用户名: 密码: 验证码:
毛细管电泳在研究二苯乙烯类化合物光诱导顺反异构化反应及环境水样中氨和烷基胺测定中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二苯乙烯类化合物在自然界一般同时以顺、反异构体两种形式存在,但仅有反式异构体具有抗肿瘤、抗氧化、抗炎保肝等多种生物活性,且在光照条件下反式能够转化为顺式,从而引起该类潜能药物前体化合物丧失相应的活性。所以通过光谱、色谱、毛细管电泳等多种分析手段研究该类化合物的光诱导异构化反应对进一步开发和利用二苯乙烯类化合物是十分重要的。
     本学位论文将毛细管电泳、紫外可见光谱及核磁共振波谱方法相结合对光敏性的二苯乙烯类化合物白藜芦醇苷和苷元、土大黄苷和苷元及脱氧土大黄苷和苷元等的光诱导顺反异构化反应进行了研究。考察了不同照射时间和照射光波长对异构化反应的影响,得到了产物和反应物的立体化学结构信息,计算出了异构化反应的速率常数,并在此基础上探讨了反应的机理。
     本学位论文在综述前人工作的基础上,主要进行了以下几个方面具有创新性的研究工作:
     1.利用毛细管电泳和紫外可见光谱法,系统考察了影响白藜芦醇苷及其苷元的光诱导顺反异构化反应的各类因素,并通过实验数据计算了反应转化比率和速率常数,对反应机理作了初步探讨。
     2.用毛细管电泳分离测定了光诱导的土大黄苷和苷元顺反异构反应的反应物和产物,考察了光照时间和波长对异构化反应的影响,测定了反应速率常数并对实验结果进行了解释,并通过紫外可见光度法证明了毛细管电泳实验结果的有效性及准确性。此外,还通过核磁共振波谱确定了产物的分子结构。
     3.首次考察了β-CD与脱氧土大黄苷元的包合作用对紫外光诱导异构化反应的影响,探讨了包合方式、测定了反应速率常数并对实验结果进行了解释。
     4.以NBD-C1为衍生试剂,建立了同时分离测定氨和22种烷基胺的毛细管胶束电泳激光诱导荧光检测新方法。该方法已成功用于环境水样中氨及烷基胺类污染物的检测。论文共分五章:
     第一章:介绍了研究化学反应动力学的各类常用方法,重点综述了毛细管电泳用于化学反应动力学研究的几种模式及其近年来在研究化学反应动力学方面的发展趋势和应用。
     第二章:利用高效毛细管电泳和紫外可见分光光度法对白藜芦醇苷及其苷元的光诱导顺反异构化反应进行了研究,对影响该反应的各种因素包括溶液浓度、照射光源波长、照射时间、溶剂极性进行了系统考察,并对反应机理进行了初步探讨。测得白藜芦醇苷和苷元及其顺式异构体的甲醇水溶液的最大紫外吸收波长分别为305/285 nm和319/291 nm。实验结果表明溶液浓度越稀对光越敏感;照射光源的波长大于化合物的最大吸收波长时对异构化反应的影响更为显著;随照射时间增长,异构化反应比例增大,进入平衡状态后,反应物与产物的浓度不再变化,365 nm光源照射下反式白藜芦醇苷元转化75%,白藜芦醇苷转化58%;带有可吸收紫外光的发色团的丙酮溶剂一定程度上会抑制顺反异构化;最大紫外吸收波长高于白藜芦醇苷元的最大紫外吸收波长的紫外吸收剂也能够抑制其顺反异构化。
     第三章:通过毛细管区带电泳研究了光诱导土大黄苷及其苷元的顺反异构反应。该方法3 min内完成了对光照射后样品中的反应物和产物的定量检测。研究了各个反应条件包括不同的光照时间和照射波长对反应产率的影响,计算了反应转化比率和反应速率常数;并用紫外可见分光光度法对毛细管电泳方法所得实验结果进行了验证;用核磁共振波谱对反应产物的分子结构进行了鉴定,排除了反式异构体经光诱导反应后生成除顺式产物外的其他副产物的可能性。
     第四章:利用毛细管电泳研究了光诱导脱氧土大黄苷及其苷元的顺反异构化反应。该方法在4min内可完成反式反应物和顺式产物及副产物的分离测定,依据实验数据求得异构化反应的转化比率和速率常数。结合紫外光谱法考察了光诱导异构化反应前后化合物的光谱变化,并用紫外光谱对CD包合物进行表征,考察了p-环糊精(p-CD)与脱氧土大黄苷的包合过程对脱氧土大黄苷紫外光诱导异构化反应的影响,结果表明与CD的包合作用加速了光诱导异构化过程,计算所得反应速率常数大于CD不存在时的反应速率常数。
     第五章:以NBD-Cl为衍生试剂,建立了一种同时分离测定氨和22种烷基胺的毛细管胶束电泳-激光诱导荧光新方法,对衍生和电泳分离的条件进行了优化。最佳衍生条件为:衍生试剂NBD-Cl浓度为15 mM,硼砂衍生缓冲溶液浓度30mM,pH9.0,70℃下反应20 min。最佳的分离条件为:分离缓冲溶液为20 mM硼砂-25 mM SDS-7 mMβ-CD-10%乙睛-0.5 mM尿素,pH 9.70,分离电压25 kV。该体系在19 min内分离了氨和22种烷基胺,迁移时间和峰面积的相对标准偏差分别小于0.72%和1.87%。该方法已成功应用于测定环境水样包括湖水、池塘水和黄河水中的氨及烷基胺污染物,回收率在90.2%到110.8%之间,结果令人满意。
Stilbene compounds normally existed in both cis- and trans- forms in nature, but only trans-isomer has antitumor, antioxidant, anti-inflammatory and other biological activities, and in the condition of light the trans-isomer can transformed into cis-isomer, which led to the lose of activities of such precursor compound of potential drug. Therefore, through spectroscopy, chromatography, capillary electrophoresis and other analytical tools to study the light-induced cis-trans isomerization of these compounds is very important for the further development and use of stilbene compounds.
     This dissertation mainly focused on the study of light-induced isomerization of stilbenes, including resveratrol, piceid, rhapontigenin, rhaponticin, desoxyrhaponticin and desoxyrhapontigenin using capillary electrophoresis, UV- Vis and NMR spectrum. The effects of irradiation time and wavelength of light were studied, and the stereo chemistry structure characteristics were obtaind. And the rate constant of the isomerization was also calculated. On the basis of experiment, the mechanism of reaction was discussed.
     On the basis of previous literatures, some original studies were carried out as follows:
     1. The effects of various factors on the light-induced isomerization of resveratrol and piceid were studied by CE-DAD system and UV-Vis spectrum. On the basis of experiment, the reaction conversion rate and the rate constant were calculated. Furthermore, the mechanism of reaction was preliminarily discussed.
     2. The determinations of trans- reactant and cis- product of the light induced isomerization of rhapontigenin and rhaponticin were performed through the capillary electrophoresis. The effects of the irradiation time and wavelength were investigated. The experiment result of CE was further verified by UV-Vis spectrum, and the stereochemistry molecular structure was confirmed by NMR.
     3. The effect of the complexation of P-CD and desxoyrhapontigenin on the light-induced isomerization was discussed for the first time, and studied the way of complexation, calculated the rate constant of isomerization, futher explained the experimental results.
     4. A selective and sensitive method was developed for simultaneous determination of ammonia and 22 aliphatic amines by micellar electrokinetic chromatography (MEKC) with laser-induced fluorescence detection (LIF) using NBD-Cl as derivatization reagent. The method was successfully applied for the determination of aliphatic amines and ammonia in environment water samples.
     This dissertation consists of five chapters:
     Chapter 1:This chapter introduced various methods for the study of chemical reaction dynamics, focus on the several common modes, developments and applications of capillary electrophoresis in the study of chemical reaction dynamics.
     Chapter 2:Qualitive and quantitive research of light-induced isomerization of resveratrol and piceid were performed by CE and UV- Vis spectrum. The effects of reaction conditions on the isomerization were evaluated, including the concentration of solution, wavelength of irradiation light, irradiation time, different solvents and UV absorbents. On the basis of experiment, the mechanism of reaction was preliminarily discussed. The maximum UV absorption wavelengths of methanol solution of RES, piceid and each cis-isomer were 305/285 nm and 319/291nm, respectively. The results showed that the more dilute solution was more sensitive to light; when the wavelength of light source is longer than the maximum UV absorption wavelengths of compounds, the effect on isomerization is more significant; with the irradiation time increases, the proportion of isomerization increased, when it reached the equilibrium state, the concentrations of reactants and products did not change anymore; under the irradiation of 365 nm, trans RES converted 75%, piceid converted 58%; acetone solvent with UV-absorbing chromophore inhibited the cis-trans isomerization to some extent; The UV absorbents whose maximum UV absorption wavelength longer than the maximum UV absorption wavelength of RES are also able to inhibit the isomerization of RES.
     Chapter 3:The determinations of trans- material and cis- product of the light induced isomerization of rhapontigenin and rhaponticin were performed through capillary zone electrophoretic. The samples after irrdiation were directly injected and analyzed by CZE-DAD, and the experiment was finishied in 3 minutes. The effects of various reaction conditions including different irradiation time, wavelength of light on the yield of isomerization were studied. And the result was further verified by UV- Vis spectrum, and the stereochemistry molecular structure were confirmed by NMR, excluded the possibility of existence of by-product.
     Chapter 4:Study of the light-induced isomerization of DOR and DG was performed by capillary electrophoresis. Using 30 mM borax, pH 2.5 background buffer completed the separation of the cis-product and trans-reactant within 4 minutes and the rate constant of isomerization was 0.0189 min-1. The UV-Vis spectra before and after UV irradiation were also studied. And UV spectra of the CD inclusion complex were characterized to investigate the effect ofβ-cyclodextrin (β-CD) and deoxy glycosides inclusion on the isomerization. The results showed that the cooperation with CD accelerated the process of light-induced isomerization, the reaction rate constant was 0.0268 min-1, which is bigger than the rate constant when the CD does not exist.
     Chapter 5:A selective and sensitive method was developed for separation and simultaneous determination of 22 aliphatic amines and ammonia by MEKC-LIF using NBD-Cl as derivatization reagent. And the detailed conditions of derivatization and separationand were discussed. The optimum deirvatization conditions were:1.5 mM NBD-Cl,30 mM borax derivatization buffer, pH 9.0,70℃, incubation time was 20 min; The optimum separation conditions were:20 mM borax separation buffer,25 mM SDS,7 mMβ-CD,10% acetonitrile and 0.5 mM urea at pH 9.70, separation voltage was 25 kV.22 aliphatic amines and ammonia were separated in a short 19 min analysis time and the relative standard deviations for migration time and peak areas were less than 0.72% and 1.73%, respectively. The method was successfully applied for the quantification of aliphatic amines and ammonia in environmental water samples, including aquarium water, lake water and the yellow river water, and the reconvenes were in the range of 90.2% to 110.8%, the result is satisfied.
引文
[1]马克勤,翟元珠,梁树森.跳浓弛豫法测定反应速率常数[J].化学通报,1987,9(1):40-49.
    [2]安从俊,杨波,郑丹.跳浓弛豫法研究钇与DBC-偶氮氯膦配位反应[J].大学化学.2003,18(2):49-52.
    [3]孙红梅.弛豫法测定CrO42--Cr2O72-反应体系的速率常数[J].牡丹江大学学报,2008,17(3):108-110.
    [4]李琳,廖玉婷.弛豫法测定CrO42--Cr2O72-反应体系的速率常数[J].哈尔滨师范大学自然科学学报,2004,20(4):67-70.
    [5]朱必学,林智信,蔡汝秀.钛与3,5-二溴水杨基荧光酮配位反应的弛豫动力学研究[J].高等学校化学学报,1996,17(12):1843-1846.
    [6]吕鸣祥,戴洪礼,张国衡.介电型酶电极二级催化反应速率常数的测定[J].物理化学学报,1994,10(4):354-359.
    [7]Sul'timova, N.B., Levin, P.P., Chaikovskaya, O.N., Sokolova, I.V. Laser photolysis study of the triplet states of fulvic acids in aqueous solutions[J]. High Energ. Chem.2008,42(6): 464-468.
    [8]DeZutter, C.B., Horner, J.H., Newcomb, M. Rate constants for 1,5-and 1,6-hydrogen atom transfer reactions of mono-, di-, and tri-aryl-substituted donors, models for hydrogen atom transfers in polyunsaturated fatty acid radicals[J]. J. Phys. Chem. A.2008,112(9): 1891-1896.
    [9]胡应模,平井克幸,富冈秀雄.二苯基卡宾反应性的取代基效应[J].化学学报.2000,58(11):1332-1335.
    [10]胡应模,平井克幸,富冈秀雄.三线态二苯基卡宾的动力学稳定效应[J].化学物理学报.2001,14(4):397-402.
    [11]Aokl, T., Uemura, S., Munemori, M. Continuous flow method for simultaneous determination of nitrate and ammonia in water[J]. Environ. Sci. Technol.1986,20(5): 515-517.
    [12]Lionello, A., Josserand, J., Jensen, H., Girault, H.H. Dynamic protein adsorption in microchannels by"stop-flow"and continuous flow[J]. Lab. Chip.2005,5(10):1096-1103.
    [13]Mikhailov, M.V., Nikitin, S.M., Zasedatelev, A.S., Zhuze, A.L., Gurskii, G. V. Binding of actinomycin D analogs to DNA[J]. Biofizika.1980,25(5):803-809.
    [14]李大珍,刘承敏,肖养田,杨惠星,韩德刚.停止-流动分光光度法研究铕(Ⅱ)与二甲酚橙快速电子转移反应动力学[J].物理化学学报.1992,8(1):52-58.
    [15]高英,王之朴.停止流动法研究K2Fe04氧化乙醇胺的动力学[J].物理化学学报.1993,9(1):70-76.
    [16]谢英,金虬,李大珍.停流法研究Cu(Ser)2及Cu(Gly-Gly)2催化O2·-歧化反应动力学[J].高等学校化学学报.1998,19(8):1288-1291.
    [17]黄量,于德泉.紫外光谱在有机化学中的应用[M].北京:科学出版社.2000.
    [18]江冬青,夏天.分光光度法研究高铁酸钾在碱性介质中的化学反应动力学[J].现代仪器.2003.3:27-29.
    [19]赵国华,朱仲良,胡惠康,高廷耀.两维紫外吸收光谱解析有机污染物降解动力学过程[J].环境科学学报.2002,22(5):625-629.
    [20]吕早生,吕春绪,蔡春.紫外光谱在2,4-二硝基间二氯苯与间氯苯胺缩合反应动力学研究中应用[J].J. of Wuhan Uni. of Sci.& Tech. (Natural Science) 2001,24(2):153-154.
    [21]唐新村,黄伯云,贺跃辉.室温固-固反应初期动力学的粉末紫外-可见漫反射光谱研究[J].高等学校化学学报.2006,27(8):1558-1560.
    [22]Nagasawa, T., Shimizu, H., Yamada, H. The Superiority of the Third-generation Catalyst, Rhodococcus rhodochrous Jl Nitrile Hydratase, for Industrial Production of Acrylamide[J]. Appl. Microbiol. Biot.1993,40:189-195.
    [23]Pogorelova, T.E., Ryabchenko, L.E., Sunzov, N.I. Cobalt-dependent transcription of the nitrile hydratase gene in Rhodococcus rhodochrous M8[J]. FEMS Microbiol. Lett. 1996,144(2-3):191-195.
    [24]Dadd, M.R., Sharp, D.C., Pettman, A.J. Real-time monitoring of nitrile biotransformations by mid-infrared spectroscopy[J]. J. Microbiol. Meth.2000,41(1):69-75.
    [25]刘铭,高毅,曹竹安.紫外光谱法实时测定腈水合酶的催化动力学[J].Chem. J. Chinese Uni.2005,26(12):2284-2288.
    [26]Andujar, S.A., Filippa, M.A., Ferretti, F.H., Blanco, S.E. Isomerization of 4'-methoxy-flavanone in alkaline medium. Determination of the enolate formation constant [J]. J. Mol. Struct. (Theochem).2003,636:157-166.
    [27]Cisak, A., Mielczarek, C. Practical and Theoretical Aspects of Flavanone-Chalcone Isomerisations[J]. J. Chem. Soc. Perkin T.1992,2:1603-1607.
    [28]李勋,唐艳辉,吴义熔,汪正浩.流动电解池中现场紫外光谱法亚胺醌水解反应动力学的研究.[J].J. Beijing Normal Uni. (Natural Science).2001,37(6):790-794.
    [29]吴贤亮.一种研究液相反应动力学的新方法[J].色谱.1986,4(1,2):46-48.
    [30]祁超.辅基四(4-三甲胺苯基)卟啉锌(Ⅱ)生成动力学的高效液相色谱研究[J].J. Beihua Uni.(Natural Science).2002,3(4):288-294.
    [31]邵敏,邵建中,刘今强,李萍.高效液相色谱研究丝素亲核基团与一氯均三嗪型活性染料反应动力学[J].Chinese J. Anal. Chem.2009,37(7):989-993.
    [32]张静,王玉环,秦杏娟,李志伟,哈婧,付德才.头孢吡肟中间体高效液相色谱快速测定法及动力学研究[J].J. Hebei Normal Uni. (Natural Science).2009,33(6):762-765.
    [33]Dario, L., Angelamaria, M. Solvent Effects in SN2 Reactions Promoted by Macrocyclic Polyethers and Quaternary Onium Salts[J]. J. Supramol. Chem.2002,2:187-190.
    [34]邓传跃,陈旭东,刘绍璞,陈用烈.反相高效液相色谱分离测定铁一芳烃络合物光引发剂及光解动力学研究[J].Chinese J. Anal. Chem.1996,14(2):168-171.
    [35]艾华,王广基,顾轶,孙建国,郝海平.超高效液相色谱在现代药代动力学中的应用[J].J. China Pharma. Uni.2007,38(4):294-298.
    [36]王强,关春梅,高荫本,陈诵英.时间分辨反应色谱研究吸附和表面反应动力学[J].石油学报(石油加工),1995,11(1):31-35.
    [37]Mariana A. Montenegro, M'onica A. Nazareno, Claudio D. Borsarelli. Kinetic study of the photosensitized oxygenation of the flavanone naringin and its chalcone[J]. J. Photoch. Photobio. A.2007,186(1):47-56.
    [38]胡蕴青, 白亮,赵玉龙,钟炳.甲醇羰基化动力学研究中的气相色谱分析[J].山西化工.1996.4:26-28.
    [39]Pelton, J.T., Mclean, L.R. Review of spectroscopic methods for analysis of protein secondary structure[J]. Anal. Biochem.2000,277:167-176.
    [40]Kelly, S.M., Jess, T.J., Price, N.C. How to study proteins by circular dichroism[J]. Biochimica et Biophysica Acta (BBA):Proteins Proteomics.2005,1751(2):119-139.
    [41].Greenfield, N. J. Analysis of circular dichroism data[J]. Method Enzymol.2004,383: 282-317.
    [42]蔡燕,方云,夏咏梅.大豆脂氧酶的热失活动力学与其二级结构的圆二色谱表现[J].Soybean Science.2011,30(1):150-152.
    [43]Yunusov, D., So, M, Shayan, S., Okhonin, V., Musheev, M.U. Berezovski, M.V., Krylov,S.N. Kinetic capillary electrophoresis-based affinity screening of aptamer clones[J].Anal. Chim. Acta.2009,631(1):102-107.
    [44]Nordmana, N., Sikanena,T., Moilanena, M.E., Aurab, S., Kotiahoa,T. Rapid and sensitive drug metabolism studies by SU-8 microchip capillary electrophoresis-electrospray ionization mass spectrometry[J]. J. Chromatogr. A.2011,1218(5):739-745.
    [45]Hu, K., Zhang, L.C., Li, X.T., Zhao, S.L. Rapid screening of monoamine oxidase B inhibitors in natural extracts by capillary electrophoresis after enzymatic reaction at capillary inlet[J]. J. Chromatogr. B.2010,878(30):3156-3160.
    [46]Qi, L., Yang, G.L., Zhanga, H.Z., Qiao, J. A chiral ligand exchange CE essay with zinc(II)-l-valine complex for determining enzyme kinetic constant of 1-amino acid oxidase[J]. Talanta,2010,81(4-5):1554-1559.
    [47]Serraa,H., Bronzea,M.R., Simplicioa,A.L. Simultaneous determination of clopidogrel and its carboxylic acid metabolite by capillary electrophoresis [J]. J. Chromatogr. B,2010,878(19): 1480-1486.
    [48]Newman, C.D., Collins, G.E. Advances in CE for kinetic studies[J]. Electrophoresis,2008, 29(1):44-55.
    [49]Berezovski, M., Krylov, S.N. Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures A Single Experiment Reveals Equilibrium and Kinetic Parameters of Protein-DNA Interactions[J]. J. Am. Chem. Soc.2002,124(46):13674-13675.
    [50]Petrov, A., Okhonin, V., Berezovski, M., Krylov, S.N. Kinetic Capillary Electrophoresis (KCE):A Conceptual Platform for Kinetic Homogeneous AffinityMethods[J]. J. Am. Chem. Soc.2005,127(48):17104-17110.
    [51]Krylov, S.N. Kinetic CE:Foundation for homogeneous kinetic affinity methods[J]. Electrophoresis,2007,28(1):69-88.
    [52]Berezovski, M., Drabovich, A., Krylov, S.N. Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures:A Universal Tool for Development of Aptamers[J]. J. Am. Chem. Soc. 2005,127(9):3165-3171.
    [53]Krylov, S.N. Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures (NECEEM): A Novel Method for Biomolecular Screening[J]. J. Biomol. Screen.2006,11(2):115-122.
    [54]Berezovski, M.; Musheev, M.; Drabovich, A.; Krylov, S.N. Non-SELEX selection of aptamers[J]. J. Am. Chem. Soc.2006,128(5):1410-1411.
    [55]Drabovich, A.P., Berezovski, M., Okhonin, V., Krylov, S.N. Selection of smart aptamers by methods of kinetic capillary electrophoresis[J]. Anal. Chem.2006,78(11):3171-3178.
    [56]Krylov, S.N. Kinetic capillary electrophoresis:foundation for homogeneous kinetic affinity methods[J]. Electrophoresis,2007,28(2):69-88.
    [57]Berezovski, M., Krylov, S.N. Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures-A Single Experiment Reveals Equilibrium and Kinetic Parameters of Protein-DNA Interactions[J]. J. Am. Chem. Soc.2002,124(46):13674-13675.
    [58]Okhonin, V., Krylova, S.M., Krylov, S.N. Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures, Mathematical Model[J]. Anal. Chem.2004,76(5):1507-1512.
    [59]Sergey, N., Berezovski, K.M. Non-equilibrium capillary electrophoresis of equilibrium mixtures—appreciation of kinetics in capillary electrophoresis[J]. Analyst.2003,128(6): 571-575.
    [60]Berezovski, M., Nutiu, R., Li, Y.F., Krylov, S.N. Affinity Analysis of a Protein-Aptamer Complex Using Nonequilibrium Capillary Electrophoresis of Equilibrium Mixrures[J]. Anal. Chem.2003,75(6):1382-1386.
    [61]Berezovski, M., Krylov, S.N. Thermochemistry of Protein-DNA Interaction Studied with Temperature-Controlled Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures[J]. Anal. Chem.2005,77(5):1526-1523.
    [62]Drabovich, A.P., Okhonin, V., Berezovski, M., Krylov, S.N. Smart Aptamers Facilitate Multi-Probe Affinity Analysis of Proteins with Ultra-Wide Dynamic Range of Measured Concentrations[J]. J. Am. Chem. Soc.2007,129(23):7260-7261.
    [63]Yunusov, D., So, M., Shayan, S., Okhonin, V., Musheev, M.U., Berezovski, M.V., Krylov, S.N. Kinetic capillary electrophoresis-based affinity screening of aptamer clones[J]. Anal. Chim. Acta.2009,631(1):102-107.
    [64]Krylov, S.N. Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures (NECEEM): A Novel Method for Biomolecular Screening[J]. J. Biomol. Screen.2006,11(2):115-122.
    [65]Berezovski, M., Drabovich, A., Krylov, S.M. Musheev, M., Okhonin, V., Petrov, A., Krylov, S.N. Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures:A Universal Tool for Development of Aptamers [J]. J. Am. Chem. Soc.2005,127(9):3165-3171.
    [66]Drabovich, A.P., Berezovski, M., Okhonin, V., Krylov, S.N. Selection of Smart Aptamers by Methods of Kinetic Capillary Electrophoresis [J]. Anal. Chem.2006,78(9):3171-3178.
    [67]Drabovich, A., Berezovski, M., Krylov, S.N. Selection of Smart Aptamers by Equilibrium Capillary Electrophoresis of Equilibrium Mixtures (ECEEM)[J]. J. Am. Chem. Soc.2005, 127(32):11224-11225.
    [68]Berezovski, M., Krylov, S.N. Using Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures for the Determination of Temperature in Capillary Electrophoresis[J]. Anal. Chem.2004,76(23):7114-7117.
    [69]Berezovski, M., Krylov, S.N. Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM)-a universal tool for selection of aptamers[J]. J. Am. Chem. Soc.2005, 127(9):3165-3171
    [70]Okhonin, V., Berezovski, M., Krylov, S.N. Sweeping Capillary Electrophoresis:A Non-Stopped-Flow Method for Measuring Bimolecular Rate Constant of Complex Formation between Protein and DNA[J]. J. Am. Chem. Soc.2004,126(23):7166-7167.
    [71]Okhonin, V., Petrov, A.P., Berezovski, M. Krylov, S.N. Plug-plug kinetic capillary electrophoresis:a method for direct determination of rate constants of complex formation and dissociation^]. Anal. Chem.2006,78(14):4803-4810.
    [72]Petrov, A., Okhonin, V., Berezovski, M. Kinetic Capillary Electrophoresis (KCE):A Conceptual Platform for Kinetic Homogeneous Affinity Methods[J]. J. Am. Chem. Soc.2005, 127(48):17104-17110.
    [73]曾礼娜,夏之宁,董志强,熊彩侨.动平衡毛细管电泳的研究进展[J].化学通报.2008,5:323-328.
    [74]Aiso, K., Nozaki, T., Shimoda, M. Assay of dihydrofolate reductase activity by monitoring tetrahydrofolate using high-performance liquid chromatography with electrochemical detection[J]. Anal. Biochem.1999,272(2):143-148.
    [75]金鑫.亲和毛细管电泳法测定二氢叶酸还原酶的活性及与氨甲蝶呤对映体反应动力学参数.[硕十论文].合肥:安徽医科大学.2008.
    [76]Feng, Y., Bai, J., Zhang, C. Proteomic analysis for the identification of proteins related to methotrexate resistance[J].Yi Chuan Xue Bao.2006,33:391-396.
    [77]Evans, W., Relling, M., Rodman, J. Conventional compared with individualized chemotherapy for childhood acute lymphoblastic leukemia[J]. N. Engl. J. Med.1998,338(8): 499-505.
    [78]Morales, C., Ribas, M., Aiza, G. Genetic determinants of methotrexate responsiveness and resistance in colon cancer cells[J]. Oncogene.2005,24(45):6842-6847.
    [79]Zhang, R., Xu, X., Chen, T., Li, L. An assay for angiotensin-converting enzyme using capillary zone electrophoresis[J]. Anal. Biochem.2000,280(2):286-290.
    [80]Sigrid, V.D., Schepdael, A.V., Hoogmartens, J. Kinetic study of γ-glutamyltransferase activity by electrophoretically mediated microanalysis combined with micellar electrokinetic capillary chromatography [J]. Electrophoresis.2002,23(17):2854-2859.
    [81]Kulp, M., Kaljurand, M. On-line monitoring of enzymatic conversion of adenosine triphosphate to adenosine diphosphate by micellar electrokinetic chromatography[J]. J. Chromatogr. A,2004,1032(1-2):305-312.
    [82]Kulp, M., Kaljurand, M., Kaambre, T., Sikk, P., Saks, V. In situ monitoring of kinetics of metabolic conversion of ATP to ADP catalyzed by MgATPases of muscle Gastrocnemius skinned fibers using micellar electrokinetic chromatography [J]. Electrophoresis,2004,25(17): 2996-3002.
    [83]Choi, S., Lee, Y.S., Na, D.S. Determination of enzymatic activity and properties of secretory phospholipase A2 by capillary electrophoresis [J]. J. Chromatogr. A.1999,853(1-2):285-293.
    [84]Yoshimoto, Y., Shibukawa, A., Sasagawa, H. Michaelis-Menten analysis of immobilized enzyme by affinity capillary electrophoresis[J]. J. Pharm. Biomed. Anal.1995,13(4-5): 483-488.
    [85]贾蕊.高效毛细管电泳在二氢叶酸还原酶反应动力学研究中的应用[硕士论文].北京:首都师范大学.2006.
    [86]Belenky, A., Hughes, D., Korneev, A. Capillary electrophoretic approach to screen for enzyme inhibitors in natural extracts[J]. J. Chromatogr. A.2004,1053(1-2):247-251.
    [87]Jorgensen, H., Kutter, J.P., Olsson, L. Separation and quantification of cellulases and hemicellulases by capillary electrophoresis [J]. Anal. Biochem.2003,317(1):85-93.
    [88]辛志宏,马海乐,吴守一.高效毛细管电泳测定血管紧张素转化酶抑制剂captopril的活性[J].药学学报.2003,38(11):843-843,
    [89]Van, D.S., Novakova, S., Inhibition study of angiotensin converting enzyme by CE after enzymatic reaction at capillary inlet[J]. J. Chromatogr. A.2003,1013(1-2):149-156.
    [90]Chang, B.W., Chen, R.L.C., Huang, I.J. Assays for angiotension converting enzyme inhibitory activity[J]. Anal. Biochem.2001,291(1):84-88.
    [91]Whisnant, A.R., Gilman, S.D. Studies of Reversible Inhibition, Irreversible Inhibition and Activation of Alkaline Phosphatase by Capillary Electrophoresis [J]. Anal. Biochem.2002, 307(2):226-234.
    [92]Tanaka, Y., Terabe, S. Estimation of binding constants by capillary electrophoresis[J]. J. Chromatogr. B.2002,768(1):81-92.
    [93]Busch, M.H.A., Kraak, J.C., Poppe, H. Principles and limitations of methods available for the determination of binding constants with affinity capillary electrophoresis[J]. J. Chromatogr. A.1997,777(2):329-353.
    [94]Berger, G., Girault, G. Macromolecule-ligand binding studied by the Hummel and Dreyer method:current state of the methodology[J]. J. Chromatogr. B.2003,797(1-2):51-61.
    [95]Seifar, R.M., Cool, R.H., Quax, W.J. Characterization of the interaction between human complement protein C4 and a single-chain variable fragment antibody by capillary electrophoresis and surface plasmon resonance[J]. Electrophoresis,2004,25(10-11): 1561-1568.
    [96]Burns, K.L., May, S.W. Separation methods applicable to the evaluation of enzyme-inhibitor and enzyme-substrate interactions[J]. J. Chromatogr. B.2003,797(1-2):175-190.
    [97]Ohnishi, T., Mohamed, N.A.L., Shibukawa, A. Frontal analysis of drug-plasma lipoprotein binding using capillary electrophoresis [J]. J. Pharm. Biomd. Anal.2002,27(3-4):607-614.
    [98]Kuroda, Y., Watanabe, Y., Shibukawa, A. Role of phospholipids in drug-LDL bindings as studied by high-performance frontal analysis/capillary electrophoresis [J]. J. Pharm. Biomed. Anal.2003,30(6):1869-1877.
    [99]Kaddis, J., Zurita, C., Moran, J. Estimation of binding constants for the substrate and activator of Rhodobacter sphaeroides adenosine 5'-diphosphate-glucose pyrophosphorylase using affinity capillary electrophoresis[J]. Anal. Biochem.2004,327(2):252-260.
    [100]Steinbock, B., Vichaikul, P.P., Steinbock, O. Nonlinear analysis of dynamic binding in affinity capillary electrophoresis demonstrated for inclusion complexes of β-cyclodextrin[J]. J. Chromoatogr. A.2001,943(1):139-146.
    [101]Zhang, W.B., Zhang, L.H., Ping, G.C. Study on the multiple sites binding of human serum albumin and porphyrin by affinity capillary electrophoresis [J]. J. Chromatogr. B.2002, 768(1):211-214.
    [102]Varenne, A., Gareil, P., Colliec-Jouault, S. Capillary electrophoresis determination of the binding affinity of bioactive sulfated polysaccharides to proteins:study of the binding properties of fucoidan to antithrombin[J]. Anal. Biochem.2003,315(2):152-159.
    [103]Beerzovski, M., Kyrlov, vS.N. Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures-A Single Experiment Reveals Equilibrium and Kinetic Parameters of Protein-DNA Interactions [J]. J. Am. Chem. Soc.2002,124(46):13674-13675.
    [104]Beerzovski, M., Kyrlov, S.N. Using Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures for the Determination of Temperature in Capillary Electrophoresis[J]. Anal. Chem.2004,76(23):7114-7117.
    [105]Yang, P. L., Whelan, R.J., Jameson, E.E. Capillary Electrophoresis and Fluorescence Anisotropy for Quantitative Analysis of Peptide-Protein Interactions Using JAK2 and SH2-Bp as a Model System[J]. Anal. Chem.2005,7(8):2482-2489.
    [106]Okhonin,V., BeerZovski, M., Kyrlov, S.N. Sweeping Capillary Electrophoresis:A Non-Stopped-Flow Method for Measuring Bimolecular Rate Constant of Complex Formation between Protein and DNA[J]. J. Am. Chem. Soc.2004,126(23):7166-7167.
    [107]陆永超.反应过程中硫氰化合物的检测和动力学分析[博士论文].徐州:中国矿业大学2010.
    [108]Wei, S.L., Liu, L., Yan, Z.J., Zhao, J.F. Separation and Determination of Alprenolol Enantiomers by Capillary Electrophoresis in Rat Serum[J]. J. Instrumental Anal.2010,29(5): 488-492.
    [109]Wang, X.Z., Wang, Q.Q., Wang, S.H., Li, W.P., Song, H.F., Lu, D.D. Quantitative determination of Cantide,an antisense oligodeoxynucleotide in rhesus monkey plasma using non-gel sieving capillary electrophoresis method[J]. Chinese J. Chromatogr.2010,28(6): 561-565.
    [110]Zhao, L., Li, Z.X., Li, G.B., Chen, X.G., Hu, Z.D. Kinetics studies on thermal isomerization of β-N-oxalyl-L-a,β-diamino propionic acid by capillary zone electrophoresis [J]. Phys. Chem. Chem. Phys.1999,1:3771-3773.
    [111]Christy, A.A., Egeberg, P.K. Oxidation of thiocyanate by hydrogen peroxide-a reaction kinetic study by capillary electrophoresis[J]. Talanta,2000,51(6):1049-1058.
    [112]熊彩侨,夏之宁,黄锐,陈华,徐盼.区段-区段动力学毛细管电泳测定动力学参数的新方法及其应用[J].中国科学B辑:化学.2008,38(8):705-709.
    [113]比特里希,H.J.,哈伯兰德,D.,尤斯特,G.化学动力学计算方法[M].北京,高等教育山版社.1987,1-38.
    [114]付绍平,杨博,肖红斌,梁鑫淼.毛细管电泳法应用于阿魏酸异构化动力学和热力学研究[J].J. Instrumental Anal.2008,27(5):476-478.
    [115]付绍平,李秀玲,张峰.阿魏酸转化反应速率常数的毛细管电泳测定方法研究[J].分析测试学报,2005,24(1):8-11.
    [116]Kalman, A., Thunecke, F., Schmidt, R., Schiller, P.W., Horvath, C. Isolation and identification of peptide conformers by reversed-phase high-performance liquid chromatography and NMR at low temperature[J]. J. Chromatogr. A.1996,729(1-2): 155-171.
    [117]Jacobson, J., Melander, W., Vausbts, G. Kinetic study on cis-trans proline isomerization by high-performance liquid chromatography [J]. J. Phys. Chem.1984,88(20):4536-4542.
    [118]Thunecke, F., Kalman, A., Kalman, F., Ma, S., Rathore, A.S., Horvath, C. Kinetic study on the cis-trans isomerization of peptidyl-proline dipeptides[J]. J Chromatogr. A.1996,744(1-2): 259-272.
    [119]Rathore, A.S., Horvath, C. Capillary zone electrophoresis of interconverting cis-trans conformers of peptidyl-proline dipeptides:Estimation of the kinetic parameters[J]. Electrophoresis,1997,18(15):2935-2943.
    [120]Trapp, O., Trapp, G., Schuri, G.V. Determination of the cis-trans isomerization barrier of enalaprilat by dynamic capillary electrophoresis and computer simul ation[J]. Electrophoresis, 2004,25(2):318-323.
    [121]叶建农,金薇,赵学伟.蔗糖水解反应速率常数的毛细管电泳测定方法研究[J].高等学校化学学报.1998,19(1):31-34.
    [122]张欣,丁祥欢,朱雪焱.乳糖和麦芽糖水解反应速率常数的毛细管电泳测定方法[J]分析测试学报.2001,20(1):16-18.
    [123]曹玉华,汪云.毛细管电泳电化学检测测定阿司匹林水解反应速率常数[J].分析科学学报.2004,20(2):187-189.
    [124]Chen, G., Ye, J.N., Bao, H.M., Determination of the rate constants and activation energy of acetaminophen hydrolysis by capillary electrophoresis [J]. J. Pharmaceut. Biomed. Anal.2002, 29(5):843-850.
    [125]王平,任吉存.毛细管电泳用于胞嘧啶脱氨反应动力学研究[J].J. Anal. Science.2003,19(1):13-16.
    [1]胡晓仕,蒲彪.白藜芦醇生理活性及其制器检测技术研究进展[J].食品研究与开发.2006,27(2):123-125.
    [2]Sun W.J., Sheng J.F. A Handbook of Bioactive Compounds from Plants [M]. Beijing:China Medical-Pharmacological Science and Technology Publishing House.1998.
    [3]Aziz, M.H., Kumar, R., Ahmad, N. Cancer chemoprevention by resveratrol:In vitro and in vivo studies; and the underlying mechanisms[J]. Int. J. Oncol.2003,23(1):17-28.
    [4]Ratan, H.L., Steward, W.P., Gescher, A.J., Mellon, J.K. Resveratrol-A prostate cancer chemopreventive agent?[J]. Urol. Oncol.2002,7(6):223-227
    [5]Wu, J.M., Wang, Z.R., Hsieh, T.C., Bruder, J.L., Zou, J.G., Huang, Y.Z. Mechanism of cardioprotection by resveratrol, a phenolic antioxidant present in red wine (Review)[J]. Int. J. Mol. Med.2001,8(1):3-17.
    [6]Waterhouse, A.L., Laxnuela-Raventos, R.M. The occurrence of piceid, a stilbene glucoside, in grape berries[J]. Phytochemistry,1994,37(2):571-573.
    [7]Jang, M., Pezzuto, J.M. Cancer chemopreventive activity of resveratrol [J]. Drug Exp. Clin. Res.1999,25(2-3):65-77.
    [8]Dobrydneva, Y., Williams, R.L., Blackmore, P.F. Trans-resveratrol inhibits calcium influx in thrombin-stimulated human platelets[J]. Br. J. Phar-macol.1999,128(1):149-154.
    [9]Zou, J.G., Huang, Y.Z., Chen, Q. Reveratrol inhibits copper ion-induced and azo ompound-initiated oxidative modification of human low density lipoprotein[J]. Biochem. Mol. Biol. int.1999,47(6):1089-1096.
    [10]余慧琳.白藜芦醇的生理功能及其应用前景[J].生物学通报.2005,40(11):12-13.
    [11]Anderson, J.J., Garner, S.C. The effects of phytoestrogens on bone[J]. Nutr. Res.1997, 17(10):1617-1632.
    [12]Hsieh, T.C., Wu, J.M. Differential effects on growth, cell cycle arrest, and induction of apoptosis by resveratrol in human prostate cancer cell lines[J]. Exp. Cell Res.1999,249(1): 109-115.
    [13]Docherty, J.J., Smith, J.S., Fu, M.M. Effect of top ically applied resveratrol on cutaneous herpes simplex virua infections in hair-llesamice[J]. Antivir. Res.2004,61(1):19-26.
    [14]Evers, D.L., Wang, X., Huong, S.M.3,5',4-Trihydroxy2trans-stilbene (resveratyol) inhibits human cytomegalovirus replication and virus-induced cellular signaling[J]. Antivir. Res. 2004,63(2):85-95.
    [15]Wang, L.X., Heredia, A., Song, H. Resveratrol glueuronides as the metabo lites of resveratrol in humans:charaeterization, synthesis and ani-HIV activity[J]. J. Pharm. SE. I.2004,93(10): 2448-2458.
    [16]Hayashibara, T., Yamada, Y.N., akayama, S. Resveratrol induces down regulation in surviving expression and apoptosis in HTLV-1-infeeted cell lines aprospective agent Tell leukem iachemo therapy[J]. Hutr. Cancer.2002,44(2):193-201.
    [17]Jeandet, P., Bessis, R., Sbaghi, M. Production of the phytoalexin reseratrol by grape as response to Botrytis attack under natural conditions [J]. J. Phytopath.1995,143(3):135-139.
    [18]Daroch, F., Hoeneisen, M., Gonzalez, C.L. In vitro antibacterial activity of Chilean red wines against Helicobacter pylori[J]. Microbios.2001,104(408):79-85.
    [19]Chan, M.M. Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin[J]. Biochem. Pharmacol.2002,63(2):99-104.
    [20]Kiviniemi, T.O., Saraste, A., Toikka, J.O., Saraste, M., Raitakari, O.T., Parkka, J.P., Lehtimaki, T., Hartiala, J.J., Viikari, J., Koskenvuo, J.W. A moderate dose of redwine, but not de-alcoholized red wine increases coronary flow reserve[J]. Atheroselerosis.2007,195(2): e176-e181.
    [21]Jang, M., Cai, L.N., Geopiceide, O. Cancer chemopreventive activity of resveratrol, a natural Product derived from grapes[J]. Science,1997,275(5297):218-220.
    [22]Tang, L.L., Gao, J.S., Chen, X.R. Inhibitory effect of resveratrol on the Proliferation of synoviocytes in rheumatoid arthritis and its mechanism in vitro[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban.2006,31(4):528-533.
    [23]牛培勤,郭传勇.白藜芦醇药理作用的研究进展[J].医药导报.2006,25(6):524-525.
    [24]Godichaud, S., Krisa, S., Couronne, B. Deactivation of cultured human liver myofibroblasts by trans-resveratrol, a grapevine-derived polyphenol[J]. Hepatology,2000,31 (4):922-931.
    [25]莫志贤,邵红霞.白藜芦醇苷体外对过氧化氢导致小鼠肝细胞损伤的保护作用[J].中国药理学通报.2000,16(5):519-525.
    [26]Kawada, N., Seri, S. Effects of antioxidants, resveratrol, quercetin, and N-acetyl cysteine, on the functions of cultured rat hepatic stellate cells and kupffer cells[J]. Hepathology,1998, 27(5):1265-1271.
    [27]Soares, S., Mateus, N., deFreitas, V. Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary α-amylase (HSA) by fluorescence quenching[J]. J. Agric. Food Chem.2007,55(16):6726-6735.
    [28]Liang, L., Tajmir-Riahi, H.A., Subirade, M. Interaction of β-lactoglobulin with resveratrol and its biological implications [J]. Biomacromolecules,2008,9(1):50-56.
    [29]陈雷,杨福全,张天佑.虎杖中白黎芦醇和试高速逆流分离提纯及分析[J].分析测试学报.2000,19(4):60-62.
    [30]朱立贤,金征宇.大孔吸附树脂对虎杖中白黎芦醇吸附性能的研究[J].食品科学.2005,26(3):75-78.
    [31]Chu, X. Sun, A., Liu, R. Preparative isolation and purification of five compounds from the Chinese medicinal herb Polygonum cuspidatum Sieb et Zucc by high-speed count-current chromatography[J]. J. Chromatogr. A.2005,33(9):45-50.
    [32]Stecher, G, Huck, C.W., Popp, M. Determination of flavonoids and stilbenes in red wine and related biological Products by HPLC and HPLC-ESI-MS-MS[J]. Fresenius J. Anal. Chem. 2001,371(1):73-78.
    [33]Dominguez, C, Guillen, D.A., Barroso, C.G Automated SPE for sample preparation followed by HPLC with diode array and mass spectrometric dection for the analysis of resveratrol derivatives in wine[J]. J. Chromatogr.2001,918(2):303-310.
    [34]Soleas, M.J., Goldbepiceid, D.M., Diamand, E.P. A derivatized gas chromatographic mass spectrometric method for the analysis of both isomers of resveratrol in juice and wine[J]. Am. J. Enol. Vitic,1995,46(3):346-352.
    [35]Chu, Q. Direct analysis of resveratrol in wine by micellar electrokinetic capillary electrophoresis[J]. J. Agric. Food Chem.1998,46(2):509-513.
    [36]刘芳华,彭友元,叶建农.毛细管电泳一电化学检测法测定葡萄和葡萄酒中的白藜芦醇[J].分析测试学报.2005,24(3):125-127.
    [37]胡晓佳,蒲彪.白藜芦醇生理活性及其制备检测技术研究进展[J].食品研究与开发. 2006,27(2):124-126.
    [38]刘宇平,文大为,陈政,廖一平,刘虎威.反式白黎芦醇热稳定性与光致异构化的高效液相色谱和液相色谱-电喷雾离子化质谱研究[J].色谱.2004,22(6):583-588.
    [39]Trela, B.C., Waterhouse, A.L. Resveratrol:Isomeric molar absorptivities and stability[J]. J. Agric. Food Chem.1996,44(5):1253-1257.
    [40]Xing, Q.Y., Xu, R.Q., Zhou, Z., Pei, W.W. Fundamental Opiceidanic Chemistry[M].2nd ed.Beijing:Higher Education Press.1994.
    [41]刘华祥.马来酸桂哌齐特的制备及其光致顺反异构研究[硕士论文].大连:大连理工大学.2009.
    [42]夏修龙.N2(OH)2光致异构化机理[J].化学研究与应用.2002,14(3):328-329.
    [43]Haynes, A., McNish, J., Pearson, J.M. Cis-trans isomerism in [M(CO)214]-(M=Rh, Ir): Kinetic, mechanistic and spectroscopic studies[J]. J. Organomet. Chem.1998,551(1-2): 339-347.
    [44]郭新颜.顺,反-白藜芦醇苷和顺,反-白藜芦醇高效液相色谱分离研究[J].食品科学.2004,24(3):152-155.
    [1]Chen, Z.Q., Zhan, W.Y., Zhang,X.L. Preparative separation of polyhydro-stilbenes rhapontin from rhapontineum hotaoense C.Y. Cheng et T.C.Kao by HPLC[J]. Chin. Tradit. Pat. Med.2004,26(11):932-933.
    [2]Choi, S.B., Ko, B.S., Park, S.K. Insulin sensitizing and a-glucoamylase inhibitory action of sennosides, rhein and rhaponticin in Rhei Rhizoma[J]. Life Sci.2006,78(9):934-942.
    [3]Ngoc, T.M., Minh, P.T.H., Hung, T.M. Lipoxygenase inhibitory constituents from rhubarb[J]. Arch. Pharm. Res.2008,31(5):598-605.
    [4]Park, E.K., Choo, M.K., Yoon, H.K., Kim, D.H. Antithrombotic and antiallergic activities of rhaponticin from Rhei Rhizoma are activated by human intestinal bacteria[J]. Arch. Pharm. Res.2002,25(4):528-533.
    [5]Matsuda, H., Kageura, T., Morikawa, T. Research for anti-Oketsu crude drugs, Zedoariae Rhizoma, Saussureae Radix, Nupharis Rhizoma, and Rhei Rhizoma:NO production inhibitory, vasorelaxant, and hepatoprotective constituents [C]. Symposium Papers. Symposium on the chemistry of Natural Produtts.1999,41(1):217-222.
    [6]Kim, D.H., Park, E.K., Bae, E.A. Metabolism of rhaponticin and chrysophanol 8-o-beta-D-glucopyranoside from the rhizome of rheum undulatum by human intestinal bacteria and their anti-allergic actions[J]. Biol. Pharm. Bull.2000,23(7):830-833.
    [7]Ryu, S.Y., Choi, S.U., Lee, C.O. Antitumor activity of some phenolic components in plants[J]. Arch. Pharm. Res.1994,17(1):42-44.
    [8]Yoo, M.Y., Oh, K.S., Lee, J.W. Vasorelaxant effect of stilbenes from rhizome extract of rhubarb (Rheum undulatum) on the contractility of rat aorta[J]. Phytother. Res.2007,21(2): 186-189.
    [9]Misiti, F., Sampaolese, B., Mezzogori, D. Protective effect of rhubarb derivatives on amyloid beta (1-42) peptide-induced apoptosis in IMR-32 cells:A case of nutrigenomic[J]. Brain Res. Bull.2006,71(1-3):29-36.
    [10]Aaviksaar, A., Haga, M., Kuzina, K., Pussa, T., Raal, A., Tsoupras, G. Hydroxystilbenes in the roots of R. rhaponticum[J]. Proc. Estonian Acad. Sci. Chem.2003,52 (3):99-107.
    [11]Rupprich, N., Hildebrand, H., Kindl, H. Substrate specificity in vivo and in vitro in the formation of stilbenes. Biosynthesis of rhaponticin[J]. Arch. Biochem. Biophys.1980,200(1): 72-78.
    [12]Li, H.L., Wang, A.B., Huang, Y., Liu, D.P., Wei, C., Williams, G.M., Zhang, C.N., Liu, G., Liu, Y.Q., Hao, D.L., Hui, R.T., Lin, M., Liang, C.C. Isorhapontigenin, a new resveratrol analog, attenuates cardiac hypertrophy via blocking signaling transduction pathways[J]. Free Radic. Biol. Med.2005,38(2):243-257.
    [13]S. Ulrich, F. Wolter, J.M. Stein, Molecular mechanisms of the chemopreventive effects of resveratrol and its analogs in carcinogenesis[J]. Mol. Nutr. Food Res.2005,49(5):452-461.
    [14]I. Rahman, S.K. Biswas, P.A. Kirkham, Regulation of inflammation and redox signaling by dietary polyphenols[J]. Biochem. Pharmacol.2006,72(11):1439-1452.
    [15]Orallo, F. Comparative studies of the antioxidant effects of cis-and trans-resveratrol[J]. Curr. Med. Chem.2006,13(1):87-98.
    [16]Campos-Toimil, M., Elies, J., Alvarez, E., Verde, I., Orallo, F. Effects of trans-and cis-resveratrol on Ca2+ handling in A7r5 vascular myocytes[J]. Eur. J. Pharmacol.2007, 577(1-3):91-99.
    [17]Yanez, M, Fraiz, N., Cano, E., Orallo, F. Inhibitory effects of cis-and trans-resveratrol on noradrenaline and 5-hydroxytryptamine uptake and on monoamine oxidase activity[J]. Biochem. Biophys. Res. Commun.2006,344(2):688-695.
    [18]Basly, J.P., Marre-Fournier, F., Le Bail, J.C., Habrioux. G., Chulia, A.J. Estrogenic/antiestrogenic and scavenging properties of (E)-and (Z)-resveratrol[J]. Life Sci. 2000,66(9):769-777.
    [19]Heger, M., Ventskovskiy, B.M., Borzenko, I., Kneis, K.C., Rettenberger, R., Kaszkin-Bettag, M., Heger, P.W. Efficacy and safety of a special extract of Rheum rhaponticum (ERr 731) in perimenopausal women with climacteric complaints:a 12-week randomized, double-blind, placebo-controlled trial[J]. Menopause,2006,13(5):744-759.
    [20]Ignatowicz, E., Baer-Dubowska, W. Resveratrol, a natural chemopreventive agent against degenerative diseases[J]. Pol. J. Pharmacol.2001,53(6):557-569.
    [21]J. Leiro, E. Alvarez, J.A. Arranz, R. Laguna, E. Uriarte, F. Orallo, Effects of cis-resveratrol on inflammatory murine macrophages:antioxidant activity and down-regulation of inflammatory genes[J]. J. Leukoc. Biol.2004,75(6):1156-1165.
    [22]Alarcon de la Lastra, C, Villegas, I. Resveratrol as an antioxidant and prooxidant agent: mechanisms and clinical implications [J]. Biochem. Soc. Trans.2007,35(5):1156-1160.
    [23]Hassan-Khabbar, S., Cottart, C.H., Wendum, D., Vibert, F., Clot, J.P., Savouret, J.F., Conti, M., Nivet-Antoine, V. Postischemic treatment by trans-resveratrol in rat liver ischemiareperfusion:A possible strategy in livers surgery[J]. Liver Transplant.2008,14(4): 451-459.
    [24]Trela, B.C., Waterhouse, A.L. Resveratrol:isomeric molar absorptivities and stability[J]. J. Agric. FoodChem.1996,44(5):1253-1257.
    [25]Camont, L., Cottart, C.H., Rhayem, Y., Nivet-Antoine, V., Djelidi, R., Collin, F., Beaudeux, J.L., Bonnefont-Rousselot, D. Simple spectrophotometric assessment of the trans-/cis-resveratrol ratio in aqueous solutions[J]. Anal. Chim. Acta 2009,634(1):121-128.
    [26]Jiang, Y. L. Design, Synthesis and Spectroscopic Studies of Resveratrol Aliphatic Acid Ligands of Human Serum Albumin[J]. Bioorg. Med. Chem.2008,16(12),6406-6414.
    [27]Lopez-Nicolas, J.M., Garcia-Carmona, F. Aggregation state and pKa values of (E)-resveratrol as determined by fluorescence spectroscopy and UV-Visible absorption [J]. J. Agric. Food. Chem.2008,56(17):7600-7605.
    [28]Lin, C.H., Chen, Y.H. On-line identification of trans-and c/s-resveratrol by nonaqueous cap-illary electrophoresis/ fluorescence spectroscopy at 77 K[J]. Electrophoresis,2001,22(12): 2574-2579.
    [29]Brandolini, V., Maietti, A., Tedeschi, P., Durini, E., Vertuani, S., Manfredini, S. Capillary electrophoresis determination, synthesis, and stability of resveratrol and related 3-O-β-D-Glucopyranosides[J]. J. Agric. Food Chem.2002,50(25):7407-7411.
    [30]Montes, R., Garcia-Lopez, M., Rodriguez, I., Cela, R. Mixed-mode solid-phase extraction followed by acetylation and gas chromatography mass spectrometry for the reliabel determination of trans-resveratrol in wine samples[J]. Anal. Chim. Acta.2010,673(1):47-53.
    [31]Luan, T.G., Li, GK., Zhao, M.Q., Zhang, Z.X. Gas-phase postderivatization following solid-phase microextraction for rapid determination of trans-resveratrol in wine by gas chromatography-mass spectrometry [J]. Anal. Chim. Acta.2000,424(1):19-25
    [25]Siemann, E.H., Creasy, L.L. Conecentration of the phytoalexin resveratrol in wine[J]. Am. J. Enol.Vitic.1992,43(1):49-52.
    [26]Goldberg, D.M., Yan, J., Ng, E., Diamandis, E.P., Karumanchiri, A., Soleas, G, Waterhouse, A.L. Direct injection gas chromatographic mass spectrometric assay for trans-resveratrol[J]. Anal. Chem.1994,66(22):3959-3963.
    [27]Soleas, G.J., Goldberg, D.M., Diamandis, E.P., Karumanchiri, A., Yan, J., Ng, E. A derivatized gas chromatography-mass spectrometic method for the analysis of both isomers of resveratrol in juice and wine[J]. Am. J. Enol. Vitic.1995,46(3):346-352.
    [28]Lamikanra, O., Grimm, C.C., Robin, J.B., Inyang, I.D. Hydroxylated stilbenes in selected American wines[J] J. Agric. Food Chem.1996,44(4):1111-1115.
    [29]Jensen, J.S., Wertz, C.F., O'Neill, V.A. Preformulation stability of trans-resveratrol and trans-resveratrol glucoside (Piceid)[J]. J. Agric. Food Chem.2010,58(3):1685-1690.
    [30]Chu, Q.Y., O'Dwyer, M., Zeece, M.G Direct analysis of resveratrol in wine by micellar electrokinetic capillary electrophoresis [J]. J. Agric. Food Chem.1998,46(2):509-513.
    [31]Zeece, M. Capillary electrophoresis:a new analytical tool for food science[J]. Trends Food Sci.Technol.1992,3(1):6-10.
    [32]Hall, C.A., Zhu, A., Zeece, M.G. Comparison between capillary electrophoresis and high performance liquid chromatography separation of food grade antioxidants[J].J. Agric. Food Chem.1994,42(4):919-921.
    [33]Evans, J.N.S. Biomolecular NMR Spectroscopy[M]. England:Oxford University Press.1st ed. 1995.
    [34]Teng, Q. Structural Biology:Practical NMRApplications[M]. New York:Springer.2005.
    [35]Evans, C.A., Rabenstein, D.L. Nuclear magnetic resonance studies of the acid-base chemistry of amino acids and peptides. Ⅱ. Dependence of the acidity of the C-terminal carboxyl group on the conformation of the C-terminal peptide bond[J]. J. Am. Chem. Soc.1974,96(23): 7312-7317.
    [36]Bouabdallah, S., Trabelsi, H., Ben Dhia, T., Sabbah, S., Bouzouita, K., Khaddar, R. RP-HPLC and NMR study of cis-trans isomerization of enalaprilat[J]. J. Pharm. Biomed. Anal. 2003,31(4):731-741.
    [37]Syakaev, V.V., Podyachev, S.N., Buzykin, B.I., Latypov, Sh.K., Habicher, V.D., Konovalov, A.I. NMR study of conformatin and isomerization of aryl-and heteroarylaldehyde 4-tert-butylphenoxyacetylhydrazones[J]. J. Mol. Struct.2006,788(1-3):55-62.
    [38]Babailov, S.P. NMR studies of photo-induced chemical exchange[J]. Prog. Nucl. Mag. Res. Sp.2009,54(3-4):183-194.
    [39]Goldberg, D.M., Ng, E., Karumanchiri, A., Yan, J., Diamandis, E.P., Soleas, G.J. Assay of resveratrol glucosides and isomers in wine by direct-injection high-prfomance liquid chromatography [J]. J. Chromatogr. A 1995,708(1):89-98.
    [40]Chen, X.J., He, H., Wang, G.J., Yang, B., Ren, W.C, Ma, L, Yu, Q.L. Stereospecific determination of cis and trans resveratrol in rat plasma by HPLC:application to pharmacokinetic studies[J]. Biomed. Chromatogr.2007,21(3):257-265.
    [41]Blache, D., Rustan, I., Durand, P., Lesgards, G, Loreau, N. Gas chromatographic analysis of resveratrol in plasma, lipoproteins and cells after in vitro incubations [J]. J. Chromatogr. B: Biomed. Sci. Appl.1997,702(1-2):103-110.
    [42]McGhie, T.K., Markham, K.R. Separation of flavonols by capillary electrophoresis:The effect of structure on electrophoretic mobility[J]. Phytochem. Anal.1994,5(3):121-126.
    [43]Martin Del Valle, E.M. Cyclodextrins and their uses:a review[J]. Process Biochem.2004, 39(9):1033-1046.
    [44]Cai, Y., Gaffney, S. H., Lilley, T. H., Magnolato, D., Martin, R., Spencer, C. M., Haslam, E. Polyphenol interactions. Part 4. Model studies with caffeine and cyclodextrins[J]. J. Chem. Soc, Perkin Trans.1990,2(12):2197-2209.
    [45]Lucas-Abellan, C, Fortea, M.I., Gabaldon, J.A., Nunez-Delicado, E. Complexation of resveratrol by native and modified cyclodextrins:determination of complexation constant by enzymatic, solubility and fluorimetric assays[J]. Food Chem.2008,111(1):262-267.
    [46]Aburjai, T.A. Anti-platelet stilbenes from aerial parts of Rheum palaestinum[J]. Phytochemistry,2000,55(5):407-410.
    [47]Roberti, M., Pizzirani, D., Simoni, D., Rondanin, R., Baruchello, R., Bonora, C, Buscemi, F., Grimaudo, S., Tolomeo, M. Synthesis and biological evaluation of resveratrol and analogues as apoptosis-inducing agents[J]. J. Med. Chem.2003,46(16):3546-3554.
    [48]Kashiwada, Y., Nonaka, G, Nishioka, I. Studies on Rhubarb (Rhei Rhizoma) VI. Isolation and characterization of stilbenes[J]. Chem. Pharm. Bull.1984,32(9):3501-3517.
    [1]吴英,周宏伟,卜凤泉,田颜清,姜世梅.羧酸吡啶类分子间氢键对光致异构化反应及光化学稳定性影响的谱学研究[J].光谱学与光谱分析.2008,28(3):503-506.
    [2]刘志杰,李晓峰,万谦宏.白藜芦醇及其糖苷在虎杖中的存在形式及测定[J].中草药,2005,36(7):1087-1088.
    [3]Liang, L., Tajmir-Riahi, H.A., Subirade, M. Interaction of β-lactoglobulin with resveratrol and its biological implications[J]. Biomacromolecules,2008,9(1):50-56.
    [4]Kaszkin-Bettag, M. Long-term toxicity studies in dogs support the safety of the special extract ERr 731 from the roots of Rheum rhaponticum[J]. Food Chem. Toxicol.2008,46(5): 1608-1618.
    [5]Matsuda, H., Morikawa, T., Toguchida, I., Park, J.Y., Harima, S. Yoshikawa, M. Antioxidant constituents from Rhubarb:structural requirements of stilbenes for the activity and structures of two new anthraquinone glucosides[J]. Bioorg. Med. Chem.2001,9(1):41-50.
    [6]Kageura, T., Matsuda, H., Morikawa, T., Toguchida, I., Harima, S., Oda, M., Yoshikawa, M. Inhibitors from Rhubarb on lipopolysaccharide-Induced Nitric oxide Production in Macrophages:Structrual Requirements of stilbenes for the activity[J]. Bioorg. Med. Chem. 2001,9(7):1887-1893.
    [7]Matsuda, H., Kageura, T., Morikawa, T., Toguchida, I., Harima, S., Yoshikawa, M. Effects of stilbene constituents from Rhubarb on Nitric Oxide Production in Lipopolysaccharide-Activated Macrophages [J]. Bioorg. Med. Chem.2000,10(4):323-327.
    [8]Suresh Babu, K., Tiwari, A.K., Srinivas, P.V., Ali, A.Z., China Raju, B., Madhusudana Rao, J. Yeast and mammalian a-glucosidase inhibitory constituents from Himalayan rhubarb Rheum emodi wall.ex Meisson[J]. Bioorg. Med. Chem.2004,14(14):3841-3845.
    [9]童林荟.环糊精化学基础与应用[M].第1版,北京,科学出版社,2001.
    [10]张晓光,刘洁翔,范志金等.环糊精及其衍生物在农药领域应用的研究进展[J].农药学学报.2009,11(3):291-297.
    [11]刘芸,潘景浩.环糊精-卟啉超分子体系研究进展[J].分析化学.2005,33(1):129-133.
    [12]王亚珍,吴天奎.β-环糊精与十二烷基硫酸钠的包结作用[J].江汉大学学报.2009,37(1):45-47.
    [13]廖才智.β-环糊精的应用研究进展[J].化工科技.2010,18(5):69-72.
    [14]王茹林,李寒青,弓辉,秦姝竹.β-环糊精及其衍生物对维生素分子的识别作用[J].化学研究,2010,21(4):55-57.
    [15]赵彦丽,刘常金,杨婷,高佳伟.环糊精包埋增强白藜芦醇水溶性的研究[J].天津化工,2010,24(4):19-21.
    [16]殷亚星,解菊,刁国旺.环糊精及其衍生物包合作用的理论研究进展[J].化学通报,2009,4:320-325.
    [17]Lucas-Abellan, C, Fortea, M.I., Gabaldon, J.A. Complexation of resveratrol by native and modified cyclodextrins:determination of complexation constant by enzymatic, solubility and fluorimetric assays[J]. Food Chem.2008,111(1):262-267.
    [18]Lopez-Nicolas, J.M., Garcia-Carmona, F. Rapid, simple and sensitive determination of the apparent formation constants of trans-resveratrol complexes with natural cyclodextrins in aqueous medium using HPLC[J]. Food Chem.2008,109(4):868-875.
    [19]Lopez-Nicolas, J.M., Nunez-Delicado, E., Perez-Lopez, A.J. Determination of stoichiometric coefficients and apparent formation constants for beta-cyclodextrin complexes of trans-resveratrol using reversed-phase liquid chromatography[J]. J. Chromatogr. A.2006, 1135(2):158-165.
    [20]Lu, Z., Cheng, B., Hu, Y.L., Zhang, Y.H. Complexation of resveratrol with cyclodextrins: solubility and antioxidant activity[J]. Food Chem.2009,113(1):17-20.
    [21]Sapino, S., Carlotti, M.E., Caron, G. In silico design, photostability and biological properties of the complex resveratrol/hydroxypropyl-β-cyclodextrin[J]. J. Incl. Phenom. Macrocycl. Chem.2009,63(1-2):171-180.
    [22]刘志杰,万谦宏.三种环糊精对白藜芦醇的增溶作用及紫外照射下稳定性的影响[J].中国医药工业杂志.2010,41(9):666-670.
    [23]Fu, R.N. Chromatography Analysis Outline (Edition 2nd). Beijing:Chemical Industry Press, 2005,225-227
    [24]Mechref, Y., Ostrander, GK., Rassi, Z. CE of carboxylated carbohydrates.IV. Adjusting the separation selectivity of derivatized carboxylated carbohydrates by controlling the electrolyte ionic strength at subambient temperature and in the absense of electroosmotic flow[J]. J. Chromatogr. A.1997,792(1-2):75-82
    [25]Knox, J.H. Terminology and nomenclature in capillary electrophoresis systems[J]. J. Chromatogr. A.1994,680(1):3-13
    [26]Montsko, G., Pour Nikfardjam, M.S., Szabo, Z., Boddi, K., Lorand, T., Ohmacht, R., Mark, L. Determination of products derived from trans-resveratrol UV photoisomerisation by means of HPLC-APCI-MS[J]. J. Photochem. Photobio. A:chemistry.2008,196(1):44-50.
    [27]Montoro, P., Piacente, S., Oleszek, W., Pizza, C. Liquid chromatography/tandem mass spectrometry of unusual phenols from Yucca schidigera bark:comparison with other analytical thchniques[J]. J. Mass Spectrom.2004,39(10):1131-1138.
    [28]Syamala, M.S., Ramamurthy, V. Consequences of Hydrophobic Association in Photoreactions: Photodimerization of Stillbenes in Water[J]. J. Org. Chem.1986,51(19):3712-3715.
    [29]Ito, Y., Kajita, T., Kunimoto, K. Accelerated Photodimerization of Stilbenes in Methanol and Water[J]. J. Org. Chem.1989,54(3):587-591.
    [30]Vicinelli, V, Ceroni, P., Maestri, M., Lazzari, M., Balzani, V., Lee, S.K., van Heyst, J., Vogtle, F. Photochemical and photophysical properties of a poly(propylene amine) dendrimer functionalised with E-stilbene units [J]. Org. Biomol. Chem.2004,2(15):2207-2213.
    [31]孙曙光,王洋,高文涛,张淑芬,杨锦宗.紫外吸收光谱研究4,4’-二硝基二苯乙烯-2,2’-二磺酸稀溶液的光致顺反异构[J].光谱实验室.2003,20(6):930-932.
    [32]Hamai, S. Inclusion complexes of poly-β-cyclodextrin with 2-anilino-6-naphthalenesulfonic acid,1-chloronaphalene, and azulene in aqueous solutions[J]. J. Photochem. Photobiol. A. 1999,124:153-158.
    [33]Haynes, A., McNish, J., Pearson, J.M. Cis-trans isomerism in [M(CO)214]-(M=Rh, Ir): Kinetic, mechanistic and spectroscopic studies[J]. J. Organomet. Chem.1998,551(1-2): 339-347.
    [1]Korschwitz, J.I. Kirk-Othmer Encyclopedia of Chemical Technology[M]. New York: Wiley-Interscience. vol.2,4th ed.1991.
    [2]Mnahan, S.E. Environmental Chemistry [M]. Chelsea:Lewis.14th ed.1990.
    [3]Finlayson-Pitts, B.J., Pitts Jr, J.N. Atmospheric Chemistry[M]. New York:Wiley-Interscience. 1986.
    [4]Miruish, S.S. Formation of N-nitroso compounds:chemistry, kinetics, and in vivo occurrence[J]. Toxicol. Appl. Pharmacol.1975,31(3):325-351.
    [5]Speigelhalder, B., Preussmann, R. Effects of dietary indoles and isothiocyanates on N-nitrosodimethylamine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone a-hydroxylation and DNA methylation in rat liver[J]. Carcinogenesis.1985,6 (4):545-548.
    [6]Pitts, J.N., Grojean, D., Cauwenberghe, K.V., Schmid, J.P., Fitz, D.R. Photooxidation of aliphatic amines under simulated atomospheric conditions:formation of nitrosamines, nitramines,amides, and photochemical oxidant[J]. Environ. Sci. Technol.1978, 12(8):946-953.
    [7]Shank, R.C. Toxicology of N-nitroso compounds[J], Toxicol. Appl. Pharmacol.1975,31(3): 361-368.
    [8]Tricker, A.R., Preussman, R. Carcinogenic N-nitrosamines in the diet:occurrence, formation, mechanisms and carcinogenic potential[J]. Mutat. Res.1991,259(3-4):277-289.
    [9]Pfundstein, B., Tricker, A. R. Mean daily intake of primary and secondary amines from foods and beverages in West Germany in 1989-1990[J]. Food Chem. Toxicol.1991,29(11):733-739.
    [10]Sacher, F., Lenz, S., Brauch, H.J. Analysis of primary and secondary aliphatic amines in waste water and surface water by gas chromatography-mass spectrometry after derivatization with 2,4-dinitrofluorobenzene or benzenesulfonyl chloride[J]. J. Chromatogr. A 1997,764(1): 85-93.
    [11]Zhao, Y.Y., Cai, L.S., Jing, Z.Z., Wang, H., Yu, J.X., Zhang, H.S. Determination of aliphatic amines using N-succinimidyl benzoate as a new derivatization reagent in gas chromatography combined with solid-phase microex traction [J]. J. Chromatogr. A.2003,1021(1-2):175-181.
    [12]Hao, F., Lwin, T, Bruckard, W.J., Woodcock, J.T. Determination of aliphatic amines in mineral flotation liquors and reagents by high-performance liquid chromatography after derivatization with 4-chloro-7-nitrobenzofurazan[J]. J. Chromatogr. A.2004,1055(1-2): 77-85.
    [13]Murray, G.M., Sepaniak, M.J. HPLC laser fluorometric determination of amines in beer[J]. J. Liq. Chromatogr.1983,6(5):931-938.
    [14]Ohta, K., Towata, A., Ohashi, M., Takeuchi, T. Application of polymethacrylate resin as stationary phase in liquid chromatography with UV detection for Q-C7 aliphatic monocarboxylic acids and C1-C7 aliphatic monoamines[J]. J. Chromatogr. A.2004,1039(1-2): 161-169.
    [15]Sahasrabuddhey, B., Jain, A., Verma, K.K. Determination of ammonia and aliphatic amines in environmental aqueous samples utilizing pre-column derivatization to their phenylthiouresa and high performance liquid chromatography [J]. Analyst,1999,124(7):1017-1021.
    [16]Wang, H., Li, J., Liu, X., Zhang, H.S. N-hydroxysuccinimidyl fluorescein-O-acetate as a highly fluorescent derivatization reagent for aliphatic amines in liquid chromatography [J]. Anal. Chim. Acta.2000,423(1):77-83.
    [17]Liu, X., Wang, H., Liang, S.C., Zhang, H.S. Determination of primary and secondary aliphatic amines by N-hydroxysuccinimidyl 4,3,2'-naphthapyrone-4-acetate and reversed-phase high-performance liquid chromatography [J]. Anal. Chim. Acta.2001,441(1) 45-52.
    [18]Brumley, W.C., Kelliher, V. Determination of aliphatic amines in water using derivatization with fluorescein isothiocyanate and capillary electrophoresis/laser-induced fluorescence detection[J]. J. Liq. Chrom. Rel. Technol.1997,20(14):2193-2205.
    [19]Matchett, W.H., Brumley, W.C. Preconcentration of aliphatic amines from water determined by capillary electrophoresis with indirect UV detection[J]. J. Liq. Chrom. Rel. Technol.1997, 20(1):79-100.
    [20]Maruszak, W. Analysis of aliphatic amines by meicellar electrokinetic chromatography[J]. J. High Resol. Chromatogr.1999,22(9):126-128.
    [21]Preston, L.M., Weber, M.L., Murray, G.M. Micellar electrokinetic capillary chromatography with laser-induced fluorimetric detection of amines in beer[J]. J. Chromatogr. B.1997,695(1): 175-180.
    [22]Santos, B., Simonet, B.M., Rios, A., Valcarcel, M. Rapid determination of aliphatic amines in water samples by pressure-assisted monolithic octadecylsilica capillary electrochromatography-mass spectrometry[J]. Electrophoresis,2004,25(18-19):3231-3236.
    [23]Zlotorzynska, E.D., Maruszak, W. Determination of dimethylamine and other low-molecular-mass amines using capillary electrophoresis with laser-induced fluorescence detection[J]. J. Chromatogr. B.1998,714(1):77-85.
    [24]Cao, L.W. Wang, H., Zhang, H.S. Analytical potential of 6-oxy-(N-succinimidyl acetate)-9-(2'-methoxycarbonyl) fluorescein for the determination of amino compounds by CE with LIF detection[J]. Electrophoresis 2005,26(10):1954-1962.
    [25]Deng, Y. H. Wang, H., Zhong, L., Zhang, H. S. Trace determination of short-chain aliphatic amines in biological samples by micellar electrokinetic capillary chromatography with laser-induced fluorescence detection[J]. Talanta,2009,77(4):1337-1342.
    [26]Chang, I.H., Lee, C.G., Lee, D.S. Development of an automated method for simultaneous determination of low molecular weight aliphatic amines and ammonia in ambient air by diffusion scrubber coupled to ion chromatography[J]. Anal. Chem.2003,75(22):6141-6146.
    [27]Katritzky, A.R., Maran, U., Lobanov, V.S., Karelson, M. Structurally diverse quantitative structure-property relationship correlations of technologically relevant physical properties [J]. J. Chem. Inf. Comput. Sci.2000,40(1):1-18.
    [28]Katritzky, A.R., Petrukhin, R., Tatham, D., Basak, S., Benfenati, E., Karelson, M., Maran, U. Interpretation of quantitative structure-property and activity relationships [J]. J. Chem. Inf. Comput. Sci.2001,41(3):679-685.
    [29]Katritzky, A.R., Fara, D.C., Petrukhin, R.O., Tatham, D.B., Maran, U., Lomaka, A., Karelson, M. The present utility and future potential for medicinal chemistry of QSAR/QSPR with whole molecule descriptors [J]. Curr. Top. Med. Chem.2002,2(12):1333-1356.
    [30]Katritzky, A.R., Slavov, S.H., Dobchev, D.A. QSPR modeling of UV absorption intensities[J]. J. Comput. Aided Mol. Des.2007,21(7):371-377.
    [31]Kier, L.B., Use of Molecular Negentropy to Encode Structure Governing Biological Activity[J] J. Pharm. Sci.1980,69(7):807-810.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700