用户名: 密码: 验证码:
高压重载平面止推气体轴承的流场特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体润滑是依靠几微米到几十微米间隙的气膜实现对机械运动部件的支撑。与滚动轴承及液体轴承相比,气体轴承具有速度高、精度高、摩擦功耗小及寿命长等优点。然而传统结构的气体轴承存在供气压力低,承载力小,刚度低的缺点,因此只能用于轻载精密支承,然而随着现代尖端工业技术的发展,迫切需要开发重载气体润滑系统。
     造成传统气体轴承供气压力低的原因在于,随着供气压力、工作间隙的增大,轴承间隙内气体流速从亚音速跨越到超音速,导致间隙内气体压力急剧下降,甚至出现负压,进而影响其承载力和刚性。由于轴承间隙内的流动过程复杂,在很长一段时期内,关于静压气体轴承超音速现象的研究一般建立在一维简化分析基础上,但由于激波与边界层的相互作用,一维简化分析的结果与实际偏离很大,不能真实体现流场特性。因而,有必要深入研究高供气压、大间隙气体轴承内的超音速间隙流动的机理,为开发高压重载气体轴承奠定理论基础。
     本文采用理论分析、数值模拟和实验相结合的方法,借助fluent软件平台,建立精确的流场模型,对间隙内流动进行数值模拟,详细探讨其内部的流场特性,研究流场内激波与边界层的相互作用。。通过分析间隙内的气体状态,建立反映流场本质特性的简化数学模型,定性分析流场特性,通过改变轴承流道结构,达到提高轴承承载力的目的。主要研究工作如下:
     ①建立充分考虑惯性项、粘性项以及激波影响的整场数学模型,引入粘温方程,加入温度对粘性系数的影响。使用CFD软件采用层流模式对较小间隙下的轴承流场进行了较为准确的模拟。对较大间隙轴承流场,采用区域分解算法,将包括进气孔在内的轴承流场分为层流和湍流两部分,研究随着气膜厚度和供气压力的增加,斜激波与边界层的相互作用,气膜边界层的形态,以及气膜中斜激波结构的变化。
     ②以单进气孔平面气体轴承为研究对象,对进气孔附近流速较快的情况采用量纲分析的方法推导了能量方程,获得了温度和马赫数之间的关系式。建立包含惯性力影响的静压气体轴承的控制方程,采用压力修正算法计算随着供气压力和气膜厚度变化,粘性力和惯性力的变化趋势,及其对压力分布的影响。结果表明,随着供气压力和气膜厚度的增加,惯性力增强,压力下降幅度增大。
     ③根据间隙内气体流动的不同状态,建立了包含进气孔在内的超音速平面气体轴承分段流动模型,通过超音速状态下流量不变的条件,推导出超音速流场的压力、速度、马赫数和雷诺数简化公式,编制了计算程序,计算结果表明激波后的压力恢复最大值随供气压力的增大、气膜间隙减小、供气孔径增大而逐渐增大,为工程上预测压力与激波的关系提供理论参考。
     ④在较高供气压力和较大气膜间隙下,提出合理大承载轴承结构,即适当增加喉口面积,调整通流面积的变化提高间隙内的压力。通过轴承结构的参数化设计及数值模拟仿真,获得了不同工况、结构、尺寸下的设计方法和原则,得出了流场性能变化规律。通过压力和承载力测试,验证了理论模型和数值计算方法的可靠性。
In gas lubrication, the mechanical moving parts are supported by the gas film between clearances, the width of which is from several micrometers to several decade micrometers. Compared with rolling bearings and liquid lubrication bearings, the gas bearings possess merits:high speed, high precision, low friction, long lifetime and etc. However, the gas supply pressure, load capacity and gas film stiffness of traditional gas bearings are low to use within low load precise support. But the development of the sophisticated industry technology needs high load gas lubrication system urgently.
     The cause of low gas supply pressure in traditional gas bearing is that the velocity of gas between the clearances becomes supersonic from subsonic when increasing the gas supply pressure and the width of clearances. When the velocity becomes supersonic, the pressure will decrease steeply and will sometimes be below atmospheric pressure. Because of the complexity of flow process, the research on supersonic phenomenon in aerostatic bearings was generally based on one dimension simplified equations for a long period of time. With the interaction between shock wave and boundary layer, the result from the one dimension analysis on shock wave structures deviates, to a large extent, from the practice. So the further study on the mechanism of supersonic flow in the clearances under high gas supply pressure or big clearances is necessary, which establishes theoretical foundation for the development of high supply pressure, high load gas bearing.
     In this paper, the theoretic analysis, numerical calculation and experiment are combined with to conduct. Based on software Fluent, the exact flow field model was set up, the numerical simulations of the flow in the clearances were done; the flow characteristics and the interaction between shock wave and boundary layer were studied in detail. By analyzing the flow state of the gas in the clearances, the simplified mathematical model was set up which described the flow field essential properties; the essential flow field properties were qualitatively analyzed. The structure of gas bearings were improved, and the load capacity of them is improved. The main research works are shown as below:
     ①The mathematical model of the whole flow field was built up considering the effects of inertia term and viscosity term, the viscosity-temperature equation was introduced to perfect its model. The laminar flow model in the CFD software was conducted to exactly simulate the flow field in the small clearances. For the flow field in the big clearances, the algorithm is qiute different in different regions of the flow field. The whole flow field including the gas supply hole is divided into two parts:laminar section and turbulent one. The interaction between oblique shock wave and boundary layer, property of gas film boundary layer and change of oblique shock wave structure were studied with the increase of gas film clearance and supply pressure.
     ②The thrust gas bearing was chosed as a research subject, the dimensional analysis was conducted to derive the energy equation when the velocity near the gas supply hole was fast; the relation expression between temperature and Mach number was derived. The control equations considering the effect of initial force were set up; the pressure correction algorithm was used to calculate the change of viscosity force and initial force with both gas supply pressure and gas film clearance changing together. The effects of viscosity force and initial force on the pressure distribution in aerostatic bearings were studied as well. The result demonstrated that its inertial force stengthens and the pressure nearby the entrance drops more quickly with the increases of supply gas pressure and film thickness.
     ③Based on the difference of the flow in clearances, the phase models were built up including the gas supply hole. The condition was introduced that the flow rate does not change under the supersonic flow, the simplified formula of pressure, velocity, Mach number and Reynold number were deduced and solved with self-defined programme, which provided theoretical reference for the prediction of the relationship between pressure and shock wave. The result showed that the maximum upswing pressure guadually increase with the increases of supply pressure and hole radius, and the decrease of film thickness.
     ④The structure of gas bearing with high load capacity was designed under higher gas supply pressure or bigger gas film clearance working condition, that is, by increasing the area of its throat, the through-flow areas were modified to gain the pressure in the film. The simulation was conducted under different structure shape, different size and different working conditions; the method and principle of bearing design were achieved in different working states, and the change law of the flow field properties were derived as well. The test of static pressure and characteristics of bearings proved the reliability of the theory model and the calculation method.
引文
[1]池长青.流体力学润滑.国防工业出版社,1998:4-5.
    [2]郭良斌.小卫星三轴仿真气浮台气体球轴承之动静态特性研究.哈尔滨工业大学博士学位论文.2005:1-2.
    [3]Powell J W. Design of Aerostatic Bearing. London, The Machinery Publishing Co. Ltd.,1970.
    [4]Katto Y, Soda N. Theory of Lubrication by Compressible Fluid with Special Reference to Air Bearing. Proc.of the second Japanese Congress on Applied Mechanics. Japan. 1952:267-270.
    [5]Ausman J S. An Improved Analytical Solution for Self-Acting Gas Lubricated Journal Bearing of Finite Length. Trans. ASME, Series D,1961,83(2):188-194.
    [6]Castelti V, Stevenson C H, Gunter E J. Steady state characteristics of Gas Lubricated Self-Acting Partial Arc Journal Bearings of Finite Width. Trans. ASLE,1964(7):153-167.
    [7]Reddi M M. Finite Element Solution of the Incompressible Lubrication Problem. Trans. ASME, Series F,1969,91(3):524-533.
    [8]Yabe H. A Study on characteristics of Externally Pressurized Gas Thrust Bearing Bull. JSME.1982,25:207-214.
    [9]Nguyen S H. p-Version Finite Element Analysis of Gas Bearings of Finite Width. Trans. of ASME, Journal of Tribology.1991,113(3):417-420.
    [10]Pandian M C.A new method for the numerical solution of the Reynolds equation for gas-lubrication slider bearings. Journal of Engineering Mathematics.1985,19(3):3-19.
    [11]古林卓嗣.多重格子法によゐ動压気体轴受数值解析の高速化.日本機械学会論文集(C编)1996,62(12):4636-4643.
    [12]Nakamura T.Yoshimoto S. Static Tilt Characteristics of Aerostatic Rectangular Double-Pad Thrust Bearing with Compound Restrictors. Tribology International.1996,29(2): 145-152.
    [13]刘暾,刘育华,陈世杰.静压气体润滑.哈尔滨:哈尔滨工业大学出版杜,1990.
    [14]党根茂.气体润滑技术.南京:东南大学出版杜,1990.
    [15]刘暾,王德,吴广玉.外压气浮轴承承载能力的计算.哈尔滨工业大学技术情报资料室,1974.
    [16]刘育华,刘暾.气体静压轴承有限元方法中的收敛问题.哈尔滨工业大学学报,机械工程专辑,1985.
    [17]刘暾,齐乃明.一种提高气体轴承刚度方法的初步分析——自主式气体轴承.全国第五届气体润滑会议论文.1991.
    [18]余鸿均,王志宏.高速空气静压径向轴承稳定性的实验研究.机械工程学报,1982,4:48-52.
    [19]龚焕荪,张鸿.上海机械学院研究报告.1988.
    [20]阵纯正,董志海,崔贵宁等.透平膨胀机三可倾瓦动压径向气体轴承的试验研究.北京理工大学学报,1993,13(1):12-17.
    [21]张锡圣,池长青,冯明.阶梯腔式动静压混合轴承发展情况.机床与液压,1992,1:1-7.
    [22]王云飞.气体浮环动静压混台轴承高速稳定性的研究(博士学位论文).北京:北京航空航天大学,1988.
    [23]张瑞乾,张锡圣.浅腔环面节流动静压气体混合轴承的稳定性研究.北京航空航天大学科学研究报告BH—B4496 1993,12.
    [24]景岗,陈尔昌,陈日曜等.表面节流静压气体润滑轴承最近的研究状况.润滑与密封,1994,6:59-64.
    [25]陈纯正.中压透平膨胀机橡皮加稳空气轴承的稳定性.西安交通大学学报,1981,4:82-87.
    [26]张瑞乾,张锡圣.浅腔环面节流动静压气体混合轴承的稳定性研究.第六届全国气体轴承会议优秀论文,宁波,1994.
    [27]zhang Qian Rui, Chang H S. A New Type of Hydrostatic/Hydrodynamic Gas Journal Bearing and its Optimization for Maximum Stability. Tribology Transactions,1995,3:589-594.
    [28]庞志成,陈世家.精密测试转台空气静压轴承动态特性.中国惯性技术学报,1997,3:554-559
    [29]Wang Yunfei,Mao Qiande. Dynamic Analysis of Floating-Ring Gas Bearing. Journal of Beijing Institute of Technology,1995,4(2):234-238.
    [30]袁哲俊,王先逵.精密和超精密加工技术.北京:机械工业出版社,1999.
    [31]林来兴,张新邦.飞行仿真技术新的发展及其在航天领域中应用.计算机仿真,1996,1:76-83
    [32]Tomoo Seki, Shinichi Togo, Improvement of the Gas Bearing Stiffness by Higher Supply Pressure(1nd Report) [J]., JSPE 1992,58(4):621-627.
    [33]Tomoo Seki, Shinichi Togo, Improvement of the Gas Bearing Stiffness by Higher Supply Pressure(2nd Report) [J]., JSPE 1992,58(12):1995-2000.
    [34]Mori H. A Theoretical Investigation of Pressure Depression in Externally Pressurized Gas-Lubricated Circular Thrust Bearings [J]. Trans. of ASME, Journal of Basic Engineer,1961, 83(2):201-208.
    [35]Mori H. A Theory of an Externally Pressurized Circular Thrust Gas Bearing With Consideration of the Effects of Lubricant Inertia[J]. Trans. of ASME, Journal of Basic Engineering.1963,85(2):304-310.
    [36]Mori H.Miyamatsu Y. Theoretical Flow-Models for Externally Pressurized Gas Bearings[J]. Trans.of ASME, Journal of Lubrication Technology.1969,91 (1):181-193.
    [37]HARUO M, EZUKA H. A pseudo shock theory of pressure depression in externally pressurized circular thrust bearings[C], Proc. JSLE-ASLE Intern. Lubr. Conf., Tokyo, June 1975,286-294.
    [38]Stahler A F. Further comments on the pressure depression effect in externally pressurized gas-lubricated bearings. ASLE Trans.,1964,7:366-376.
    [39]Salem E A. Analysis and application of externally pressurized bearings:(PhD dissertation).University of Manchester,1966.
    [40]Vohr J H. MTI gas bearing design manual, section 5.1.6,1969.
    [41]Gross W A, Matsch L A.,Castelli V., etal Fluid Film Lubrication, Wiley Interscience, Chichester:1980.
    [42]Kassab S Z. Gas bearings:(Msc dissertation), Faculty of Engineering, Alexandria University,1980.
    [43]Shawky M. A, Kassab S Z. Performance characteristics of externally pressurized rectangular gas bearings compensated with orifice restrictor. Bull. Fac. Eng., Alexandria University,1981,20:227-248.
    [44]Boffey D. A., Wilson P. M An experimental investigation of the pressure at the edge of a gas bearing pocket. Trans. ASME, J.Lubr. Technol.,1981,103:593-600.
    [45]Poupard M, Drouin G. Theoretical and experimental pressure distribution in supersonic domain for an inherently compensated circular thrust bearings. Trans ASME, J. Lubr Technol.1973,95,217-221.
    [46]Salem E, Khalil F. CHOKED FLOW IN EXTERNALLY PRESSURIZED SPHERICAL GAS BEARINGS. Wear, 1978,47(1):61-70.
    [47]Khalil M. f., Shawky M.A., Elastohydrostatic lubrication of externally pressurized rectangular gas bearings Experimental verification. Presented at the Egyptian Society of Tribology First Tribilogy Conference,20-21 December, Cairo, Egypt,1989.
    [48]Shawky M. A., An empirical formula for effective recess pressure in rectangular gas bearings. Alexandria Eng. J.1990,29A,217-221.
    [49]San Andres L. A., Velthuis J. F.M., Laminar flow in a recess of a hydrostatic bearings. STLE Tribol. Trans.1992,35,738-744.
    [50]Noureldeen E. M. A., Effects of bearing geometry and operating conditon on the performance of externally pressurized rectangular gas bearing. Msc Thesis, Faculty of Engineering, Alexandria University,1994.
    [51]Kassb S Z, Performance of an externally pressurized rectangular gas bearing under constant effective recess pressure. Tribol. Intern.1994,27,159-167.
    [54]下间頼一,井上平八郎.气体轴承间隙内流动可视化[J].润滑,1988,33(5):332-335.
    [55]Kassab S Z. Empirical correlations for the pressure depression in externally pressurized gas bearings[J], Tribology International,1997,30,59-67.
    [56]Belforte G. Raparelli T. Viktorov V., et. Discharge coefficients of orifice-type restrictor for aerostatic bearings[J]. Tribology International 2007,40,512-521.
    [57]Shigeka Y, Makoto Y. Numerical Calculations of Pressure Distribution in the Bearing Clearance of Circular Aerostatic Thrust Bearings With a Single Air Supply Inlet [J]. Transactions of the ASME,2007,129(4),384-390.
    [58]MORI. A, IWAMOTO. N, MORI. H. Influence of the Gas-film Inertia Forces on the Squeeze Damping of an Externally Pressurized, Gas-lubricated Thrust Collar Bearing With Multiple-holes Admission[J]. Bulletin of JSME.1979,22:1678-1684.
    [59]Milne. A. j., On the Effect of Lubricnat Inertia in the Theory of Hydrodynamic Lubrication ASME Journal of Basic Engineering,1959,18:239.
    [60]Tichy J A, Bourgin P. The Effect of Inertia in Lubrication Flow Including Entrance and Initial Conditions[J]. journal of Applied Mechanics,1985,52:759-765.
    [61]Tichy J A, Modest M F. A Simple Low Deborah Number Model for Unsteady Hydrodynamic Lubrication Including Fluid Inertia[J], Journal of Rheology,1980,24(6):829-845.
    [62]Zhang J X, Rodkiewicz C M. On the Design of Thrust Bearings Using a CFD Technique. Tribology Transactions.1997,40(32):403-412.
    [63]Jyh-Chyang Renn, Chih-Hung Hsiao. Experimental and CFD Study on the Mass Flow-Rate Characteristic of Gas Through Orifice-Type Restrictor in Aerostatic Bearings. Tribology International.2004,37(2):309-315.
    [64]党茂根.气体润滑技术.南京:东南大学出版社,1992.
    [65]Miyake, Inaba T, Matsuoka T. An Externally Pressurized Supersonic Gas Thrust Bearing (1st Report, Static Characteristics in Supersonic Operations). Trans. of ASME, Journal of Tribology,1984,106:163-168.
    [66]Miyake, Inaba T, Matsuoka T. An Externally Pressurized Supersonic Gas Thrust Bearing(2nd Report, Dynamic Characteristics in Supersonic Operations and Static Characteristics in Sonic Operations). Trans, of ASME,Journal of Tribology,1984,106:169-173.
    [67]Miyake, Inaba T, Naoshige K. An Experimental Study on Externally Pressurized Supersonic Gas Thrust Bearings. Trans. of ASME. Journal of Tribology,1985,107:122-127.
    [68]Kousuke I, Shuji T, Shinichi T, et al. Development of high-speed micro-gas bearings for three-dimensional micro-turbomachines[J]. Journal of Micromechanics and Micro-engineering,2005,15:222-227.
    [69]Shuji T, Kousuke I, Shinichi T, et al. Turbo test rig with hydroinertia air bearings for a palamtop gas turbine [J]. Journal of Micromechanics and Microengineering,2004,14: 1449-1454.
    [70]Kousuke I, Shin-Ichi T, Hikichi, Kousuke H, et al.Analytical and experimental study of hydroinertia gas bearings for micromachine gas turbines [J]. Proceedings of the ASME Turbo Expo,2005,v 4, p 747-755, Proceedings of the ASME Turbo Expo 2005
    [71]王云飞编著.气体润滑理论与气体轴承设计.机械工业出版社,1999.
    [72]十合晋一著,刘湘等译.气体轴承的设计与制造.黑龙江科学技术出版社,1988.
    [73]李树森,张鹏顺,曲全利.气体润滑轴承技术的应用与发展趋势.润滑与密封,1999,2:9-10.
    [74]王元勋,陈尔昌,师汉民等.气体润滑轴承的研究和发展.湖北工学院学报,1994(9):155-159.
    [75]Kousuke I, Shuji T, Shinichi T,at al. Development of micromachine gas turbine for portable power generation[J]. JSME International Journal, Series B:Fluids and Thermal Engineering,2004,47(3):459-464.
    [76]Ferri A, Attidi Guidonia, Experimental results with airfoils testedin the highspeed tunnel at Guidonia[R]. NACATM946,1939.
    [77]Liepmann H W. The interaction between boundary layer and shock waves intransonic flow[J]. JAS,1946,13:623-637.
    [78]Ackeret J, Feldmann F, Rott N. Investigations of compression shocks and boundary layering as e smoving at highspeed[R]. NACATM 1113,1947.
    [79]Fage A, Sargent R F. shock wave and boundary layer phenomenon near aflat surface [J]. ProcRoy SocSerA,1947,190.
    [80]Neumann E P, Lustwerk F. Supersonic diffusers for wind tunnels [J]. J A p plMech,1949, 16(2):195-202.
    [81]Neumann E P, Lustwerk F. High efficiency supersonic diffusers [J]. J A eronautSci, 1951,18(6):369-374.
    [82]Howarth L. The propagation of steady disturbances in a supersonics tream boundedon one side by a paralel subsonics tream[C]. ProcCam bridgePhilSoc,1947.380-390.
    [83]Tsien, Hsueshen, Finston M. Interaction between parallel streams of subsonic and supersonic velocities,JAeroSci,1949,16(9):515-528.
    [84]Lighthill M J. Reflection at alaminar boundary layer of a weak steady disturbance to a supersonics tream neglecting viscosity and heat conduction[J]. QuartJMech and ApplMath, 1950,111(3):303-325.
    [85]Meksyn D. The boundary layer equations of compressible flow separation[J]. ZAMM, 1958,38:372-379.
    [86]L.克罗柯.定常气体动力学的一维处理法.科学出版社.1985.
    [87]MacComack R W. Numerical solution of the interaction of a shock wave with alaminar boundary layer[R]. LectureNotesinPhysics,1971.151-163.
    [88]Beam R M, Warming R F. An implicit factor edscheme for the compressible Navier-Stokes equations[J]. AIAA,1978,16:393-402.
    [89]Jones W P, Launder B E. The prediction of laminarization with a two-equation model of turbulence[J]. Int.J. HeatMassTransfer.1972,15:301-314.
    [90]Barakos G, D rikakisD. A ssessment of Various Low-Reynolds Number Turbulence Models in Shock-Boundary Layer Interaction [J]. Comput. Methods App l. Mech. Engrg,1998,160: 155-174.
    [91]Liou W W, Huang G, Shih T H. Turbulence Model A ssessment of Shock Wave Turbulent Boundary-Layer Interaction in Transonic and Supersonic Flows [J]. Computers and Fluids, 2000,29:275-299.
    [92]Jameson A. Schmidt W, Turkel E. Numerical solution of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes[R]. AIAA 8121259.
    [93]Spalart P R and Allmaras S R. A one-equationturbulence model for aerodynamic flows [J]. La Recherche Aerospatiale,1994,1:5-21.
    [94]何枫,谢峻石,郝鹏飞等.应用S-A模型的自由射流和冲击射流数值模拟.推进技术[J].2002,22:43-46.
    [95]Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. AIAA J.,1994,32:1598-1605.
    [96]王革,蒋旭旭,唐强.超燃冲压发动机进气道内激波/边界层干扰研究[J].哈尔滨工业大学报,2007,28(11):1206-1212.
    [97]杨晓东,马晖扬等.适用于激波边界层相互作用的线性涡粘性湍流模式[J].航空动力报,2002,17(3):273-279.
    [98]陈吉明,任玉新.超音速风洞扩压器激波串现象的数值模拟[J].清华大学报,2007,47(2):264-267.
    [99]Fluent Inc., Fluent User's Guide. Fluent Inc.,2003.
    [100]王福军.计算流体力学分析.北京:清华大学出版社,2004.
    [101]徐华舫.空气动力学基础.北京:北京航空学院出版社,1987.
    [102]Rodriguezcg. A symmetry effects in numerical simulation of supersonic flows with upstream separated regions[R]. AIAA2200120084.
    [103]H史里希廷.边界层理论.北京:科学出版社,1988.
    [104]Elrod H G, Burgdorfer A. Proceeding of the First International Symposium on Gas Lubricated bearings. Washington,1959,193-223.
    [105]Szeri A Z. Some Extensions of the Lubrication Theory of Osborne Reynolds[J]. Journal of Tribology.1987,109(1):21-36.
    [106]Constantinescu V N. Note on the Influence of the Heat Transfer Between the Surfaces as a Secondary Effect in Gas Lubrication[J]. Trans. of ASME, Journal of Lubrication Technology.1969,91(1):194-198.
    [107]Mori H. Miyamatsu Y., Research on externally pressurized circular thrust gas-lubricated bearings. Bulletin of JSME,1964,7(26):467-473.
    [108]SALEM E, KAMAL W. Effect of recess geometry on shock wave formation in circular gas bearings[J]. Wear,1977,46(1) 351-366.
    [109]孙佩瑶,张淑贤.浅谈惯导测试中心的压缩空气供应.压缩机技术,1997,141(1):30~31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700