用户名: 密码: 验证码:
含CO_2流体—泥岩相互作用的特征与机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松辽盆地南部中央坳陷广泛分布有指示CO_2渗漏的片钠铝石,是归纳和总结CO_2渗漏标志和揭示CO_2大规模渗漏机制的理想场所。泥质岩夹层主要由泥岩和粉砂岩组成,厚度以0.5-2m居多。岩石学与地球化学研究表明,泥岩夹层中发生溶蚀溶解的矿物包括斜长石和钾长石,沉淀的自生矿物有菱铁矿和片钠铝石。片钠铝石是典型的与CO_2充注具有成因联系的“示踪”矿物。在天然CO_2系统中的泥岩夹层与下伏含片钠铝石砂岩界面处,主要氧化物含量向上具有规律性的变化,厚层泥岩中,K_2O、Al_2O_3、Fe_2O_3、CaO和MgO的含量自砂泥岩接触界面处向上升高,Na_2O和FeO含量则相反。薄层泥岩中,地球化学特征在纵向上不显示规律性的变化。通过CO_2—泥岩相互作用实验和TOUGHREACT地球化学数值模拟,验证和补充了岩石学观察结果。在上述研究的基础上,建立了CO_2—泥岩相互作用的概念模式。本次研究成果将为CO_2地质埋存工程提供基础地质信息。
Geological sequestration of industrial CO_2is an effective way to slow down theglobal warming. Demonstration projects are done by some countries in succession,along with the further study of CO_2geologic sequestration. It becomes one of themost important problems that how to decrease the risks of CO_2leakage. The integrityand stability was brought up naturally as the leading topic of the safty for CO_2geologic sequestration. The main scientific questions are the characteristics ofCO_2-mudstone caprock interaction and its impact on the capability of CO_2sequestration during the geologic period. Natural CO_2system is the natural analoguesof CO_2geologic sequestration. And dawsonite is the traced mineral of CO_2migrationand accumulation. Therefore, mudstone interlayers in dawsonite-bearing sandstoneformations are the most ideal research objects for the study of CO_2-mudstoneinteraction. The achievements of this research would provide proofs for geologicalsafety evaluation of CO_2sequestration, which makes the research having academicvalue and actual applied value.
     Comparative petrology, CO_2fluid-mudstone interaction experiments andnumerical simulation are used in the study. The object of comparative petrology is themudstone interlayers and the matched cores’ rocks in dawsonite-bearing sandstoneformation in South Songliao Basin. Matched cores’s rocks are the mudstones occurrednear the objective interlayers which show the similar sedimentary and diageneticfeatures without impact from CO_2fluid. FXY autoclave is used in the experiments of CO_2-mudstone interaction. The simulative software is TOUGHREACT.
     In the natural CO_2system in Honggang anticline and Huazijing district, themudstone interlayers are mainly consist of mudstone and siltstone. Thickness of theseinterlayers focus on0.5-2m, no more than11m. Plagioclase and orthoclase in themudstone interlayers are corroded, while dawsonite and siderite are precipitated aspart of authigenic minerals. The dissolution grade of orthoclase and plagioclase in theinterlayers are obviously higher than in matched cores’s rocks. So the development ofdissolution in the interlayers could relate to the CO_2-mudstone interaction. Theauthigenic dawsonite is a typical “trace” of CO_2injection in the Honggang anticline.Authigenic siderite is developed in the Huazijing district, which could due to the CO_2injection, either. The contained Fe~(2+)in the CO_2fluid combined HCO_3~(2-), and formedsiderite during the fluid flooding the mudstone.
     Contents of the main oxides change regularly upwards near the interface betweenmudstone interlayers and underlain dawsonite-bearing sandstones. In Huazijingterrace, contents of K_2O, Al_2O_3, Fe_2O_3, CaO and MgO in mudstones display afluctuating increase from the interface up while contents of Na_2O and FeO display theopposite trend. Possible explanations responsible for this change may attribute to thedissolution process of K-feldspar, calcite, dolomite and Fe~(3+)compound during CO_2leakage towards overlying mudstones and the migration of related ions. Thisphenomenon is the most obvious at the interface between dawsonite-bearingsandstones and mudstones. The decrease in the content of FeO is probably owing tothe reduction from Fe~(3+)to Fe~(2+), as for Na_2O, reasons for the decrease is yet unclear. InHonggang terrace, in the depth of1481.2~1481.22m, contentsof FeO, MgO, K_2O andAl_2O_3in mudstones tend to increase upwards near the interface between sandstonesand mudstones while content of Na_2O shows an opposite change. This change istriggered by the same mechanism related to CO_2leakage as which in Huazijingterrace. Content variation of Na_2O may be a result of dawsonite precipitation. Inmudstones interval of1477.5~1477.53m, the maim oxides display no verticallyregular change. One possible explanation is that thin layers of mudstones andsandstones sink in CO_2fluid, thus no regular petrographic and geochemical changes can be observed.
     Experiments of CO_2-mudstone interactions have verified petrographicobservations. Results show that total salinity, pH values decrease and concentrationsof K~+, Na~+and SiO_2increase as the increase of reaction temperature. TheConcentration of Ca~(2+)、Mg~(2+)has increased in low temperatures, while decreased inhigh temperature. Deoxidation from Fe~(3+)to Fe~(2+)with the increasing temperaturesleads to the colour fading of mudstone surface. Feldspar, quartz has dissolved, whileCalcite, siderite and chlorite mainly dissolve under relatively low temperatures(100℃、130℃); indissolvable carbonates occur under higher temperatures(160℃、190℃、220℃).
     Geochemical simulation by TOUGHREACT has reestablished thedissolution-precipitation process of minerals. The influential extent of CO_2influx is1500m horizontally and17m vertically from sand-shale interface. Results reveal thatdissolved minerals include K-feldspar, albite, chlorite and semctite; precipitatedauthigenetic carbonate minerals are calcite, ankerite, magnesite and dawsonite, othersinclude kaolinite, illite and micro-quartz. As time goes by, concentration of HCO﹣3、K~+、Ca~(2+)has increased, while Na~+、Mg~(2+)、Fe~(2+)has increased in short time, decreasingin long time.
     With natural analogy, CO_2fuild and mudrock interation and numericalsimulation on the process of dissolution-percipitation, building a model of CO_2–murock interation. As thin layers of mudstone and sandstone soaking in CO_2fluidPetrological and geochemical characteristics should not display regularly change onthe longthways. CO_2was filled in sandstone leak to mudstone which is a thick layer inthe form of diffusion
     The innovation points in this study mainly embodied in the method of naturalanalog, which interprets the petrology and geochemistry records of CO_2leakage inmudstone interlayers in natural CO_2system of the South Songliao Basin. And thepetrology results are complemented and verified by CO_2-mudstone interaction andnumerical simulation. CO_2-mudstone interaction model are built according to all thestudy results mentioned above. The achievements in this study could provide basic geologic information, ensure the possibility of permanent CO_2sequestration, andenhance the security of CO_2geologic sequestration.
引文
[1]蔡先华.松辽盆地南部长岭断陷的火山岩分布及成藏规律[J].石油地球物理勘探,2002,37(3):291-294.
    [2]陈亚青.长岭凹陷腰英台地区青山口组沉积微相及其对有利储层的控制作用[J].大庆石油学院报,2010,34(2):16-26.
    [3]程晓玲.粘土矿物成岩作用对油气储集性和产能的影响——以苏北盆地台兴油田阜三段储层为例[J].石油实验地质,2003,25(2):164-168.
    [4]戴金星,宋岩,戴春森,等.中国东部无机成因气及其气藏形成条件[M].北京:科学出版社,1995,1-11.
    [5]董建兴,李义连,杨国栋,等. CO2-水-岩相互作用对盖层渗透率影响的数值模拟[J].地质科技情报,2012,31(1):115-121.
    [6]董林森,刘立,蒙启安,等.蒙古国塔木察格盆地塔南凹陷铜钵庙组火山碎屑岩中片钠铝石胶结物的成因[J].吉林大学学报,2011,41(2):421-431.
    [7]董林森,刘立,曲希玉,等. CO2矿物捕获能力的研究进展[J].地球科学进展,2010,25(9):941~949.
    [8]董林森,刘立,曲希玉,等.松辽盆地南部红岗油田青山口组片钠铝石的结晶特征及成因探讨[J].吉林大学学报:地球科学版,2009,39(6):1031~1041.
    [9]董林森,刘立,张革,等.火山碎屑岩对CO2的矿物捕获能力[J].沉积学报,2010,28(3):572~577.
    [10]付晓飞,云金表,卢双舫,等.松辽盆地无机成因气富集规律研究[J].天然气工业,2005,25(10):14-17.
    [11]付晓飞,宋岩.松辽盆地无机成因气及气源模式[J].石油学报,2005,26(4):23-28.
    [12]付晓飞.松辽盆地三肇凹陷“T11”多边断层非构造成因机制探讨[J].地质学报,2008,82(6):738-749.
    [13]付晓飞,沙威,王磊,等.松辽盆地幔源成因CO2气藏分布规律及控制因素[J].吉林大学学报(地球科学版),2010,40(2):253-263.
    [14]高玉巧,刘立,曲希玉,等.海拉尔盆地乌尔逊凹陷与松辽盆地孤店CO2气田含片钠铝石砂岩的岩石学特征[J].古地理学报,2008,10(2):111-123.
    [15]高玉巧,刘立,曲希玉.海拉尔盆地乌尔逊凹陷片钠铝石及研究意义[J].地质科技情报,2005,24(2):45-50.
    [16]高玉巧,刘立,曲希玉.片钠铝石的成因及其对CO2天然气运聚的指示意义[J].地球科学进展,2005,20(10):1083-1088.
    [17]高玉巧,刘立,胡文瑄,等.海拉尔盆地乌尔逊凹陷无机CO2充注驱油的流体包裹体证据[J].矿物岩石地球化学通报,2009,28(1):81-91.
    [18]关德师.松辽盆地下白垩统层序地层及沉积体系研究[D].广州:中国科学院广州地球化学研究所,2005.
    [19]郭巍,刘昭君.松辽盆地南部白垩纪构造沉积演化与成藏动力学研究[D].吉林:吉林大学地球科学学院,2007.
    [20]侯启军,赵志魁,王立武.火山岩气藏—松辽盆地南部大型火山岩气藏勘探理论与实践[M].北京:科学出版社,2009.
    [21]黄海平,邓宏文.泥岩盖层的封闭性能及其影响因素[J].天然气地球科学,1995,6(27):20-26.
    [22]黄可可,黄思静,佟宏鹏,等.长石溶解过程的热力学计算及其在碎屑岩储层研究中的意义[J].地质通报,2009,28(4):474-482.
    [23]黄思静,黄可可,冯文立,等.成岩过程中长石、高岭石、伊利石之间的物质交换与次生孔隙的形成:来自鄂尔多斯盆地上古生界和川西凹陷三叠系须家河组的研究[J].地球化学,2009,38(5):498-506.
    [24]黄思静,孙伟,黄培培,等.鄂尔多斯盆地东部太原组碎屑岩中自生伊利石形成机制及其对储层形成的影响[J].矿物岩石,2009,29(4):25-32.
    [25]黄振凯,等.松辽盆地白垩系青山口组泥岩围观孔隙特征[J].石油学报,2013,34(1):30-36.
    [26]江怀友,沈平平,宋新平,等.世界石油工业CO2埋存现状与展望[J].国外油田工程,2008,24(7):50-54.
    [27]蒋有伟,沈德煌,吴永彬.扶余油田自生高岭石对注蒸汽的影响[J].特种油气藏,2012.
    [28]简星,关平,张巍,等.碎屑金红石:沉积物源的一种指针[J].地球科学进展,2012,27(8):828-846.
    [29]李福来,刘立,杨会东,等.松辽盆地南部乾安油田青山口组含片钠铝石砂岩的成岩作用[J].吉林大学学报(地球科学版),2009,39(2):217-224.
    [30]李福来.松辽盆地南部长岭凹陷-华字井阶地含片钠铝石砂岩成岩流体演化[D].吉林:吉林大学地球科学学院,2010.
    [31]李树青,李和,徐伟,等.松辽盆地南部下白垩统层序构型及沉积特征[J].天然气工业,2007,27(4):36-40.
    [32]刘立,高玉巧,曲希玉,等.海拉尔盆地乌尔逊凹陷无机CO2气储层的岩石学与碳氧同位素特征[J].岩石学报,2006,22(8):2229-2236.
    [33]刘立,刘娜,周冰,等.松辽盆地南部红岗背斜幔源-岩浆成因CO2大规模泄露的岩石学记录[J].吉林大学学报(地球科学版).2011,41(2):411-420.
    [34]刘立,王力娟,杨永智,等.松辽盆地南部HX井上白垩统青山口组黑色泥岩的矿物组成与自生微晶石英成因[J].吉林大学学报(地球科学版),2012,42(5):1358-1365.
    [35]刘娜,刘立,杨会东,等.松辽盆地南部片钠铝石形成与碎屑长石的成因联系[J].吉林大学学报(地球科学版),2011,41(1):54-63.
    [36]刘娜,刘立,杨会东,等.松辽盆地红岗油田白垩系青山口组含片钠铝石砂岩自生矿物共生序列[J].古地理学报,2011,13(2):175-184.
    [37]刘小波.松辽盆地断裂系统及与CO2气藏成藏关系研究[D],大庆:大庆石油学院,2009.
    [38]楼章华,姚炎明,金爱民.松辽盆地地下流体地球化学特征研究[J].矿物学报,2002,22(4):343-349.
    [39]鲁雪松,宋岩,王兆宏,等.松辽盆地二氧化碳成因及分布主控因素[J].天然气工业,2009,29(3):124-128.
    [40]罗孝俊,杨卫东,李荣系,高丽萍,等. pH值对长石溶解度及次生孔隙发育的影响[J].矿物掩饰地球化学通报,2001,20(2):103-107.
    [41]孟万斌,吕正祥,冯明石,等.致密砂岩自生伊利石的成因及其对相对优质储层发育的影响——以川西地区四段储层为例[J].石油学报,2011,5:783-790.
    [42]秦伟军,刘超英,谈风其,高中哲,毛根塔.松辽盆地长岭断陷火山岩相与天然气成藏关系[J].石油实验地质,2008,30,328-339.
    [43]曲希玉,刘立,高玉巧,等.中国东北地区幔源-岩浆CO2赋存的地质记录[J].石油学报,2010,31(1):61-67.
    [44]曲希玉,刘立,胡大千,等. CO2流体对含片钠铝石砂岩改造作用的实验研究[J].吉林大学学报(地球科学版),2007,37(4):690-697.
    [45]曲希玉,刘立,马瑞,等. CO2流体对岩屑长石砂岩改造作用的实验[J].吉林大学学报(地球科学版),2008,38(6):959-964.
    [46]曲希玉,刘立,高玉巧,等.中国东北地区幔源-岩浆CO2赋存的地质记录[J].石油学报,2010,31(1):61~67.
    [47]任战利,萧德铭,迟元林.松辽盆地古地温恢复[J].大庆石油地质与开发,2001,20(1):13-17.
    [48]上官志冠,刘桂芬,高松升.川滇块体边界断裂的CO2释放及其来源[J].中国地震,1993,2:52-59.
    [49]石广仁.蒙皂石转化为伊利石的数值模拟——溶解沉淀模型与化学动力学模型.沉积学报,2007,25,693-700.
    [50]孙枢. CO2地下封存的地质学问题及其对减缓气候变化的意义[J].中国基础科学,2006,3:17-22.
    [51]王行信.蒙脱石的成岩演变与石油的初次运移[J].沉积学报,1985,3(1):81-92.
    [52]王行信.砂岩储集层的粘土矿物研究[J].大庆石油地质与开发,1991,10(3):21-26.
    [53]王行信.松辽盆地白垩系泥岩黏土矿物成岩演变特征及其地质意义[J].石油与天然气地质,1988,9(1):93-99.
    [54]王宗华,张军营,徐俊,等. CO2矿物碳酸化隔离的理论研究[J].工程热物理学报,2008,29(6):1063~1068.
    [55]魏魁生,徐怀大,叶淑芬,等.松辽盆地白垩系高分辨率层序地层格架[J].石油与天然气地质,1997:9-16.
    [56]邬金华,余素玉,许仕策,等.蒙皂石伊利石化反应机理和框架行为模式[J].地质科学,1999,34,498-505.
    [57]巫润建,李国敏,黎明,等.松辽盆地咸水层埋存CO2储存绒料初步估算[J].工程地质学报,2009,17(69):100-104.
    [58]吴世祥,金之钧,汤良杰.盖层水岩相互作用研究及其油气地质意义---以黔中隆起及周缘为例[J].地质学报,2007,81(8):1110-1117.
    [59]熊福生,史謌,孙永梅.松辽盆地两井孤店地区泉头组四段沉积微相研究[J].北京大学学报(自然科学版),2008,44(2):185-192.
    [60]徐博会,丁述理.伊/蒙混层粘土矿物研究现状与展望[J].河北工程大学学报(自然科学版),2009,26(4):56-60.
    [61]徐同台,王行信,张有瑜,等.中国含油气盆地粘土矿物[M].北京:石油工业出版社,2003:87-121.
    [62]许天福,金光荣,岳高凡,等.地下多组分反应溶质运移数值模拟:地质资源和环境研究的新方法[J].吉林大学学报(地球科学版),2012,42(5):1410-1425.
    [63]许志刚,陈代钊,曾荣树.我国吉林油田大情字井区块CO2地下埋存试验区地质埋存格架[J].地质学报,2009,83(6):875-884.
    [64]许志刚,陈代钊,曾荣树. CO2的地质埋存与资源化利用进展[J].地球科学进展,2007,22(7):698-707.
    [65]许志刚,陈代钊,曾荣树. CO2地质埋存渗漏风险及补救对策[J].地质论评,2008,54(3):373-386.
    [66]闫建萍,刘池阳,马艳萍.成岩作用与油气侵位对松辽盆地齐家—古龙凹陷扶杨油层物性的影响[J].沉积学报,2009,27(2):213-220.
    [67]杨长青.松辽盆地南部上侏罗_下白垩统层序地层特征及油气勘探意义[J].石油实验地质,1995,17(4):334-342.
    [68]杨光大.松辽盆地南部中央坳陷区高精度三维地震勘探方法研究[D].北京:中国地质大学,2006.
    [69]杨会东,刘立,姚萍,等.松南无机成因天然气成藏输导体系识别[J].2008,27(3):18-21.
    [70]杨会东.松南无机成因CO2与常规油气的耦合差异成藏研究[D],吉林:吉林大学,2009.
    [71]杨明达.松辽盆地南部构造演化与油气聚集[D].北京:中国地质大学(北京),2005.
    [72]于志超,刘立,曲希玉,等.松辽盆地南部红岗油田青山口组砂岩中片钠铝石的形成温度[J].沉积学报,2011,29(2):87-96.
    [73]曾溅辉,彭继林,邱楠生,朱志强,等,砂-泥岩界面碳酸盐溶解-沉淀反应及其石油地质意义[J]天然气地球化学,2006,17(6):760-764.
    [74]曾荣树,孙枢,陈代钊,等.减少二氧化碳向大气层的排放-二氧化碳地下储存研究[J].中国科学基金,2004,4:196-200.
    [75]张超,李兆敏,张东.超临界CO2驱对储层物性影响的实验研究[J].西南石油大学学报(自然科学版),2012.
    [76]张加桂,胡海涛,深大断裂对幔源CO2释放作用研究综述[J],中国岩溶,1999,18(1):95-102.
    [77]于培峰,王青春,贺萍,等.蠡县斜坡西柳10井区古近系沙一段油气成藏特征[J].石油地质与工程,2008,22(5):29-28.
    [78]张立飞.蒙皂石伊利石化得三种成因机制[J].地学前缘,1994,1(1~2):157.
    [79]张庆国,鲍志东,那未红,等.松辽盆地中央坳陷南部下白垩统泉头组四段沉积相[J].古地理学报,2007,9(3):267-276.
    [80]张思亭,刘耘.石英溶解机理的研究进展[J].矿物岩石地球化学通报,2009,28(3):294-300.
    [81]张思亭,刘耘.不同pH值下电解质对石英溶解的分子机理影响[J].矿物岩石地球化学通报,2009,增刊.
    [82]张新平. CO2盐水层埋存数值模拟研究[D].北京:中国石油大学,2011.
    [83]张英魁,刘斌,古武,等.利用多元回归方法确定岩石压缩系数[J].油气井测试,2001,10(1,2):7-9.
    [84]张永旺,曾溅辉,张善文,等.长石溶解模拟实验研究综述[J].地质科技情报,2009,28(1):31-37.
    [85]张云峰,王国强,付宝利,等.长岭断陷深层碎屑岩储层成岩作用及异常高孔带成因[J].吉林大学学报(地球科学版),2011,41(2):372-376.
    [86]赵荣.松辽盆地南部红岗油田高台子油层油藏地质特征研究[D].大庆石油学院,2003.
    [87]赵杏媛.粘土矿物与油气[J].新疆石油地质,2009,30(4):533-536
    [88]周蒂. CO2的地质存储——地质学的新课题[J].自然科学进展,2005,15(7):782-787.
    [89]周张建.蒙脱石伊利石化的控制因素、转化机制及其转化模型的研究综述.地质科技情报,1994,13:41-46.
    [90]朱建伟,刘昭君,董清水,等.松辽盆地层序地层格架及油气聚集规律[J].石油地球物理勘探,2001,36(3):339-343.
    [91]朱宁军,宋永臣,张毅,等.地质封存中CO2溶解度的测量与模型研究进展[J].环境科学与技术,2011,34(3):162-166.
    [92]邹才能,董大忠,杨桦,等.中国页岩气形成条件及勘探实践[J].天然气工业,2011,31(12):26-39.
    [93]邹华耀,郝芳,柳广弟,等.库车冲断带巴什基奇克组砂岩自生高岭石成因与油气成藏.石油与天然气地质.2005,26(6):786-791.
    [94] Allard P. A CO2-rich gas trigger of explosive paroxysms at Stromboli basaltic volcano, Italy[J].Journal of Volcanology and Geothermal Research.2010,189(3-4):363-374.
    [95] Anthony C, Olivier B, Michel J, et al. Experimental and modeling study of geochemicalreactivity between clayey cap rocks and CO2in geological storage conditions[J]. Enrgy Proced,2009,1:3445-3452.
    [96] Anthony C, Olivier B, Michel J, et al. Mixed-layer illite-smectite reactivity in acidifiedsolutions: Implications for clayey caprock stability in CO2geological storage[J]. Applied ClayScience.2011,53:402-408
    [97] Armitage P J, Worden R H, Faulkner D R, et al., Diagenetic and sedimentary controls onporosity in Lower Carboniferous fine-grained lithologies, Krechba field, Algeria: Apetrological study of a caprock to a carbon capture site[J]. Marine and Petroleum Geology,2010,27:1395-1410.
    [98] Awwiller D N. Illite/smectite formation and potassium mass transfer during burial diagensis ofmudrocks: A study from the texas gulf coast Paleocene–Eocene[J]. Journal of SedimentaryResearch1993,63:501-512.
    [99] Bachu S, Gunter W D, Perkins E H. Aquifer disposal of CO2: Hydrodynamic and mineraltrapping[J]. Energy Converse Management,1994,35:269~279.
    [100] Baker J C, Bai G P, Hamilton P J, et al. Continental-scalemagmatic carbon dioxide seepagerecorded by dawsonite in the Bowen-Gunnedah-Sydney basin system, eastern Australia[J].Journal of Sedimentary Research,1995,65(3):522-530.
    [101] Baker J C. Diagenesis and reservoir quality of the Aldebaran Sandstone, Denison Trough,east-central Queensland, Australia[J]. Sedimentology,1991,38:819~838.
    [102] Be′ne′zeth P, Donald A P, Lawrence M A, et al. Dawsonite synthesis and reevaluation of itsthermodynamic properties from solubility measurements: Implications for mineral trapping ofCO2[J]. Geochimica et Cosmochimica Acta,2007,71:4438~4455.
    [103] Bildstein O, Jullien M, Crédoz A et al. Integrated modeling and experimental approach forcaprock integrity, risk analysis, and long term safety assessment[J]. Energy Procedia,2009,1:3237-3244.
    [104] Bildstein C, Kervévan V, Lagneau, et al. Integrative Modeling of Caprock Integrity in theContext of CO2Storage: Evolution of Transport and Geochemical Properties and Impact onPerformance and Safety Assessment [J]. Oil&Gas Science and Technology.2010,65(3):485-502.
    [105] Bjorlykke K. Clay mineral diagenesis in sedimentary basins; a key to the prediction of rockproperties examples from the North Sea Basin[J]. Clay Minerals,1998,33:15-34.
    [106] Boles J R, Franks S G. Clay Diagenesis in Wilcox Sandstones of Southwest Texas:Implications of Smectite Diagenesis on Sandstone Cementation [J]. Journal of SedimentaryPetrology,1979,49(1):55–70.
    [107] Bross E, Margueron T, Cassou C, et al. The formation and stability of kaolinite in Brentsandstone reservoirs: a modeling approach[J]. Clay Mineral Cements in Sandstones,2009.
    [108] Brit T, Jens J. Quartz cementation in mudstones: sheet-like quartz cement from clay mineralreactions during burial[J]. petroleum geoscience,2011,17:53-63.
    [109] Burst J F. Diagenesis of Gulf Coast Clayey Sediments and Its Possible Relation to PetroleumMigration [J]. American Association of Petroleum Geologists,1969,53:73-93.
    [110] Burst J F. Postdiagenetie Clay Mineral Environmental Relationships in the Gulf Coast Eocene[J]. Clays and Clay Minerals,1959,6:327-341.
    [111] Busch A, Alles S, Gensterblum Y, et al. Carbon dioxide storage potential of shales[J].International Journal of Greenhouse Gas Control,2008,2:297-308.
    [112] Charpentier D, Worden R H, et al. Fabric development and the smectite to illite transition inGulf of Mexico mudstones: an image analysis approach.[J] Science,2003,6742:0-4.
    [113] CHristopher M F, Wayne H N, Grant M Y. Unraveling the effects of potassium metasomatismin sedimentary rocks and paleosols, with impliations for paleoweathering conditions andprovenance[J]. Geology,1995,23:921-924.
    [114] Corey A T. The interrelation between gas and oil relative permeabilities[J]. Producers.Monthly,1954,38~41.
    [115] Day-Stirrat R J, Dutton S P, Milliken K L, et al. Fabric Anisotropy Induced by PrimaryDepositional Variations in the Silt: Clay Ratio in Two Fine-Grained Slope Fan ComplexesTexas Gulf Coast and Northern North Sea [J]. Sedimentary Geology,2010,226:42–53.
    [116] Dove P M. The dissolution kinetics of quartz in aqueous mixed cation solution [J]. GeochimCosmochim Acta,1999,63(22):3715-3727.
    [117] Dove P M, Nix C J. The influence of the alkaline earth cations, magnesium, calcium andbarium on the dissolution kinetics of quartz [J]. Geochim Cosmochim Acta,1997,61(16):3329-3340.
    [118] Felix B, Dirk B, Evelyn K, et al. Chlorite dissolution in the acid pH-range: A combinedmicroscopic and macroscopic approach[J]. Geochimica et Cosmochimica Acta.2003.67(8):1451–1461.
    [119] Flaathen T K, Gislason S R, Oelkers E H, et al. Chemical evolution of the Mt. Hekla, Iceland,groundwaters: A natural analogue for CO2sequestration in basaltic rocks[J]. AppliedGeochemistry,2009,24:463~474.
    [120] Forster A, Schoner R, Forster H J, et al. Reservoir characterization of a CO2storage aquifer:The Upper Triassic Stuttgart Formation in the Northeast German Basin [J]. Marine andPetroleum Geology,2010:1-17.
    [121] Gao Y, Liu L, Hu W. Petrology and isotopic geochemistry of dawsonite-bearing sandstones inHailaer basin, northeastern China[J]. Applied Geochemistry,2009,24:1724-1738.
    [122] Gaus I, Azaroual M, Czernichowski L I. Reactive transport modelling of the impact of CO2injection on the clayey cap rock at Sleipner(North Sea)[J]. Chemical Geology,2005,217:319-337.
    [123] Gaus I. Role and impact of CO2-rock interactions during CO2storage in sedimentary rocks[J].International Journal of Greenhouse Gas Control,2010,4:73-98.
    [124] Gherardi F, Audiganeb P, Eric C. Gaucher Predicting Long-Term Geochemical Alteration ofWellbore Cement in a Generic Geological CO2Confinement Site: Tackling a Difficult ReactiveTransport Modeling Challenge[J]. Journal of Hydrology,2012,2(420):340–359.
    [125] Gunter W D, Perkins E H, Mc Cann T J. Aquifer disposal of CO2-rich gases: reaction designfor added capacity[J]. Energy Conversion and Management,1993,34:941-948.
    [126] Haszeldine R S, Quinn O, England G, et al. Natural Geochemical Analogues for CarbonDioxide Storage in Deep Geological Porous Reservoirs, a United Kingdom Perspective[J].Science And Technology,2005,60:33-49.
    [127] Hower J F. X-ray Diffraction of Mixed Layered Clay Minerals [J]. Clays and the ResourceGeologist,1981,7:39–59.
    [128] Hower J, Eslinger E, Hower M E, et al. Mechanism of Burial Metamorphism of ArgillaceousSediment: Mineralogical and Chemical Evidence [J]. Geological Society of America,1976,87(5):725–737.
    [129] Ingles M, Salvany J M, Munoz A, et al. Relationship of mineralogy to depositionalenvironments in the non-marine Tertiary mudstones of the southwestern Ebro Basin(spain)[J].Sedimentary Geology,1998,116:159-176.
    [130] IPCC, Metz B, Davidson O, de Coninck H C, et al.2005. Special Report on Carbon DioxideCapture and Storage, Prepared by Working Group III of the Intergovernmental Panel onClimate Change[R]. Cambridge University Press, Cambridge, United Kingdom/New York,USA, pp.442-431.
    [131] IPCC. Climate Change2007: Synthesis Report[R]. Intergovernmental Panel on ClimateChange, Geneva, Switzerland.2007.
    [132] Johnson J W, Nitao J J, Steefel C I, et al. Reactive transport modeling of geologic CO2sequestration in saline aquifers: the influence of intra-aquifer shales and the relativeeffectiveness of structural, solubility, and mineral trapping during prograde and retrogradesequestration[C]. In Proc.:1st Nat. Conf. Carbon Sequestration. Washington DC.2001.
    [133] Kaiser W R. Predicting Reservoir Quality and Diagenetic History in the Frio Formation(Oligocene) of Texas in Clastic Diagenesis [J]. AAPG,1984,37:195-215.
    [134] Kamp P C. Smectite–Illite–Muscovite Transformation, Quartz Dissolution, and Silica Releasein Shales [J]. Clays and Clay Minerals,2008,56:66–81.
    [135] Krooss B M, Leythauser D, Schaefer R G. The Quantification of Diffusive HydrocarbonLosses Through Cap Rocks of Natural Gas Reservoirs a Reevaluation [J]. AAPG,1992,76:403-406.
    [136] Land L S, Milliken K L, McBride E F. Diagenetic Evolution of Cenozoic Sandstones, Gulf ofMexico Sedimentary Basin [J]. Sedimentary Geology,1987,50(1):195-225.
    [137] Land L S, Milliken K L. Regional Loss of SiO2and CaCO3, and Gain of K2O During BurialDiagenesis of Gulf Coast Mudrocks, USA [J]. International Association of Sedimentologists,2000,29:271–280.
    [138] Lasaga A C. Abinitioquantum-mechanical studies of the k-inetics and mechanism s of silicatedissolution—H+(H3O+) catalysis [J]. Geochim Cosmochim Acta,1994,58(24):5379-5400.
    [139] Leo F L. Frio shale mineralogy and the stoichiometry of the smectite-to-illite reaction: themost important reaction in clastic sedimentary diagenesis[J]. Clay and Clay Minerals,1997,45:618-631.
    [140] Limantseva O, Makhnach A A, Ryzhenko B N, et al. Formation of dawsonite mineralization atthe Zaozernyi Deposit, Belarus[J]. Geochemistry International,2008,46(1):62-76.
    [141] Lindeberg E, Bergmo P. The long-term fate of CO2injected into an aquifer. Proceedings ofthe6th International Conference on Greenhouse Gas Control Technologies,2003:489~494.
    [142] Liu Na, Liu Li, Qu Xi-yu, et al. Genesis of authigene carbonate minerals in the UpperCretaceous reservoir, Honggang Anticline, Songliao Basin: A natural analog for mineraltrapping of natural CO2storage [J]. Sedimentary Geology,2011,237:166-178.
    [143] Lihui Liu, Yuko Suto, Greg Bignal, l et al. CO2injection to granite and sandstone inexperimental rock/hot water systems[J]. Energy Conversion and Management,2003,44:1399~1410.
    [144] Lu J M, Wilkinson M, Haszeldine R, et al. Carbonate cements in Miller field of the UK NorthSea: a natural analog for mineral trapping in CO2geological storage [J]. Environmental EarthSciences.2011,62:507-517.
    [145] Lu J, Kharaka Y K, Thordsen J J, et al. CO2–rock–brine interactions in Lower TuscaloosaFormation at Cranfield CO2sequestration site, Mississippi U.S.A[J]. Chemical Geology,2012,291:269-277.
    [146] Lu J M, Wilkinson M, Haszeldine R S, et al. Long-term performance of a mudrock seal innatural CO2storage[J]. Geology,2009,37:35-38.
    [147] Lu J M, Kitty M, Robert M, et al. Diagenesis and sealing capacity of the middle Tuscaloosamudstone at the Cranfield carbon dioxide injection site, Mississippi, U.S.A[R].2011.
    [148] Luquot L, Andreani M, Gouze P, et al. CO2percolation experiment throughchlorite/zeolite-rich sandstone (Pretty Hill Formation-Otway Basin-Australia)[J]. Chemicalgeology,2012,294-295:75-88.
    [149] Lynch F L, Mack L E, Land L S. Burial Diagenesis of Illite/smectite in Shales and the Originsof Authigenic Quartz and Secondary Porosity in Sandstones [J]. Geochimica et CosmochimicaActa,1997,61(10):1995–2006.
    [150] Marcussen O, Thyberg B I, Peltonen C, et al. Physical Properties of Cenozoic Mudstonesfrom the Northern North Sea: Impact of Clay Mineralogy on Compaction Trends [J]. AAPG,2009,93(1):127-150.
    [151] Marchetti C. On Geoengineering and the CO2problem[J]. Climate Change
    [152] Marini L. Geological sequestration of carbon dioxide: Thermodynamics
    [153] Megahan W F, Clayton J L.Saturated hydraulic conductivities of granitic materials of theIdaho batholith[J].Journal of Hydrology,1986,84(1-2):167-180
    [154] Metz B, Davidson O, Deconick H C, et al. Special report on carbon dioxide capture andstorage, prepared by working group III of the intergovernmental panel on climate change [R].Cambridge: Cambridge University,2005.
    [155] Moore J, Adams M, Allis R, et al. Mineralogical and geochemical consequences of thelong-term presence of CO2in natural reservoirs: An example from the Springerville–St. JohnsField, Arizona, and New Mexico, USA [J]. Chemical Geology,2005,217:365-385.
    [156] Nadeau P H, Peacor D R, Yan J, et al. I-S precipitation in pore space as the cause ofgeopressuring in Mesozoic mudstones, Egersund Basin, Norwegian continental shelf[J].American Mineralogist,2002,87,1580-1589.
    [157] Nagy K L. Dissolution and precipitation kinetics of sheet silicates[J]. Chem. Weath. RatesSilicate Minerals,1995,31:291~351.
    [158] Nesbitt H W, Young G M. Early Proterozoic Climates and Plate Motions Inferred from MajorElement Chemistry of Lutites [J]. Nature,1982,299:715–717.
    [159] Neufeld J A, Hesse M A, Riaz A, et al., Convective dissolution of Carbon dioxide in salineaquifers[J]. Geophysical Research Letter.2010.37.
    [160] Oelkers E H, Cole D R. Carbon dioxide sequestration: a solution to a global problem[J].Elements,2008,4:305~310
    [161] Okuyama Y, Sasaki M, Nakanishi S, et al. Geochemical CO2trapping in open aquiferstorage-the Tokyo Bay model [J]. Energy Procedia,2009:3253-3258.
    [162] Palandri J L, Kharaka Y K. A Compilation of Rate Parameters of Water-Mineral InteractionKinetics for Application to Geochemical Modeling[B]. U.S. Geological Survey. Menlo Park,California,2004:70.
    [163] Pearce J M, Holloway S, Wacker H, et al. Natural occurrences as analogues for the geologicaldisposal of carbon dioxide [J]. Energy Conversion and Management,1996,37:1123-1128.
    [164] Peltonen C, Marcussen, Bj rlykke K, et al. Clay Mineral Diagenesis and QuartzCementation in Mudstones: The Effects of Smectite to Illite Reaction on Rock Properties [J].Marine and Petroleum Geology,2009,26:887-898.
    [165] Perry E D, Hower J F. Diagenesis and Dehydration of Gulf Coast Pelitic Sediments [J].Geological Society of America,1970,2(7):648-649
    [166] Powers M C. Adjustment of Land Derived Clays to the Marine Environment [J]. Journal ofSedimentary Petrology,1957,27:355-372.
    [167] Powers M C. Fluid-Release Mechanisms in Compacting Marine Mudrocks and TheirImportance in Oil Exploration [J]. AAPG Bulletin,1967,51:1240-1254.
    [168] Roser B P, Korsch R J. Determination of Techonic Setting of Sandstone-Mudstone SuitesUsing SiO2Content and K2O/Na2O Ratio. The Journal of Geology,1986,94(5):635-650.
    [169] Ryzhenko B N. Genesis of dawsonite mineralization: thermodynamic analysis andalternatives[J]. Geochemistry International,2006,44(8):835~840.
    [170] Saleemi A A, Ahmeb Z. Mineral and chemical composition of Karak mudstone, Kohat Plateau,Pakistan: implications for smectite-illitization and provenance[J]. Sedimentary Geology,2000:130,229-247.
    [171] Smith J W, Gould K W, Rigby D. The stable isotope geochemistry of Australian coals[J].Organic Geochemistry,1982,3:111-131.
    [172] Solomon S D, Qin M, Manning Z, et al. The physical science basis, contribution of workinggroup I to the fourth assessment report of the intergovernmental panel on climate change [R].Cambridge: Cambridge University,2007.
    [173] rodoń, J. NATURE OF MIXED-LAYER CLAYS AND MECHANISMS OF THEIRFORMATION AND ALTERATION[J]. Annual Review of Earth and Planetary Sciences27,19-53,.27.1.19(1999).
    [174] Steefel C I. CRUNCH, Lawrence Livermore National Laboratory.[J] Internal Report.2001,
    [175]Storvoll V, Bjorlykkea K, Karlsen D, et al. Porosity preservationin reservoirs ands tones dueto grain-coating illite: A study of the Jurassic Garn Form at ion from the Kristin and Lavransfields, of foshore Mid-Norway [J]. Marine and Petroleum Geology,2002,19(6):767-781.
    [176] Thyberg B, Jahren J, Winje T, et al. Quartz Cementation in Late Cretaceous Mudstones,Northern North Sea: Changes in Rock Properties Due to Dissolution of Smectite andPrecipitation of Micro-Quartz Crystals [J]. Marine and Petroleum Geology,2010,27:1752-1764.
    [177] Thyberg B, Jahren J. Quartz Cementation in Mudstones: Sheet-Like Quartz Cement fromClay Mineral Reactions During Burial [J]. Petroleum Geoscience,2011,17:53-63.
    [178] Thyberg, B. et al. Quartz cementation in Late Cretaceous mudstones, northern North Sea:Changes in rock properties due to dissolution of smectite and precipitation of micro-quartzcrystals[J]. Marine and Petroleum Geology27,1752-1764(2010).
    [179] Tonguc, I. U. et al. CO2degassing and trapping during hydrothermal cycles related toGondwana rifting in eastern Australia[J]. Geochimica et Cosmochimica Acta75,5444-5466(2011).
    [180] Van Genuchten M T. A closed-form equation for predicting the hydraulic conductivity ofunsaturated soils[J]. Soil Sci. Soc. Am. J.,1980,44:892~898.
    [181] Watson M N, Zwingmann N, Lemon N M. The Ladbroke Grove-Katnook carbon dioxidenatural laboratory: A recent CO2accumulation in a lithic sandstone reservoir [J]. Energy,2004,29:1457-1466.
    [182] Worden R H, Burleyj S D. Sandstone diagenesis: the evolution of sand to stone[J]. Geology,2001,3-43.
    [183] Worden R H. Dawsonite cement in the Triassic Lam formation, Shabwa basin, Yemen: Anatural analogue for a potential mineral product of subsurface CO2storage for greenhouse gasreduction[J]. Marine and Petroleum Geology,2006,23:61~77.
    [184] Worden R H, Morad S. Clay mineral cement s in sandstones, Internat ional Association ofSedimentologists Special Publication34.2003:177-190.
    [185] Xu T F, Sonnenthal E, Spycher N, Pruess K. TOUGHREACT—A simulation program fornon-isothermal multiphase reactive geochemical transport in variably saturated geologic media:Applications to geothermal injectivity and CO2geological sequestration[J]. Computers&Geosciences,2006,32:145~165.
    [186] Xu T F, Apps J A, Pruess K et al. Numerical modeling of injection and mineral trapping ofCO2with H2S and SO2in a sandstone formation [J]. Chemical Geology,2007,242:319-346.
    [187] Xu T F, Apps J A, Pruess K. Mineral sequestration of carbon dioxide in a sandstone–shalesystem [J]. Chemical Geology,2005,217:295-318.
    [188] Xu T F, Apps J A, Pruess K. Numerical simulation of CO2disposal by mineral trapping indeep aquifers [J]. Applied Geochemistry,2004,19:917-936.
    [189] Xu T F, Pruess K. On fluid flow and mineral alteration in fractured caprock of magmatichydrothermal systems[J]. J.Geophys. Res.106,2001,2121~2138.
    [190] Zerai B, Saylor B Z, Matisoff G. Computer simulation of CO2trapped through mineralprecipitation in the Rose Run Sandstone, Ohio[J]. Applied Geochemistry Geochemistry,2006,21:223-240.
    [191] Zhang Wei, Li Yi-lian, Xu Tian-fu, et al. Long-term variations of CO2trapped in differentmechanisms in deep saline formations: A case study of the Songliao Basin, China [J].International Journal of Greenhouse Gas Control,2009,3:161-180.
    [192] Zhang, L., Sun, m., Wang, S.&Yu, X. The composition of shale from the Ordos basin, china:effects of source weathering and diagenesis[J]. sedimentary Geology116,129-141(1998).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700