用户名: 密码: 验证码:
平面空气静压轴承承载特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天技术、微电子技术和精密加工等学科的发展,对于产品精度的要求越来越高。空气静压轴承以其高精度、低摩擦、无污染的特点广泛应用于航空航天、食品医药以及高精密机床和测量仪器等领域中。特别在航天器地面仿真实验系统中,为了完全模拟太空中无摩擦的失重环境,平面空气静压止推轴承作为主要的支承部件承担着整个气浮台及其相关设备的重量。因而,提高空气静压轴承的承载能力,优化轴承节流器的节流作用,就成了气体静压润滑理论研究和空气轴承设计的重要内容。
     传统的空气静压止推轴承多采用节流孔供气的方法,这也是研究起步最早、目前理论分析和实验研究较多的一种节流器形式。在已有的研究成果中,国内外学者在设计和选择时多采用经验公式和工程方法,对节流孔的节流类型分为小孔节流方式和环面节流方式两种。随着进口效应和激波假设的提出,在传统的空气静压轴承设计理论中广泛采用的“两块式流动假设”(即:第一部分为供气孔中等熵流动,第二部分为间隙气膜内完全发展的等温层流)已明显不能满足当代研究和应用中对空气静压轴承在精确度和准确性方面的要求。如何准确描述轴承在工作时随着节流孔处结构参数不同轴承节流器表现出来的不同节流类型,在现有条件下从改进节流效果入手,而非单纯依靠提高供气压力或者追求小气膜厚度来提高小孔节流空气静压轴承的承载能力,这不仅从本质上完善和充实了空气轴承设计理论,充分利用了轴承自身所具备的承载力提升空间,也减小了对外界能源的消耗和在追求加工精度方面需要的额外投入。
     在广泛调研国内外关于小孔节流空气静压止推轴承研究成果的基础上,本文从流体润滑理论出发,根据供气孔处结构参数之间的相互关系和制约条件,全面考虑各流域可能出现的流动状态和可能造成的节流作用,遵循可压缩雷诺方程的推导结果对空气静压止推轴承的工作气膜进行数学建模,将可压缩雷诺气体润滑方程与边界条件联立求解得到轴承气膜中的压力分布,进而求解轴承的承载力并得出相应的结论。在理论分析的基础上,本文以多孔供气小孔节流空气静压止推轴承为例,研究不同节流类型下具体参数对轴承承载能力的影响规律。分别研究轴承在静态承载、发生倾侧以及受到外界干扰作用时,各典型节流类型轴承在承载性能上表现出来的特点,这样以来就可以根据不同的使用需要选择适当的节流类型,并得到各节流类型下相应的优化参数。本文最后通过搭建实验台,将静态实验、倾侧实验和动态实验三部分的实测值与理论分析和数值计算的结果相比较,证明本文中模型建立和研究结果真实可靠。本文的研究结论使静压润滑理论在空气轴承设计方面得到了丰富和完善,并为实际生产过程中空气静压止推轴承的选择和应用提供了一套完整的选型方法。
Development of space technology, microelectronic technology and precision machining technology demand high accuracy. Attribute to its advantages of high accuracy, anti-friction, clean and health, aerostatic bearing is widely used in spaceflight, pharmaceuticals industry, food service industry, high precision machine tool and measuring instrument areas. In ground-based spaceflight and docking simulation system, it is necessary to simulate a zero-genvironment officeenvironment completely. As an important support unit, aerostatic thrust bearing plays a significant part in air bearing testbed,which is designed for spaceflight and docking simulation system. And the demand for improvement of load-carrying capacity and optimization of throttlling effect of restrictor become one of the most important contents in theoretical research of aerostatic lubrication and design of air bearing.
     Traditional aerostatic thrust bearing mostly use orifice inlet method which is the earilest and the most pervasive throttle in theoretical and experimental study. In past researches, domestic and foreign scholars always use experimental formula and engineering calculating method in design and election. And they devide orifice inlet into orifice compensation and inherent compensation according to its throttling effect. Putting forward along with entrance effect and shock wave assumption, simplified model composed by isentropic flow in orifice and isothermal flow in gas film is too rough to meet the need for precise answers to performance characteristics of aerostatic thrust bearings in the serious reaches of contemporary science. At present, making an accurate description of orifice restrictor and improving throttle operating principle instead of requirements of high supply gas pressure and thinner gas film under current conditions is of far reaching importance for further enriching and improving design theories for aerostatic thrust bearing, develop fully orifice compensation's potential and capability, use less energy, and have lower costs on high-precision processing technology.
     Given above consideration and current research situation analysis of orifice compensated aerostatic thrust bearing of domestic and foreign scholars, fulfilled mathematical model of the whole flow process from inlet to outlet is established according to gas lubrication theory, relations and limitaion among all structural paprameters around the orifice inlet. For all possibilities of flow condition and throttling tpyes in the whole region, coupling compressible nonsteady Reynolds equation with boundary conditions, pressure distribution of the air film can be obtained. Therefore the load-carrying properties of air bearing can be obtained, as well as the corresponding conclusions. On base of theoretical analysis, we take multi-inlet orifice compensated aerostatic thrust bearing as an example to disclose influence of detailed parameters on load-carrying capacity of air bearing with different throttling modes in possible working conditions. characteristics and differences of air bearings with different throttling modes are Summarized when they are in normal condition, tilt condition and even interfered environment. In this way, you can choose air bearing with proper throttling mode and optimized parameters of as needed. the test investigation on the static characteristics, anti-tilt characteristics and dynamic characteristics is performed.The results show that the models and research results in this dissertation are available and reliable. The results of this paper further enrich the applications of air lubrication theory to aerostatic bearing design. And it also provides a series of comprehensive methods for selection and use of aerostatic thrust bearing in practical production.
引文
1徐登峰,朱煜等.空气轴承提高气浮系统稳定性的阻尼技术.纳米技术与精密工程. 2010, (1): 84-89
    2党根茂.气体润滑技术.东南大学出版社, 1990: 41
    3 G. Hirn. Sur les principaux phénomènes qui presentment les frottementes médiats. Soc. Ind. Mulhouse Bull. 1854, (26): 188-277
    4王元勋,陈尔昌,师汉民.气体润滑轴承的研究和发展.湖北工学院学报. 1994, (9): 155-159
    5池长青.流体力学润滑.国防工业出版社, 1998: 4-5
    6 W. J. Harrison. The hydrodynamical theory of lubrication with special reference to air as a lubricant. Transactions of Cambridge Philos. Soc, 1913: 39-54
    7 J. W. Powell.空气静压轴承设计.丁维刚,林向群等译.北京,国防工业出版社, 1978: 99-101
    8 J. W. Lund. Calculation of stiffness and damping properties of gas beatings. Tras ASME, Lubr Techn. 1968: 793-803
    9刘暾,刘育华,陈世杰.静压气体润滑.哈尔滨,哈尔滨工业大学出版社, 1990: 93.
    10徐建民,陈明.边界元方法在研究气体静压轴承静特性中的应用.润滑与密封. 1997, (3): 27-30
    11李兴华.空气静压轴承的静特性计算及其实际应用.同济大学学报. 1999, 27(1): 69-73
    12陈纯正,候予,熊联友等.多排环形供气孔静压止推气体轴承的研究.西安交通大学学报. 2000, (11): 40-73
    13孙雅洲,杜金名,卢泽生.圆板型多孔质止推轴承中几种分析模型的比较.航空精密制造技术. 2002, (38): 8-10
    14董乙霏.多孔质气体静压轴承静态性能分析.天津大学硕士论文, 2007: 5-10
    15 A. K. Stiffler. Analysis of the stiffness and damping of an inherently compensated , multiple-inlet circular thrust bearing. 1974: 329-336
    16 Z. Kazimierski. Investigations of externally pressurized gas bearing with different feeding systems. J Lubr Technol. 1980, 102(1): 59-64
    17 D. A. Boffey. An experimental investigation of the effect of orifice restrictor sizeon the stiffness of an industrial air lubricated thrust bearing. Tribology International. 1981: 287-291
    18 D A Boffey. A theoretical and experimental study into the steady-state performance characteristics of industrial air lubricated thrust bearings. Tribology International. 1985, 18(4): 229
    19陈海斌,程雪梅.一种研究空气静压轴承工作特性的新方法——保角变换下的有限元分析法.渝州大学学报(自然科学版). 1995, (12): 11-16
    20 Mohamed Fourka. Prediction of the stability of air thrust bearings by numerical, analytical and experimental methods. Wear. 1996, 198: 1-6
    21 Mohamed Fourka. Comparison between externally pressurized gas thrust bearings with different orifice and porous feeding systems . Wear. 1997, 210(12): 311-317
    22 C. Hsiao. Experimental and CFD study on the mass flow rate characteristic of gas through orifice-type restrictor in aerostatic bearing. Tribol Int. 2004, 37(4): 309-315
    23 J P Khatait. Design and development of orifice-type aerostatic thrust bearing. 2005: 7-12.
    24 G. Belforte, T R V V. An experimental study of high-speed rotor supported by air bearings: test RIG and first experimental results. Tribol Int. 2006, 39(8): 839-845
    25 Jr Lin. Some recent investigations in the theory of hydrodynamic stability. Math. 1951, (4).
    26 J. S. Ausman. An improved analytical solution for self-acting gas-lubricated journal bearing of finite length. 1961.
    27 B. C. Majumdar. On the general solution of externally pressurized gas journal bearings. Trans. of ASME, Journal of Lubrication Technology. 1972, 94(4): 291-296
    28李子才,戴锷.气体轴承压力的数值计算——求解Reynolds方程的非线性有限元及其误差分析.力学学报. 1980, (2): 158-168
    29徐建民.应用边界元法对流体静压圆柱轴承性能的研究.哈尔滨工业大学硕士学位论文. 1989: 8-13
    30温诗铸.边界元法在润滑问题中的应用——kayleigh阶梯轴承.润滑与密封. 1982(3): 24-29
    31 M. M. Reddi. Finite element formulation of the Incompressible Lubrication Problem. 1969:225-229
    32 H. Mori. Theoretical investigation of externally pressurized thrust collargas-bearings. 1963:337-345
    33 J. C. Padate. Design of aerostatic slideways for minimum air consumption. Int.J.Math Tool Des.Res. 1973, 14: 135-141
    34 S. Eshghy. Optimum design of mutiple-hole inherently compensated air bearings—part 1:circular thrust bearings. 1975:65-76
    35 B. C. Majumdar. Analysis of aerostatic thrust bearings with offset load. Int.J.Mach.Tool Des.Res. 1973, (13): 65-76
    36 G. Lin, A. Tojiro, I. Ichiro. A computer simulation method for dynamic and stability analysis of air bearing. Wear. 1988, 126(1-2): 307–319
    37 K. Kinouch, K. Tanaka, S. Yoshimura, G. Yagawa. Finite element analysis of gas-lubricated grooved journal bearings. Series C. 1996, 39:123–129
    38 F. Mohamed, T. Yong, B. Marc. Prediction of the stability of air thrust bearing by numerical analytical and experiment methods. Wear. 1996, 198(1-2): 1–6
    39 M. F. Bonis. Prediction of the stability of air thrust bearings by numerical, analytical and experimental methods. Wear. 1996, 198(1-2): 1-6
    40 M. F. Chen. Static behavior and dynamic stability analysis of grooved rectangular aerostatic thrust bearings by modified resistance network method. Tribology International. 2002, 35: 329-338
    41 K. Takuji. Numerical analysis of herringbone-grooved gas-lubricated journal bearings using a multigrid technique. Trans ASME 1999, 121: 148–59
    42 Xue-Dong Chena, Xue-Ming He. The effect of the recess shape on performance analysis of the gas-lubricated bearing in optical lithography. Tribology International. 2006, (39): 1336–1341
    43王祖温,郭良斌.环面节流静压圆盘止推气体轴承的动特性计算.液压与气动. 2006, (7): 7-11.
    44王祖温,郭良斌.静压气体轴承静刚度的动态测试新方法.机械工程学报. 2007, (4): 21-26
    45 F. Al-Bender. On the modelling of the dynamic characteristics of aerostatic bearing films from stability analysis to active compensation. Precision Engineering. 2009, (33): 117-126
    46康俊远.表面节流式动静压轴承的特性分析.润滑与密封.2006, (6):135-137
    47梁瑞峰,呼晓青,刘波.表面节流空气静压润滑轴承性能研究.西安工业学院学报. 2004, 24(1): 1-4, 14
    48王云飞,毛谦德.气体浮环轴承的动态分析.北京理工大学学报(英文版).1995, (2):174-181
    49熊联友,王瑾.平箔式箔片止推气体轴承静特性的理论研究.润滑与密封. 2002, (2): 2-3
    50崔明现,侯予,王林忠,陈纯正.波箔轴承结构刚度的计算.润滑与密封. 2006, (5): 57-59,63
    51张瑞乾,张锡圣.小孔环面浅腔节流浮环气体轴承的稳定性研究. H北京理工大学学报(英文版)H. 1997, (2): 130-137
    52解鹏,金光.小孔节流方式对静压气体球轴承工作特性的影响.润滑与密封. 2010 (3): 77-80
    53侯予,赵祥雄.小孔节流静压止推气体轴承静特性的数值分析.润滑与密封. 2008, (9): 1-3
    54 Wen-Jong Lin, J P K W. Modelling of an orifice-type aerostatic thrust bearing. ICARCV 2006: 1-6
    55 S. P. Carfagno. An analysis of experimental data on entrance effect in circular thrust bearings. PHILA: OFFICE OF NAVAL RESEARCH Department o f the Navy, 1966
    56王祖温,于贺春,马文琦.基于FLUENT的环面节流静压气体圆盘止推轴承二维流场仿真分析.机床与液压. 2008, (10): 109-112
    57饶河清,孙亚洲,卢泽生.基于FLUENT软件的多孔质静压轴承静态特性的仿真与实验研究.机床与液压. 2007, (3): 170-172
    58十晋合一.气体轴承的设计与制造.黑龙江科学技术出版社, 1988: 17-18
    59杜金名,卢泽生.多孔质流体静压轴承润滑技术的研究.哈尔滨工业大学博士论文, 2003: 15-18
    60李树森,曲全利,张鹏顺.静压气体轴承稳定性计算方法的分析.机械工程师. 1999, (5): 54-55
    61徐建民,陈明.边界元方法在研究气体静压轴承特性中的应用.润滑与密封. 1997, (3): 27-30
    62刘墩,彭春野,葛卫平,齐乃明.小孔节流气体静压润滑的离散化和计算收敛.摩擦学学报. 2001, (2): 139-42
    63郭良斌,王祖温,包钢,李军.新型环面节流静压气体球轴承动特性分析.中国机械工程. 2004, 15(23): 2069-2073
    64杜金明,卢泽生,孙雅洲.空气静压轴承各种竹流方式的比较.航空精密制造技术. 2003, 39(6): 4-7
    65 T. Nakamtra, S.Yoshimoto. Static tilt characteristics of aerostatic rectangular double-pad thrust bearings with compound restrictors. Tribology International. 1996, 29(2): 145-152
    66 S. Yoshimoto, J.Tamura, T. Nakamura. Dynamic tilt characteristics of aerostatic rectangular double-pad thrust bearings with compound restrictors. Tribology International. 1999, (32): 731-738
    67 Jaw-Ren Lin. Static and dynamic characteristics of externally pressurized circular step thrust bearings lubricated with couple stress fluids. Tribology International. 1999, (32): 207-216
    68 K. Czolczynski. How to obtain stiffness and damping coefficient of gas bearings. Wear. 1996, 201(1-2): 265-275
    69 Q. H. Zeng, D.B.Bogy. Stiffness and damping evaluation of air bearing sliders and new designs with high damping. Journal of Tribology. 1999, 121: 341-347.
    70潘晋.精密工作台气体静压轴承的研究.清华大学工学博士学位论文. 1989:1-10
    71郭良斌.静压气体轴承静态特性的理论研究综述.武汉科技大学学报(自然科学版). 2006, (29): 37-40
    72刘墩,杜建军,姚英学,谢大刚.狭缝节流气体静压润滑方程式的离散化和相容性条件.机械工程学报. 2002, 38(10): 144-148
    73 S. Yoshimoto. Static characteristics of a slot-Entry gas Journal Bearing with Feeding Holes. Journal of Tribology,Trans.ASME. 1988, (110): 587-591
    74 Shigeka YOSHIMOTO. Dynamic properties of Externally-pressurized Gas Journal Bearings with Circular Slot Restrictors. Bulletin of JSME. 1984, 27(229): 1537-1543
    75 Shigeka YOSHIMOTO. Static characteristics of an aerostatic journal bearing with partially gas-fed slot restrictors. Bulletin of JSME. 1986, 29(252): 1907-1912
    76 Shigeka YOSHIMOTO, Yukihisa NAKANO. Stability of a rigid rotor supported by externally pressurized gas journal bearings with a circular slot restrictor. Bulletin of JSME. 1984, 27(225): 561-569
    77杨克剑.带切向供气缝的外压气体轴承.制冷学报. 1980, (4): 5-16
    78杜建军,刘暾.狭缝节流气体动静压轴承的承载特性分析[C]. 2006年全国摩擦学学会会议论文集(一). 2006: 267-271
    79姚英学,杜建军,刘暾.狭缝节流气体静压轴颈——止推轴承静态特性分析.摩擦学学报. 2002, (22): 66-70
    80徐学兰,易家明.多孔质静压气体轴承材料的研究.轴承. 1985, (1): 36-37
    81田春祥,杜金名.多孔质静压轴承概述.润滑与密封. 2006, (3): 170-174
    82孙雅洲,杜金名,卢泽生.影响空气静压多孔质轴承静态性能的有关因素.中国机械工程. 2003, (14): 417-420
    83阮宏慧,张大卫,景秀并.多孔质径向气体静压轴承运动稳定性分析.轴承. 2006, (9): 1-3
    84卢泽生,杜金名,孙雅洲.气体静压多孔质球面轴承静态性能分析.机械工程学报. 2004, (12): 115-119
    85卢泽生,杜金名,孙雅洲.影响空气静压多孔质止推轴承静态性能的因素.哈尔滨工业大学学报. 2001, (6): 729-731, 739
    86杜金名,卢泽生.气体静压多孔质止推轴承静态特性的理论发展.润滑与密封. 2001, (4): 69-71
    87杜金名,卢泽生,孙雅洲.圆板型多孔质止推轴承中几种分析模型的比较.航空精密制造技术. 2002, (5): 8-10
    88富田博嗣,熊谷真文.用于多孔质流体静压空气轴承的轴承材料及使用其的轴承.奥依列斯工业株式会社. 2004, (5): 1-36
    89杜金名,卢泽生,孙雅洲.空气静压多孔质止推轴承多孔质圆板的变形.中国机械工程. 2003, (6): 508-510
    90杜金名,卢泽生,孙雅洲.气体静压小孔节流与多孔质节流性能的比较.润滑与密封. 2002, (4): 2-3, 5
    91罗继伟,王云飞.多孔质静压气体轴承静态性能的有限元分析.轴承. 1985. (2): 8-12
    92张君安.高刚度空气静压轴承研究.西安,西北工业大学博士论文. 2006: 50-58
    93王建敏.超精密气体静压轴系部分关键技术研究.长沙:国防科学技术大学博士论文. 2007: 1-10
    94张国庆.提高静压气体轴承刚度和承载能力的研究.哈尔滨:哈尔滨工业大学硕士学位论文. 2008: 2-15
    95齐乃明,刘暾,谭久彬.自主式静压气体轴承实现无穷刚度的条件分析.南京理工大学学报. 2001, (2): 147-151
    96王元勋,杨清好,陈尔昌.主动控制节流气体润滑轴承动态特性研究.振动工程学报. 1999, (3): 304-308
    97王元勋.主动控制节流气体润滑轴承静态特性研究.华中理工大学学报. 1999, (2): 37-39
    98 Hiroshi YABE. A study on angular stiffness and damping properties externally pressurized gas thrust bearing with surface-restriction compensation. Bulletin of JSME. 1983, 26(222): 2251-2257
    99 Hiroshi YABE ete. Fundamental characteristics of an externally pressurized gas-lubricated journal bearing with surface-restriction compensation. Bulletin of JSME. 1986, 29(254): 2711一2717
    100王元勋,景岗,陈尔吕.新型表面节流气体润滑轴承的有限元分析.机床与液压. 1995, (l): 16~19
    101张文豪,张君安.用可变截面均压槽提高空气静压轴承刚度的结构设计与分析.第八届全国摩擦学大会.广州:中国机械工程学会摩擦学分会. 2007: 329-332
    102张文豪,张君安,刘波.新型空气静压推力轴承承载能力的实验研究.科技信息. 2007, (29): 438-439
    103张君安,方宗德.空气轴承的弹性均压槽力学性能分析与测试.南京理工大学学报(自然科学版). 2007, (3): 304-307, 316
    104 Hiroshi MIZUMOTO,Masafumi INOUE. An ultraprecision machine tool using twist-roller drives and active control aerostatic guideways. Precision Engineering: nanotechnology,Proceedings-volumel(euspen). 1999: 28-31
    105 L. Brzeski, Z.Kazimierski. Infinite stiffness gas bearings for precision spindles. Precision Engineering. 1992, 14(2): 105-109
    106 M. Vermeulen, N.Rosielle,P. Schellekens. Dynamic behavior-improvement and miniaturisation of passively compensation aerostatic bearings. Precision Engineering: nanotechnology,Proceedings-volumel(euspen). 1999: 36-39
    107刘暾,齐乃明.一种提高静压气体轴承刚度方法的初步分析自主式气体轴承.北京理工大学学报(气体润滑专辑增刊). 1993, (13): 52-55
    108 S. Yoshimoto. A aerostatic thrust bearing with a stiffness of1N nm-1. Nanotechnology. 1996, (7): 52-57
    109王云飞.气体润滑理论与气体轴承设计.机械工业出版社, 1997: 266-270
    110 Licht L F, D S B. Self-excited vibrations of an air-lubricated thrust bearing . Trans ASME. 1958: 411-414
    111 H. H. Richardson. Static and dynamic characteristics of compensated gas bearings. Trans ASME. 1958: 1503-1509
    113张瑞乾.径向气体/液体轴承动力特性系数的统一求法.北京航空航天大学学报. 1994, 90(4): 69-73
    114 Al-Bender F. On the modelling of the dynamic characteristics of aerostatic bearing films From stability analysis to active compensation. Precision Engineering. 2009, (33): 117-126
    115 H. M. Talukder, T. B. Stowell. Pneumatic hammer in an externally pressurized orifice-compensated air journal bearing. Tribology International. 2003, 36(8): 585-591
    116 R. Bassani, E. Ciulli, P. Forte. Pneumatic stability of the integral aerostatic bearing: comparison with other types of bearing. Tribology International, 1989, 22(6): 363-374
    117 T. B. Stowell. Pneumatic hammer in a gas lubricated externally pressurised annular thrust bearing. Wear., 1972, 21(2): 410-411
    118 John G. Chernga, Mahmut Eksioglub, Kemal Kizilaslan. Vibration reduction of pneumatic percussive rivet tools: Mechanical and ergonomic re-design approaches. Applied Ergonomics. 2009, 40(2): 256-266
    119 H. M. Talukder, T. B. Stowell. Pneumatic hammer in an externally pressurized orifice-compensated air journal bearing. Tribology International. 2003, 36(8): 585-591
    120李人宪.有限体积法基础.国防工业出版社. 2002: 15-57
    121郑冕,吴丽娟.任意区域的网格划分方法分类.沈阳师范大学学报(自然科学版). 2005, (4): 364-367
    122王华侨.结构有限元分析中的网格划分技术及其应用实例. CAD/CAM与制造业信息化.2005: 42-47.
    123赵玉新. Fluent中文教程.国防科技大学出版社. 2005: 85-86
    124 C. H. Ana, Y. Zhanga. Modeling of dynamic characteristic of the aerostatic bearing spindle in an ultra-precision fly cutting machine. International Journal of Machine Tools and Manufacture. 2010, 50(4): 374-385
    125 Pang Zhichenga, Sun Jingwu. The dynamic characteristics of hydrostaticbearings. Wear.1993, 166(2): 215-220
    126 R.J. Kind. Pneumatic stiffness and damping in air-supported structures. Journal of Wind Engineering and Industrial Aerodynamics. 1984, 17(3): 295-304
    127 K.Venkata Raman, B.C. Majumdar. Experimental investigation of the stiffness and damping characteristics of aerostatic rectangular thrust bearings. Wear. 1979, 52(1): 71-78.
    128 J.W. Roblee, C.D. Mote Jr. Design of externally pressurized gas bearings for stiffness and damping. Tribology International. 1990, 23(5): 333-345
    129王晶.平面气浮轴承的静态特性计算及实验研究.哈尔滨工业大学硕士学位论文. 2005:20-21
    130 T. Nakamura, S. Yoshimoto. Static tilt characteristics of aerostatic rectangular double-pad thrust bearings with compound restrictors. Tribology International.1996, 29(2): 145-152
    131 S. S. Pande. Analysis of tapered land aerostatic thrust bearings under conditions of tilt and rotation. Wear. 1985: 297-308.
    132 Al-Bender F. Contributions to the design theory of circular centrally fed aerostatic bearings. K.U. Leuven, 1992:297-308
    133张令弥.振动测试与动态分析.航空工业出版社, 2000: 205-212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700