U.S.A.,2010,707,10837-10841.
    [69]Jiang, Y.; Zhao, H.; Zhu, N.; Lin, Y.; Yu, P.; Mao, L. A simple assay for direct colorimetric visualization of TNT down to picomolar level by using gold nanoparticles. Angew. Chem. Int. .,2008,47,8601-8604.
    [70]Ai, K.; Liu, Y.; Lu, L. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J. Am. Chem. bc.,2009,75/,9496-9497.
    [71]Zhou, Y.; Wang, S. X.; Zhang, K.; Jiang, X. Y. Visual detection of copper (Ⅱ) by azide-and alkyne-functionalized gold nanoparticles using click chemistry. Angew. Chem. Int. Ed.,2008, 47,7454-7456.
    [72]Xie, J. P.; Zheng, Y. G.; Ying, J. Y. Highly selective and ultrasensitive detection of Hg2+based on fluorescence quenching of Au nanoclusters by Hg2+-Au+interactions. Chem. Commun., 2010,46,961-963.
    [73]Huang, C. C.; Yang, Z.; Lee, K. H.; Chang, H. T. Synthesis of highly fluorescent gold nanoparticles for sensing mercury (Ⅱ). Angew. Chem. Int. Ed.2007,46,6824-6828.
    [74]Liu, Y.; Ai, K.; Cheng, X.; Huo, L.; Lu, L. Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Adv. Fund. Mater.,2010,20, 951-956.
    [75]Huang, C. C.; Chang, H. T. Selective gold nanoparticle-based "turn-on" fluorescent sensor for detection of mercury (Ⅱ) in aqueous solution. Anal. Chem.,2006,78,8332-8338.
    [76]Shang, L.; Qin, C.; Wang, T.; Wang, M.; Wang, L.; Dong, S. Fluorescent conjugated polymer-stabilized gold nanoparticles for sensitive and selective detection of cysteine. J. Phys. Chem. C,2007,111,13414-13417.
    [77]Shang, L.; Jin, L.; Dong, S. Sensitive turn-on fluorescent detection of cyanide based on the dissolution of fluorophore functionalized gold nanoparticles. Chem. Commun.2009,45, 3077-3079.
    [78]Zhang, J.; Song, S. P.; Wang, L.; Zhang, H.; Boey, F.; Fan, C. H. Aptamer-based multicolor gold nanoprobes for multiplex detection in homogeneous solution. Small,2010,6,201-204.
    [79]Shang, L.; Dong, S. Design of fluorescence assays for cyanide and hydrogen peroxide based on the inner filter effect of metal nanoparticles. Anal. Chem.2009,81,1465-1470.
    [80]Touahir, L.; Galopin, E.; Boukherroub, R.; Gouget-Laemmel, A.; Chazalviel, J.; Ozanam, F.; Szunerits, S. Localized surface plasmon-enhanced fluorescence spectroscopy for high-sensitive real-time detection of DNA hybridization. Biosens. Bioelectron.2010,25,2579-2585.
    [81]Forster, T.10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discuss. Faraday Soc.1959,27,7-17.
    [82]Swathi, R. S.; Sebastian, K. L. Distance Dependence of Fluorescence Resonance Energy Transfer. J. Chem. Sci.2009,121,777-787.
    [83]Swathi, R. S.; Sebastian, K. L. Excitation energy transfer from a fluorophore to single-walled carbon nanotubes. J.Chem. Phys.2010,132,104502.
    [84]Wang, S.; Humphreys, E. S.; Chung, S. Y.; Delduco, D. F.; Lustig, S. R.;Wang, H.; Parker, K. N.; Rizzo, N.W.; Subramoney, S.; Chiang, Y. M.; Jagota, A. Peptides with selective affinity for carbon nanotubes. Nat. Mater.2003,2,196-200.
    [85]Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Kam, N. W. S.; Shim, M.; Li, M. Y.; Kim, W.; Utz, P. J.; Dai, H. J. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. U.S.A.2003,100,4984-4989.
    [86]So, H. M.; Won, K.; Kim, Y. H.; Kim, B. K.; Ryu, B. H.; Na, P. S.; Kim, H.; Lee, J. O. Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. J. Am. Chem. Soc.2005,127,11906-11907.
    [87]Kam, N. W.; Dai, H. Carbon nanotubes as intracellular protein transporters:generality and biological functionality. J. Am. Chem. Soc.2005,727,6021-6026.
    [88]Zhang, M.; Jagota, A.; Semke, E. D.; Bruce, A.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater.2003,2,338-342.
    [89]R. Yang, J. Jin, Y. Chen, N. Shao, H. Kang, Z. Xiao, Z. Tang, Y.Wu, Z. Zhu and W. Tan, J. Am. Chem. Soc.,2008,130,8351-8358.
    [90]Zhen, S. J.; Chen, L. Q.; Xiao, S. J.; Li, Y. F.; Hu, P. P.; Zhan, L.; Peng, L.; Song, E. Q. and Huang. C. Z. Carbon nanotubes as a low background signal platform for a molecular aptamer beacon on the basis of long-range resonance energy transfer. Anal. Chem.2010,82,8432-8437.
    [91]Tang, Z. W.; Wu, H.; Cort, J. R.; Buchko, G. W.; Zhang, Y. Y.; Shao, Y. Y.; Aksay, I. A.; Liu, J. and Lin, Y. H. Constraint of DNA on functionalized graphene improves its biostability and specificity. Small,2010,6,1205-1209.
    [92]Lu, C. H.; Li, J.; Liu, J. J.; Yang, H. H.; Chen, X. and Chen, G. N. Increasing the sensitivity and single-base mismatch selectivity of the molecular beacon using graphene oxide as the "nanoquencher". Chem. Eur. J.,2010,16,4889-4894.
    [93]Yi, J. W.; Park, J.; Singh, N. J.; Lee, I. J.; Kim, K. S. and Kim, B. H. Quencher-free molecular beacon:enhancement of the signal-to-background ratio with graphene oxide. Bioorg. Med Chem. Lett.,2011,21,704-706.
    [94]Li, F.; Huang, Y.; Yang, Q.; Zhong, Z. T.; Li, D.; Wang, L. H.; Song, S. P. and Fan, C. H. A graphene-enhanced molecular beacon for homogeneous DNA detection. Nanoscale,2010,2, 1021-1026.
    [95]Dong, H. F.; Gao, W. C.; Yan, F.; Ji, H. X. and Ju, H. X. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal. Chem., 2010,52,5511-5517.
    [96]Lu, C. H.; Yang, H. H.; Zhu, C. L.; Chen, X. and Chen, G. N. A graphene platform for sensing biomolecules. Angew. Chem., Int. Ed,2009,48,4785-4787.
    [97]Jhaveri, S. D.; Kirby, R.; Conrad, R.; Maglott, E. J.; Bowser, M.; Kennedy, R. T.; Glick, G. and Ellington, A. D. Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity. J. Am. Chem. Soc.,2000,722,2469-2473.
    [98]Yang, R. H.; Tang, Z. W.; Yan, J. L.; Kang, H. Z.; Kim, Y. M.; Zhu, Z. and Tan, W. H. Noncovalent assembly of carbon nanotubes and single-stranded DNA:an effective sensing platform for probing biomolecular interactions. Anal. Chem.,2008,80,7408-7413.
    [99]Chang, H. X.; Tang, L. H.; Wang, Y.; Jiang, J. H. and Li, J. H. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem.,2010,82, 2341-2346.
    [100]Wen, Y. Q.; Xing, F. F.; He, S. J.; Song, S. P.; Wang, L. H.; Long, Y. T.; Li, D. and Fan, C. H. A graphene-based fluorescent nanoprobe for silver (I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem. Commun.,2010,46,2596-2598.
    [101]Balapanuru, J.; Yang, J. X.; Xiao, S.; Bao, Q. L.; Jahan, M.; Polavarapu, L.; Wei, J.; Xu, Q. H. and Loh, K. P. A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew. Chem., Int. Ed.,2010,49,6549-6553.
    [102]Zhao, X. H.; Kong, R. M.; Zhang, X. B.; Meng, H. M.; Liu, W. N.; Tan, W. H.; Shen, G. L. and Yu, R. Q. Graphene-DNAzyme based biosensor for amplified fluorescence "turn-on" detection of Pb2+ with a high selectivity. Anal. Chem.,2011,83,5062-5066.
    [103]Wang, L.; Zhu, C. Z.; Han, L.; Jin, L. H.; Zhou, M. and Dong, S. J. Label-free, regenerative and sensitive surface plasmon resonance and electrochemical aptasensors based on graphene. Chem. Commun.,2011,47,7794-7796.
    [104]Xu, Y. X.; Zhao, L.; Bai, H.; Hong, W. J.; Li, C. and Shi, G. Q. Chemically converted graphene induced molecular flattening of 5,10,15,20-tetrakis (1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium (Ⅱ) ions. J. Am. Chem. Soc,2009,131, 13490-13497.
    [105]Song, Y. J.; Qu, K. G.; Zhao, C.; Ren, J. S. and Qu, X. G. Graphene oxide:intrinsic peroxidase catalytic activity and its application to glucose detection. Adv. Mater.,2010,22, 2206-2210.
    [1]Tabor, C. W. and Tabor, H. Spermidine synthase of Escherichia coli:localization of the speE gene. Annu. Rev. Biochem.,1984,53,749-790.
    [2]Cipolla, B. G.; Ziade, J.; Bansard, J. Y.; Moulinoux, J. P.; Staerman, F.; Quemener, V.; Lobel, B. and Guille, F. Pretherapeutic erythrocyte polyamine spermine levels discriminate high risk relapsing patients with Ml prostate carcinoma. Cancer,1996,78,1055-1065.
    [3]Celano, P.; Baylin, S. B. and Casero, R. A. Polyamines differentially modulate the transcription of growth-associated genes in human colon carcinoma cells. J. Biol. Chem.1989,264, 8922-8927.
    [4]Feuerstein, B. G.; Pattabiraman, N. and Marton, L. J. Molecular mechanics of the interactions of spermine with DNA:DNA bending as a result of ligand binding. Nucleic Acids Res.1990,18, 1271-1282.
    [5]Brune, B.; Hartzell, P.; Nicotera, P. and Orrenius, S. Spermine prevents endonuclease activation and apoptosis inthymocytes. Exp. Cell Res.1991,195,323-329.
    [6]Khan, A. U.; Mei, Y. H. and Wilson, T. A proposed function for spermine and spermidine: protection of replicating DNA against damage by singlet oxygea Proc. Natl. Acad. Sci. USA, 1992,89,11426-11427.
    [7]Khan, U.; Mascio, P. D.; Medeiros, M. H. G. and Wilson, T. Spermine and spermidine protection of plasmid DNA against single-strand breaks induced by singlet oxygen. Proc. Natl. Acad Sci. USA,1992,89,11428-11430.
    [8]Pegg, E. Polyamine metabolism and its importance in neoplastic growth and as a target for chemotherapy. Cancer Res.1988,48,759-774.
    [9]Mitchell, M. F.; Tortolero-Luna, G.; Lee, J. J.; Hittelman, W. K.; Lotan, R.; Wharton, J. T.; Hong, W. K.; Nishioka, K. J. Polyamine measurements in the ute rine cervix. J. Cell Biochem. Suppl.1997,28/29,125-132.
    [10]Silla Santos, M. H. Biogenic amines:their importance in foods. Int. J. Food Microbiol.,1996, 29,213-231.
    [11]Vinci, G.; Antonelli, M. L. Biogenic amines:quality index of freshness in red and white meat. Food Control,2002,13,519-524.
    [12]Yamamoto, S.; Itano, H.; Kataoka, H.; Makita, M. Gas-liquid chromatographic method for analysis of di-and polyamines in foods. J. Agric. Food Chem.,1982,30,435-439.
    [13]Niitsu, M.; Samejima, K.; Matsuzaki, S.; Hamana, K. Systematic analysis of naturally occurring linear and branched polyamines by gas chromatography and gas chromatography-mass spectrometry. J. Chromatogr.,1993,641,115-123.
    [14]Paleologos, E. K. and Kontominas, M. G. On-line solid-phase extraction with surfactant accelerated on-column derivatization and micellar liquid chromatographic separation as a tool for the determination of biogenic amines in various food substrates. Anal. Chem.2004,76, 1289-1294.
    [15]Nohta, H.; Satozono, H.; Koiso, K.; Yoshida, H.; Ishida, J. and Yamaguchi, M. Highly selective fluorometric determination of polyamines based on intramolecular excimer-forming derivatization with a pyrene-labeling reagent. Anal. Chem.,2000,72,4199-4204.
    [16]Tamim, N. M.; Benett, L. W.; Shellem, T. A.; Doer, J. A. High-performance liquid chromatographic determination of biogenic amines in poultry carcasses. J. Agric. Food Chem., 2002,50,5012-5015.
    [17]Romero, R.; Gazquez, D.; Bagur, M. G.; Sanchez-Vinas, M. Optimization of chromatographic parameters for the determination of biogenic amines in wines by reversed-phase high-performance liquid chromatography. J. Chromatogr. A,2000,871,75-83.
    [18]Liu, X.; Yang, L. X.; Lu, Y. T. Determination of biogenic amines by 3-(2-furoyl)quinoline-2-carboxaldehyde and capillary electrophoresis with laser-induced fluorescence detection. J. Chromatogr. A,2003,23,213-219.
    [19]Ghosh, S. K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles:from theory to applications. Chem. Rev.,2007,107,4797-4862.
    [20]Kreibig, U.; Genzel, L. Optical absorption of small metallic particles. Surf. Sci.,1985,156, 678-700.
    [21]Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature,1996,382,607-609.
    [22]Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L. Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science,1997,277,1078-1080.
    [23]Cho, M.; Han, M. S.; Ban, C. Detection of mismatched DNAs via the binding affinity of MutS using a gold nanoparticle-based competitive colorimetric method. Chem. Commun.,2008,46, 4573-4575.
    [24]Lin, J. H.; Chang, C. W.; Wu, Z. H.; Tseng, W. L. Colorimetric assay for S-adenosylhomocysteine hydrolase activity and inhibition using fluorosurfactant-capped gold nanoparticles. Anal. Chem.,2010,82,8775-8779.
    [25]Lin, Y.; Yu, C. J.; Lin, Y. H.; Tseng, W. L. Colorimetric sensing of silver (Ⅰ) and mercury (Ⅱ) ions based on an assembly of tween 20-stabilized gold nanoparticles Anal. Chem.,2010,82, 6830-6837.
    [26]Kim, Y. S.; Kim, J. H.; Kim, I. A.; Lee, S. J.; Jurng, J. S.; Gu, M. B. The affinity ratio-its pivotal role in gold nanoparticle-based competitive colorimetric aptasensor. Biosens. Bioelectron.,2010,26,1644-1649.
    [27]Saha, K.; Agasti, S. S.; Kim, C.; Li, X. N. and Rotello, V. M. Gold nanoparticles in chemical and biological sensing. Chem. Rev.,2012,112,2739-2779.
    [28]Stewart, M. E.; Anderton, C. R.; Thompson, L. B.; Maria, J.; Gray, S. K.; Rogers, J. A.; Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev.,2008,108,494-521.
    [29]Li, H. X.; Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. USA,2004,101, 14036-14039.
    [30]Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Preparation and characterization of Au colloid monolayers. Anal.Chem.,1995,67,735-743.
    [31]Demers, L. M.; Mirkin, C. A.; Mucic, R.; Reynolds, R. L.; Letsinger, R.; Elghanian, R.; Viswanadham, G. A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal. CAem.,2000,72,5535-5541.
    [32]Marcobal, A.; Polo, M. C.; Martin-Alvarez, P. J.; Moreno-Arribas, M. V. Biogenic amine content of red Spanish wines:comparison of a direct ELISA and an HPLC method for the determination of histamine in wines. Food Research International,2005,38,387-394.
    [33]Raspaud, M.; Cruz, O.; Sikorav, J. L. and Livolant, F. Precipitation of DNA by polyamines:a polyelectrolyte behavior. Biophysical Journal,1998,74,381-393.
    [34]http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html.
    [1]Ma, B.; Zeng, F.; Zheng, F.; Wu, S. A fluorescence turn-on sensor for iodide on a thymine-Hg2+-thymine complex. Chem. Eur. J,2011.17,14844-14850.
    [2]Hetzel, B. S. Eliminating iodine deficiency disorders-the role of the International Council in the global partnership. Bull. W. H. O.2002,80,410-413.
    [3]Singh, A. K.; Mehtab, S. Polymeric membrane sensors based on Cd(Il) Schiff base complexes for selective iodide determination in environmental and medicinal samples. Talanta,2008,74, 806-814.
    [4]Bichsel, Y.; von Gunten, U.; Determination of iodide and iodate by ion chromatography with postcolumn reaction and UV/visible detection. Anal. Chem.1999,71,34-38.
    [5]Fernandez Sanchez, L.; Szpunar, J. Speciation analysis for iodine in milk by size-exclusion chromatography with inductively coupled plasma mass spectrometric detection (SEC-ICP MS). J. Anal. At. Spectrom.1999,14,1697-1702.
    [6]Hu, W.; Yang, P. J.; Hasebe, K.; Haddad, P. R.; Tanaka, K. Rapid and direct determination of iodide in seawater by electrostatic ion chromatography. J. Chromatogr. A,2002,956,103-107.
    [7]Ito, K.; Ichihara, T.; Zhuo, H.; Kumamoto, K.; Timerbaev, A. R.; Hirokawa, T. Determination of trace iodide in seawater by capillary electrophoresis following transient isotachophoretic preconcentration:comparison with ion chromatography Anal. Chim. Acta,2003,497,67-74.
    [8]Bermejo-Barrera, P.; L. Fernandez-Sanchez, M.; Somoza, M. A.; Anllo-Sendin, R. M.; Bermejo-Barrera, A. Indirect atomic absorption spectrometry (IAAS) as a tool for the determination of iodide in infant formulas by precipitation of Agl and redissolution with cyanide. Microchem. J.,2001,69,205-211.
    [9]Zhang, J.; Xu, X. W.; Yang, C; Yang, F.; Yang, X. R. Colorimetric iodide recognition and sensing by citrate-stabilized core/shell Cu@Au nanoparticles. Anal. Chem.2011,83, 3911-3917.
    [10]Li, H.; Han, C.; Zhang, L. Synthesis of cadmium selenide quantum dots modified with thiourea type ligands as fluorescent probes for iodide ions. J. Mater. Chem.,2008,18,4543-4548.
    [11]Ho, H. A.; Leclerc, M. New colorimetric and fluorometric chemosensor based on a cationic polythiophene derivative for iodide-specific detection. J. Am. Chem. Soc.,2003,125, 4412-4413.
    [12]Lee, D. Y.; Singh, N.; Kim, M. J.; Jang, D. O. Chromogenic and fluorescent recognition of iodide with a benzimidazole-based tripodal receptor. Org. Lett.,2011,13,3024-3027.
    [13]Huang, C. C.; Yang, Z.; Lee, K. H.; Chang, H. T. Synthesis of highly fluorescent gold nanoparticles for sensing mercury(Ⅱ). Angew. Chem. Int. Ed,2007,46,6824-6828.
    [14]Xie, J.; Zheng, Y.; Ying, J. Y. Highly selective and ultrasensitive detection of Hg2+ based on fluorescence quenching of Au nanoclusters by Hg2+-Au+interactions. Chem. Commun.2010,46, 961-963.
    [15]Lin, Y. H.; Tseng, W. L. Ultrasensitive sensing of Hg2+and CHaHg+based on the fluorescence quenching of lysozyme type Ⅵ-stabilized gold nanoclusters. Anal. Chem.,2010,82, 9194-9200.
    [16]Huang, C. C.; Chiang, C. K.; Lin, Z. H.; Lee, K. H.; Chang, H. T. Bioconjugated gold nanodots and nanoparticles for protein assays based on photoluminescence quenching. Anal. Chem.,2008, 80,1497-1504.
    [17]Shiang, Y. C.; Huang, C. C.; Chang, H. T. Protein A-conjugated luminescent gold nanodots as a label-free assay for immunoglobulin G in plasma. Chem. Commun.2009,45,3437-3439.
    [18]Wen, F.; Dong, Y.; Feng, L.; Wang, S.; Zhang, S.; Zhang, X. Horseradish peroxidase functionalized fluorescent gold nanoclusters for hydrogen peroxide sensing. Anal. Chem.,2011, 83,1193-1196.
    [19]Liu, Y. L.; Ai, K. L.; Cheng, X. L.; Huo, L. H.; Lu, L. H. Gold-nanocluster-based fluorescent sensors for highly sensitive and selective detection of cyanide in water. Adv. Fund. Mater., 2010,20,951-956.
    [20]Wang, M.; Wu, Z. K.; Yang, J.; Wang, G. Z.; Wang, H. Z.; Cai, W. P. Au25(SG)18 as a fluorescent iodide sensor. Nanoscale,2012,4,4087-4090.
    [21]Ha, T. H.; Koo, H. J.; Chung, B. H. Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. J. Phys. Chem. C,2007,111, 1123-1130.
    [22]Wang, J.; Li, Y. F.; Huang, C. Z. Identification of iodine-induced morphological transformation of gold nanorods. J. Phys. Chem. C,2008,112,11691-11695.
    [23]Cheng, W. L.; Dong, S. J.; Wang, E. K. Iodine-induced gold nanoparticle fusion/fragmentation/aggregation and iodine-linked nanostructured assemblies on a glass substrate. Angew. Chem. Int. Ed,2003,42,449-452.
    [24]Rai, A.; Singh, A.; Ahmad, A.; Sastry, M. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir,2006,22,736-741.
    [25]Gao, X.; Weaver, M. J. Electrode potential-induced reconstruction of gold (100):effect of chemisorption on nanoscale dynamics as probed by in-situ scanning tunneling microscopy. J. Phys. Chem.,1993,97,8685-8689.
    [26]Yang, X.; Shi, M. M.; Zhou, R. J.; Chen, X. Q. and Chen, H. Z. Blending of HAuCl4 and histidine in aqueous solution:a simple approach to the Au10 cluster. Nanoscale,2011,3, 2596-2601.
    [27]Xie, J. P.; Zheng, Y. G. and Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc.,2009,131,888-889.
    [28]Bravo, B. G.; Michelhaugh, S. L.; Soriaga, M. P. Anodic underpotential deposition and cathodic stripping of iodine at polycrystalline and single-crystal gold:studies by LEED, AES, XPS, and electrochemistry. J. Phys. Chem.,1991,95,5245-5249.
    [29]Millstone, J. E.; Wei, W.; Jones, M. R.; Yoo, H.; Mirkin, C. A. Iodide ions control seed-mediated growth of anisotropic gold nanoparticles. Nano Lett,2008,8,2526-2529.
    [30]Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited:bridging the gap between gold(Ⅰ)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc.,2005,127,5261-5270.
    [1]Cui, S.; Liu, J.; Selvan, M. E.; Keffer, D. J.; Edwards, B. J.; Steele, W. V. A. Molecular dynamics study of a nafion polyelectrolyte membrane and the aqueous phase structure for proton transport. J. Phys. Chem. B.,2007, 111,2208-2218.
    [2]Barklie, R. C.; Girard, O.; Braddell, O. EPR of V02+ in a nafion membrane. J. Phys. Chem.1988, 92,1371-1377.
    [3]Kim, Y. H.; Oblas, D.; Angelopoulos, A. P. Adsorption of a cationic polyacrylamide onto the surface of a nafion ionomer membrane. Macromolecules.2001,34,7489-7495.
    [4]Guo, Z. X.; Sun, N.; Li, J.; Dai, L.; Zhu, D. Nanoscale aggregation of fullerene in nafion membrane. Langmuir.2002,18,9017-9021.
    [5]Huang, K. L.; Holsen, T. M; Selman, J. R. Anion partitioning in and diffusion through a nafion membrane. Ind Eng. Chem. Res.2003,42,3620-3625.
    [6]Yagi, M.; Kaneko, Molecular catalysts for water oxidation. M. Chem. Rev.2001,101,21-36.
    [7]Deng, W-Q.; Molinero, V.; Goddard, W. A. Fluorinated imidazoles as proton carriers for water-free fuel cell membranes. J. Am. Chem. Soc.2004,126,15644-15645.
    [8]Ablat, H.; Yimit, A.; Mahmut, M.; Itoh, K. Nafion film/K+-exchanged glass optical waveguide sensor for BTX detection. Anal. Chem.2008,80,7678-7683.
    [9]Yagi, M.; Kinoshita, K.; Kaneko, M. Activity analysis of electrochemical water oxidation catalyst confined in a coated-polymer membrane. J. Phys. Chem.1996,100,11098-11100.
    [10]Yagi, M.; Kinoshita, K.; Kaneko, M. Enhancing effect of an amino acid residue model for the electrochemical water oxidation catalyst confined in a polymer membrane. J. Phys. Chem. B 1997,101,3957-3960.
    [11]Kuwabara, T.; Teraguchi, M.; Kaneko, T.; Aoki, T.; Yagi, M.; Analysis and regulation of unusual adsorption of phthalocyanine zinc (Ⅱ) into a nafion film as investigated by UV-vis spectroscopic techniques. J. Phys. Chem. B 2005,109,21202-21208.
    [12]Sun, C. Q.; Tay, B. K.; Fu, Y. Q.; Li, S.; Chen, T. P. Discriminating crystal binding from the atomic trapping of a core electron at energy levels shifted by surface relaxation or nanosolid formation. J. Phys. Chem. B.2003,707,411-414.
    [13]Monti, O. L. A.; Fourkas, J. T.; Nesbitt, D. J. Diffraction-limited photogeneration and characterization of silver nanoparticles. J. Phys. Chem. B.2004,108,1604-1612.
    [14]Zhang, L.; Shen, Y. H.; Xie, A. J.; Li, S. K.; Jin, B. K.; Zhang, Q. F. One-step synthesis of monodisperse silver nanoparticles beneath vitamin E Langmuir monolayers. J. Phys. Chem. B. 2006,110,6615-6620.
    [15]Sachdeva, A.; Sodaye, S.; Pandey, A. K.; Goswami, A. Formation of silver nanoparticles in poly(perfluorosulfonic) acid membrane. Anal. Chem.2006,78,7169-7174.
    [16]Vaia, R. A.; Maguire, J. F. Polymer nanocomposites with prescribed morphology:going beyond nanoparticle-filled polymers. Chem. Mater.2007,19,2736-2751.
    [17]Yagi, M.; Sato, T. Temperature-controlled charge transfer mechanism in a polymer film incorporating a redox molecule as studied by potential-step chronocouloabsorptometry. J. Phys. Chem. B 2003,107,4975-4981.
    [18]Yagi, M.; Yamase, K.; Kaneko, M. Temperature dependence of physical displacement and charge hopping in a polymer membrane incorporating a trinuclear ruthenium complex. J. Electroanal. Chem.1999,476,159-164.
    [19]Pastoriza-Santos,I.; Sanchez-Iglesias, A.; de Abajo, F. J. G; Liz-Marzan, L. M., Environmental optical sensitivity of gold nanodecahedra. Adv. Funct. Mater.2007,17,1443-1450.
    [1]Linn, S. M.; Roberts, R. J. Nucleases, Cold Spring Harbor Laboratory Press:Cold Spring Harbor, New York,1982.
    [2]Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular Cloning:A Laboratory Manual, Cold Spring Harbor Laboratory Press:Cold Spring Harbor, New York,1989.
    [3]Geidusch, E. P.; Daniels, A. A simple assay for DNA endonucleases. Anal. Biochem.,1965,11, 133-137.
    [4]Fliess, A.; Wolfes, H.; Rosenthal, A.; Schwellnus, K.; Blocker, H.; Frank, R.; Pingoud, A. Role of thymidine residues in DNA recognition by the EcoRI and EcoRV restriction endonucleases. Nucleic Acids Res.,1986,14,3463-3474.
    [5]Jeltsch, A.; Fritz, A.; Alves, J.; Wolfes, H.; Pingoud, A. A fast and accurate enzyme-linked immunosorbent assay for the determination of the DNA cleavage activity of restriction endonucleases. Anal. Biochem.,1993,213,234-240.
    [6]Tang, Y. L.; Feng, F. D.; He, F.; Wang, S.; Li, Y. L.; Zhu, D. B.; Direct visualization of enzymatic cleavage and oxidative damage by hydroxyl radicals of single-stranded DNA with a cationic polythiophene derivative. J. Am. Chem. Soc.,2006,128,14972-14976.
    [7]Xu, X.; Han, M.; Mirkin, C. A. A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition. Angew. Chem., Int. Ed.,2007,46,3468-3470.
    [8]Biggins, J. B.; Prudent, J. R.; Marshall, D. J.; Ruppen, M.; Thorson, J. S.; A continuous assay for DNA cleavage:the application of "break lights" to enediynes, iron-dependent agents, and nucleases. Proc. Natl. Acad. Sci. U.S.A.,2000,97,13537-13542.
    [9]Li, J. J.; Geyer, R.; Tan, W. H. Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Res.,2000,28, e52.
    [10]Gill, R.; Willner, I.; Shweky, I.; Banin, U. Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates:probing hybridization and DNA cleavage. J. Phys. Chem. B,2005, 109,23715-23719.
    [11]Ray, P. C.; Fortner, A.; Darbha, G. K. Gold nanoparticle based FRET asssay for the detection of DNA cleavage. J. Phys. Chem. B,2006,110,20745-20748.
    [12]Feng, F.; Tang, Y.; He, F.; Yu, M.; Duan, X.; Wang, S.; Li, Y.; Zhu, D. B. Cationic conjugated polymer/DNA complexes for amplified fluorescence assays of nucleases and methyltransferases. Adv. Mater.,2007,19,3490-3495.
    [13]Wang, M.; Zhang, D. Q.; Zhang, G. X.; Tang, Y. L.; Wang, S.; Zhu, D. B. Fluorescence turn-on detection of DNA and label-free fluorescence nuclease assay based on the aggregation-induced emission of silole. Anal. Chem.,2008,80,6443-6448.
    [14]Zhang, Y.; Wang, Y. Y.; Liu, B. Peptide-mediated energy transfer between an anionic water-soluble conjugated polymer and texas red labeled DNA for protease and nuclease activity study. Anal. Chem.,2009,81,3731-3737.
    [15]Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater.,2003, 2,338-342.
    [16]Zheng, M.; Jagota, A.; Strano, M. S.; Santos, A. P.; Barone, P.; Chou, S. G.; Diner, B. A.; Dresselhaus, M. S.; Mclean, R. S.; Onoa, G. B.; Samsonidze, G. G.; Semke, E. D.; Usrey, M.; Walls, D. J. Structure-based carbon nanotube sorting by sequence-dependent DNA assembly. Science,2003,302,1545-1548.
    [17]Chen, R. J.; Zhang, Y. G. Controlled precipitation of solubilized carbon nanotubes by delamination of DNA. J. Phys. Chem. B,2006,110,54-57.
    [18]Zhang, L.; Huang, C. Z.; Li, Y. F.; Xiao, S. J.; Xie, J. P. Label-free detection of sequence-specific DNA with multiwalled carbon nanotubes and their light scattering signals. J. Phys. Chem. B,2008,112,7120-7122.
    [19]Britz, D. A.; Khlobystov, A. N. Noncovalent interactions of molecules with single walled carbon nanotubes. Chem. Soc. Rev.,2006,35,637-659.
    [20]Yang, R. H.; Tang, Z. W.; Yan, J. L.; Kang, H. Z.; Kim, Y. M.; Zhu, Z.; Tan, W. H. Noncovalent assembly of carbon nanotubes and single-stranded DNA:an effective sensing platform for probing biomolecular interactions. Anal. Chem.,2008,80,7408-7413.
    [21]Kam, N. W. S.; Connell, M. O.; Wisdom, J. A.; Dai, H. J. Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U.S.A.,2005,102,11600-11605.
    [22]Yang, R. H.; Jin, J. Y.; Chen, Y.; Shao, N.; Kang, H. Z.; Xiao, Z. Y.; Tang, Z. W.; Wu, Y. R.; Zhu, Z.; Tan, W. H. Carbon nanotube-quenched fluorescent oligonucleotides:probes that fluoresce upon hybridization. J. Am. Chem. Soc,2008,130,8351-8358.
    [23]Wei, W. L.; Chen, Q. S.; Li, H. F.; Lin, J. M. Self-assemblies of single-walled carbon nanotubes through tunable tethering of pyrenes by dextrin for rapidly chiral sensing. International Journal of Analytical Chemistry,2011, Article ID 862692,10 pages.
    [24]Zhen, S. J.; Chen, L. Q.; Xiao, S. J.; Li, Y. F.; Hu, P. P.; Zhan, L.; Peng, L.; Song, E. Q.; Huang, C. Z. Carbon nanotubes as a low background signal platform for a molecular aptamer beacon on the basis of long-range resonance energy transfe. Anal. Chem.,2010,82,8432-8437.
    [25]Heller, D. A.; Jeng, E. S.; Yeung, T. K.; Martinez, B. M.; Moll, A. E.; Gastala, J. B.; Strano, M. S. Optical detection of DNA conformational polymorphism on single-walled carbon nanotubes. Science,2006,311,508-511.
    [26]He, P.; Bayachou, M. Layer-by-layer fabrication and characterization of DNA-wrapped single-walled carbon nanotube particles. Langmuir,2005,21,6086-6092.
    [27]Wu, Y. R.; Phillips, J. A.; Liu, H. P.; Yang, R. H.; Tan, W. H. Carbon nanotubes protect DNA strands during cellular delivery. ACSNano,2008,10,2023-2028.
    [28]Butour, J. L.; Mazard, A. M.; Vieussens, C.; Johnson, N. P. Kinetic studies of the hydrolysis of platinum-DNA complexes by nuclease S1. Chem. Biol Interact,1990,73,195-205.
    [1]Li, D.; Kaner, R. B. Graphene-Based Materials. Science,2008,320,1170-1171.
    [2]Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G H. B.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature, 2007,448,457-460.
    [3]Bunch, S. J.; van der Zande, A. M.; Verbridge, S. S.; Frank, I. W.; Tanenbaum, D. M.; Parpia, J. M.; Craighead, H. G.; Mceuen, P. L. Electromechanical Resonators from Graphene Sheets. Science,2007,315,490-493.
    [4]Geim, A. K.; Novoselov, K. S. The rise of grapheme. Nat. Mater.2007,6,183-191.
    [5]Xu, Y. F.; Liu, Z. B.; Zhang, X. L.; Wang, Y.; Tian, J. G.; Huang, Y; Ma, Y. F.; Zhang, X. Y.; Chen, Y, S. A graphene hybrid material covalently functionalized with porphyrin:synthesis and optical limiting property. Adv. Mater.2009,21,1275-1279.
    [6]Wan, X. J.; Huang, Y.; Chen, Y S. Focusing on energy and optoelectronic applications:a journey for graphene and graphene oxide at large scale. Acc. Chem. Res.,2012,45,598-607.
    [7]Zhang, Z. X.; Huang, H. L.; Yang, X. M.; Zang, L. Tailoring Electronic Properties of Graphene by π-π Stacking with Aromatic Molecules. J. Phys. Chem. Lett.,2011,2, 2897-2905.
    [8]Rao, C. N. R.; Sood, A. K.; Voggu, R. Subrahmanyam, K. S. Some Novel Attributes of Graphene. J. Phys. Chem. Lett.,2010,1,572-580.
    [9]Lu, C. H.; Li, J.; Zhang, X. L.; Zheng, A. X.; Yang, H. H.; Chen, X.; Chen, G. N. General approach for monitoring peptide-protein interactions based on graphene-peptide complex. Anal. Chem.2011,83,7276-7282.
    [10]Lu, C. H.; Yang, H. H.; Zhu, C. L.; Chen, X.; Chen, G. N. A graphene platform for sensing biomolecules. Angew. Chem., Int. Ed.2009,48,4785-4787.
    [11]He, S.; Song, B.; Li, D.; Zhu, C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C. A graphene nanoprobe for rapid, sensitive, and multicolor fluorescent DNA analysis. Adv. Funct. Mater.2009,20,453-459.
    [12]Chang, H. X.; Tang, L. H.; Wang, Y.; Jiang, J. H.; Li, J. H. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal. Chem.2010,82,2341-2346.
    [13]Hasobe, T.; Imahori, H.; Fukuzumi, S.; Kamat, P. V. Light energy conversion using mixed molecular nanoclusters:porphyrin and C60 cluster films for efficient photocurrent generation. J. Phys. Chem. B 2003,107,12105-12112.
    [14]Hasobe, T.; Kamat, P. V.; Troiani, V.; Solladie, N.; Ahn, T. K.; Kim, S. K.; Kim, D.; Kongkanand, A.; Kuwabata, S.; Fukuzumi, S. Enhancement of light-energy conversion efficiency by multi-porphyrin arrays of porphyrin-peptide oligomers with fullerene clusters. J. Phys. Chem. B 2005,109,19-23.
    [15]Nakamura, T.; Ikemoto, J. Y.; Fujitsuka, M.; Araki, Y.; Ito, O.; Takimiya, K.; Aso, Y.; Otsubo, T. Control of photoinduced energy-and electron-transfer steps in zinc porphyrin-oligothiophene-fullerene linked triads with solvent polarity. J. Phys. Chem. B 2005, 109,14365-14374.
    [16]Baskaran, D.; Mays, J. W.; Zhang, X. P.; Bratcher, M. S. Carbon nanotubes with covalently linked porphyrin antennae:photoinduced electron transfer. J. Am. Chem. Soc.2005,127, 6916-6917.
    [17]Hasobe, T.; Fukuzumi, S.; Kamat, P. V. Organized assemblies of single wall carbon nanotubes and porphyrin for photochemical solar cells:charge injection from excited porphyrin into single-walled carbon nanotubes. J. Phys. Chem.B 2006,110,25477-25484.
    [18]Campidelli, S.; Sooambar, C.; Diz, E. L.; Ehli, C.; Guldi, D. M.; Prato, M. Dendrimer-functionalized single-wall carbon nanotubes:synthesis, characterization, and photoinduced electron transfer. J. Am. Chem. Soc.2006,128,12544-12552.
    [19]Sandanayaka, A. S. D.; Chitta, R.; Subbaiyan, N. K.; Souza, L. D.; Ito, O.; Souza, F. D. Photoinduced charge separation in ion-paired porphyrin-single-wall carbon nanotube donor-acceptor hybrids. J. Phys. Chem. C2009,113,13425-13432.
    [20]Xu, Y. X.; Zhao, L.; Bai, H.; Hong, W. J.; Li, C.; Shi, G. Q. Chemically converted graphene induced molecular flattening of 5,10,15,20-Tetrakis (1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium(Ⅱ) ions. J. Am. Chem. Soc.2009,131, 13490-13497.
    [21]Wojcik, A.; Kamat, P. V. Reduced graphene oxide and porphyrin:an interactive affair in 2-D. ACS Nano 2010,4,6697-6706.
    [22]Geng, J. X.; Jung, H. T. Porphyrin functionalized graphene sheets in aqueous suspensions: from the preparation of graphene sheets to highly conductive graphene films. J. Phys. Chem. C 2010,114,8227-8234.
    [23]Hayashi, H.; Lightcap, I. V.; Tsujimoto, M.; Takano, M.; Umeyama, T.; Kamat, P. V.; Imahori, H. Electron transfer cascade by organic/inorganic ternary composites of porphyrin, zinc oxide nanoparticles, and reduced graphene oxide on a tin oxide electrode that exhibits efficient photocurrent generation. J. Am. Chem. Soc.2011,133,7684-7687.
    [24]Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc.1958,80, 1339-1939.
    [25]Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc.2008,130, 5856-5857.
    [26]Li, D.; Muller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol.2008,3,101-105.
    [27]Vergeldt, F. J.; Koehorst, R. B. M.; Vanhoek, A.; Schaafsma, T. J. Intramolecular interactions in the ground and excited states of tetrakis(N-methylpyridyl)porphyrins. J. Phys. Chem.,1995, 99,4397-4405.
    [28]Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006,110,8535-8539.
    [29]Biesaga, M.; Pyrzynska, K.; Trojanowicz, M. Porphyrins in analytical chemistry:a review. Talanta,2000,51,209-224.
    [30]Kawamura, K.; Igarashi, S.; Yotsuyanagi, T. Acceleration of metal ion incorporation into cationic porphyrin by 5-sulfo-8-quinolinol, and spectrophotometric determination of nickel(Ⅱ). Microchim Acta,2006,153,145-150.
    [31]Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science,2008,254,2441-2449.
    [32]Li, X. Q.; Zhang, W. X. Sequestration of metal cations with zerovalent iron nanoparticles:a study with high resolution X-ray photoelectron spectroscopy (HR-XPS). J. Phys. Chem. C, 2007,111,6939-6946.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700