用户名: 密码: 验证码:
负载型铑催化剂的制备、表征及烯烃氢甲酰化反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烯烃氢甲酰化是用于合成有机含氧化合物的重要工业过程。低碳烯烃氢甲酰化普遍使用均相催化剂,并多用有机物或水作反应溶剂。对于高碳烯烃氢甲酰化反应,由于烯烃在水中的溶解度极低,从而限制了水/有机两相催化的应用;又由于高碳醛沸点较高,铑催化剂回收过程易引起失活。目前,高碳烯烃氢甲酰化反应工艺主要采用高压钴法,存在催化剂回收过程复杂,副反应多和能耗高等缺点。为了解决这些问题,近年来人们对高碳烯烃氢甲酰化均相催化多相化技术进行了大量研究,但仍存在着催化剂活性低、活性组分流失严重等技术难题。因此,开发新型负载型催化剂对于高碳烯烃氢甲酰化反应具有重要的理论和实际意义。
     混合辛烯(主要含有2,4,4-三甲基-1-戊烯和2,4,4-三甲基-2-戊烯)氢甲酰化合成产物异壬醛具有重要的工业应用价值。本文首先根据2,4,4-三甲基-1-戊烯、2,4,4-三甲基-2-戊烯和异壬醛的分子结构特点以及有机合成理论,利用Benson和Constantinou-Gani基团贡献法对缺少的热力学数据进行了估算,对混合辛烯氢甲酰化反应体系进行了热力学分析。计算表明,异辛烯氢甲酰化是强放热反应且平衡常数很大,反应主要受动力学因素控制。
     本文以活性炭为载体,以三氯化铑为催化剂前体,采用等体积浸渍法制备了无机磷酸改性的负载型铑催化剂Rh-P/AC。通过活性炭载体的N2吸附、Boehm滴定和FT-IR测定等表征手段,详细考察了载体类型、预处理和催化剂制备条件对Rh-P/AC催化性能的影响。结果表明,载体表面性质对催化剂性能影响很大,活性炭碱热活化处理较酸处理和碱洗处理更有利于催化剂活性的提高。碱热预处理后,活性炭载体的介孔比例和表面羟基、羰基以及碱性基团增加。通过正交实验对载体预处理和催化剂制备条件进行了优化,考察了各因素的影响程度。结果表明,以煤基颗粒为载体,碱热预处理的最优条件为:碱/炭质量比为1.0,活化终点温度790?C,活化时间75min,pH值9.0;催化剂制备最优条件为:Rh负载量为0.8%,磷酸负载量为5.0%,浸渍温度为45?C;在最优预处理条件下,异壬醛收率可达到50.5%,选择性接近100%。
     对混合辛烯氢甲酰化反应条件研究表明,Rh-P/AC催化剂在107?C、5.0MPa条件下具有高的催化活性和成醛选择性,反应5.0h的平均TOF(转换频率)为539.4h-1,有效解决了均相催化剂分离困难和多相催化剂活性低的问题。Rh-P/AC催化剂连续使用4次铑流失量很小,稳定性好。当以甲苯作反应溶剂时,Rh-P/AC催化剂的氢甲酰化活性可进一步提高。
     用低温N2吸附、FT-IR、XPS和XRD等技术对载体以及催化剂进行了表征。结果表明,活性炭负载RhCl3后,载体微孔表面积和微孔孔容基本不变,比表面积和总孔容降低,活性组分基本分布于介孔和大孔表面上。对催化剂制备过程中活性炭表面基团变化的分析表明,表面-OH、-C=O和碱性基团可以通过偶极-偶极(π-d)相互作用和氧化还原作用对铑进行锚定,有C-O-Rh配位键形成,并有Rh2O3和Rh?存在。磷酸改性在载体表面形成的磷酸物种与铑之间存在配位作用。XRD物相分析表明,铑物种高度分散在载体上。
     助剂研究表明,碱金属和部分过渡金属(包括V、Zn、Zr、Cu、Pt、Mo和Co)的加入可以提高Rh-P/AC催化剂的氢甲酰化活性和选择性,其中以KOH和V复合改性对催化剂的促进效果最好。浸渍顺序对催化剂活性影响较大,先浸渍助剂后浸渍RhCl3的催化剂活性较好。对钒负载量的研究表明,钒的质量分数为1.0%时催化剂活性最好。XRD和XPS分析表明,钒物种的加入能够改善催化剂上活性组分的分散度,同时提高Rh3d的结合能,并抑制金属铑的形成。
     在间歇高压釜中考察了Rh-P/AC催化混合辛烯氢甲酰化反应动力学。在消除内外扩散影响的条件下,通过测定氢甲酰化过程中烯烃浓度随时间的变化关系,获取了混合辛烯氢甲酰化的反应速率参数。按照Langmuir-Hinshelwood机理建立了2,4,4-三甲基-1-戊烯氢甲酰化的本征动力学机理模型,并由本征动力学数据通过数学方法估算了模型参数,证实了以催化剂上产物醛脱附为控制步骤的反应速率方程LHHW IV可以较好的描述实验结果。动力学结果为混合辛烯氢甲酰化合成异壬醛的过程放大提供了理论依据。
The hydroformylation of alkenes is a major commercial process used for the production of oxygenated organic compounds. The homogeneous catalyst and organic or aqueous solvents are commonly employed for the hydroformylation of light alkenes. However, the hydroformylation of long-chain olefins in aqueous-organic system is noneffective due to the low-solubility of long-chain olefins in water. Moreover, the homogeneous hydroformylation meets the deactivation of rhodium catalysts at high temperature distillation in separation process of catalysts. Up to now, most of the hydroformylation of long-chain olefins applied the high-pressure-cobalt technique, but it has some disadvantages, such as complicated process of catalyst recycle, a great number of byproducts, high energy consumption and so on. In order to solve these problems, the heterogenization of homogeneous catalysis for hydroformylation of high olefins has been studied in recent years, but there still have been some disadvantages, such as low activity and high loss of catalysts. So, it is great significant to develop new supported catalysts.
     The production of isononyl-aldehydes from mixed octenes (2,4,4-trimethyl-1-pentene and 2,4,4- trimethyl-2-pentene) by hydroformylation is of important industrial application. Firstly, thermodynamic analysis were done, and Benson and Constantinou-Gani groups contribution methods were used to calculate the absent thermodynamic data, on the basis of molecular structure of 2,4,4-trimethyl-1-pentene, 2,4,4-trimethyl-2-pentene, isononyl- aldehydes and the organic synthetic principle. It was found that the hydroformylation of isooctene was strongly exothermic reaction and its equilibrium constant was very large under reaction conditions, therefore, the reaction was governed by kinetic process.
     The supported rhodium catalysts modified with phosphoric acid were prepared by incipient impregnation using activated carbon as support and rhodium trichloride trihydrate as precursor. N2 adsorption, Boehm titration and FT-IR spectra were used to investigate the influence of support, pretreatment and catalyst preparation conditions on catalyst performance. The results showed that the surface properties of support had great influence on catalyst. The alkali-heat-treatment of activated carbon was beneficial to improve catalytic performance, and was better than acid treatment and alkali washing treatment. Furthermore, the basic groups such as hydroxyl and carbonyl on activated carbon surface, as well as distribution of mesopores both got increased after alkali-heat-treatment. Orthogonal experiment was designed to optimize the process of support pretreatment and catalyst preparation. The optimized pretreatment conditions were alkali/carbon mass ratio of 1.0, activation temperature of 790?C, activation time of 75 min and pH of 9.0. The optimized catalyst preparation conditions were rhodium loading of 0.8%, phosphoric acid loading 5.0% and impregnation temperature of 45?C. The yield of isononyl-aldehydes could be up to 50.5% and the selectivity approach to 100% under the optimized conditions.
     The effects of reaction conditions on the hydroformylation of mixed octenes over Rh-P/AC were studied. The results showed that Rh-P/AC catalyst exhibited a high activity and selectivity to aldehydes. The average TOF (turnover frequency) within 5.0 h for the hydroformylation of mixed octenes over Rh-P/AC catalyst was up to 539.4 h-1. The problems of recycle and low activity of some other catalysts were well solved in this system. It was found that Rh-P/AC can be recycled 4 times without significant loss of rhodium, demonstrating that catalyst had high stability. Also, the catalytic activity of Rh-P/AC could be increased when toluene was used as reaction solvent.
     From the characterization of N2 adsorption, FT-IR, XPS and XRD, it was found that micropore surface area and pore volume of the activated carbon were nearly unchanged after loading with RhCl3. However, the total surface area and pore volume decreased, indicated that the active component dispersed on the external surface of mesopores and macropores. Simultaneously, it was observed that the -OH, -C=O and basic groups acted as the adsorption center to bond metal species by dipole-dipole (π-d) interaction and redox reaction mechanism. After loading, the rhodium species exists in Rh2O3, Rh? and C-O-Rh complexes. There was the coordination interaction between Rh species and phosphoric acid species in the phosphoric acid modified catalysts. The XRD results showed that rhodium species dispersed monolayer on support.
     The experimental results revealed that alkali metals and some transition metals (including V, Zn, Zr, Cu, Pt, Mo and Co) could promote hydroformylation activity and selectivity of the Rh-P/AC catalysts. Among them, the combination of KOH and V exhibited the best promoting effect. The impregnation sequence had also influence the activity of the catalyst for hydroformylation. The catalyst impregnated RhCl3 after impregnation of promoters had the higher activity. The optimal loading amount of V species was 1.0% (mass fraction). The results of XRD and XPS indicated that V species increased the dispersity of Rh species and the binding energy of Rh3d on the support, as well as inhibited the formation of Rh? species.
     Hydroformylation reaction kinetics of mixed octenes on Rh-P/AC catalyst was studied in a high-pressure batch reactor under conditions free from the influence of external and internal diffusions. And the kinetics parameters were determined by fitting the changes of octenes concentrations with time. Based on the Langmuir-Hinshelwood mechanism, the intrinsic kinetic models were established, and model parameters were fitted by using mathematical method. It can be confirmed that kinetic model LHHW IV with desorption of aldehydes from catalyst as rate-control step could depict the experimental data well. The kinetic model may provide a reference for the scaling-up of isononyl-aldehydes synthesis from hydroformylation of mixed octenes.
引文
[1]殷元骐.羰基合成化学[M].北京:化学工业出版社,1995:1-43
    [2] Beller M., Cornils B., Frohning C. D., et al. Progress in hydroformylation and carbonylation[J]. Journal of Molecular Catalysis A: Chemical, 1995, 104(1): 17-85
    [3] Cornils B., Herrrnann W. A., Eckl R. W. Industrial aspects of aqueous catalysis[J]. Journal of Molecular Catalysis A: Chemical, 1997, 116(1-2): 27-33
    [4] Beller M. Catalytic Carbonylation Reactions[M]. Berlin: Springer, 2006: 1-33
    [5]王俐.国外工业氢甲酰化的现状和发展[J].现代化工, 2002, 22(8): 53-59
    [6]王俐.羰基合成醇生产技术的进展[J].化工技术经济, 2002, 20(3): 7-13
    [7]潘行高.我国羰基合成工业的发展前景(上)[J].化工设计, 1996, (4): 1-6
    [8]章文.丁辛醇的技术进展和市场分析[J].上海化工, 2004, (3): 49-50
    [9] Cole-Hamilton D. J. Homogeneous catalysis—New approaches to catalyst separation, recovery, and recycling[J]. Science, 2003, 299(5613): 1702-1706
    [10] Adams D. J., Cole-Hamilton D. J., Hope E. G., et al. Hydroformylation in flurous solvents[J]. Journal of Organometallic Chemistry, 2004, 689(8): 1413-1417
    [11]冯翠兰,王艳华,金子林.液/液两相催化高碳烯烃氢甲酰化反应化学进展[J].化学进展, 2005, 17(2): 209-216
    [12] Welton T. Ionic liquids in catalysis[J]. Coordination Chemistry Reviews, 2004, 248 (21-24): 2459-2477
    [13] BaluéJ.,Bayón J. C. Hydroformylation of styrene catalyzed by a rhodium thiolate binuclear catalyst supported on a cationic exchange resin[J]. Journal of Molecular Catalysis A: Chemical, 1999, 137(1-3): 193-203
    [14] Zeelie T. A., Root A., Krause A. O. I. Rh/fibre catalyst for ethene hydroformylation: Catalytic activity and characterisation[J]. Applied Catalysis A: General, 2005, 285(1-2): 96-109
    [15] Ricken S., Osinski P. W., Eilbracht P., et al. A new approach to dendritic supported NIXANTPHOS-based hydroformylation catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2006, 257(1-2): 78-88
    [16] Shibahara F., Nozaki K., Matsuo T., et al. Asymmetric Hydroformylation with highlycrosslinked polystyrene-supported (R,S)-BINAPHOS-Rh(I) complexes: The effect of immobilization position[J]. Bioorganic & Medicinal Chemistry Letters, 2002, 12(14): 1825-1827
    [17] Kani I., Flores R., Fackler J. P., et al. Hydroformylation of styrene in supercritical carbon dioxide with fluoroacrylate polymer supported rhodium catalysts[J]. Journal of Supercritical Fluids, 2004, 31(3): 287-294
    [18] Zarka M. T., Bortenschlager M., Wurst K., et al. Immobilization of a rhodium carbene complex to an amphiphilic block copolymer for hydroformylation of 1-octene under aqueous two-phase conditions[J]. Organometallics, 2004, 23(21); 4817-4821
    [19] Mukhopadhyay K., Mandale A. B., Chaudhari R. V. Encapsulated HRh(CO)(PPh3)3 in microporous and mesoporous supports: Novel heterogeneous catalysts for hydroformylation[J]. Chemistry of Materials, 2003; 15(9): 1766-1777
    [20] Peng Q. R., Yang Y., Yuang Y. Z. Immobilization of rhodium complexes ligated with triphenyphosphine analogs on aminofunctionalized MCM-41 and MCM-48 for 1-hexene hydroformylation[J]. Journal of Molecular Catalysis A: Chemical, 2004, 219(1): 175-181
    [21] Huang L., He Y., Kawi S. Catalytic studies of aminated MCM-41 tethered rhodium complexes for 1-hexene hydroformylation[J]. Applied Catalysis A: General, 2004, 265(2): 247-257
    [22] Mukhopadhyay K., Chaudhari R. V. Heterogenized HRh(CO)(PPh3)3 on zeolite Y using phosphotungstic acid as tethering agent: a novel hydroformylation catalyst[J]. Journal of Catalysis, 2003, 213(1): 73-77
    [23] Ali B. E.,Tijani J.,Fettouhi M. Hydroformylation of alkyl alkenes catalyzed by rhodium supported on MCM-41: The effect of H3PW12O40 on the catalytic activity and recycling[J]. Journal of Molecular Catalysis A: Chemical, 2006, 250(1-2): 153-162
    [24] Huang L., Kawi S. Effects of supported donor ligands on the activity and stability of tethered rhodium complex catalysts for hydroformylation[J]. Journal of Molecular Catalysis A: Chemical, 2004, 211(1-2): 23-33
    [25] Marchetti M., Paganelli S., Viel E. Hydroformylation of functionalized olefins catalyzed by SiO2-tethered rhodium complexes[J]. Journal of Molecular Catalysis A: Chemical, 2004, 222(1-2): 143-151
    [26] Zhang Y., Nagasaka K., Qiu X. Q., et al. Hydroformylation of 1-hexene for oxygenate fuels on supported cobalt catalysts[J]. Catalysis Today, 2005, 104(1): 48-54
    [27] Sordelli L., Guidotti M., Andreatta D., et al. Characterization and catalytic performances of alkali-metal promoted Rh/SiO2 catalysts for propene hydroformylation[J]. Journal of Molecular Catalysis A: Chemical, 2003, 204-205: 509-518
    [28] Yamagishi T., Furikado I., Ito S., et al. Catalytic performance and characterization of RhVO4/SiO2 for hydroformylation and CO hydrogenation[J]. Journal of Molecular Catalysis A: Chemical, 2006, 244(1-2): 201-212
    [29] Gao H., Angelici R. J. Combined homogeneous and heterogeneous catalysts. Rhodium carbonyl thiolate complexes tethered on silica-supported metal heterogeneous catalysts: olefin hydroformylation and arene hydrogenation[J]. Journal of Molecular Catalysis A: Chemical, 1999, 145(1-2): 83-94
    [30] Zhu H. J., Ding Y. J., Yin H. M., et al. Supported rhodium and supported aqueous-phase catalyst, and supported rhodium catalyst modified with water-soluble TPPTS ligands[J]. Applied Catalysis A: General, 2003, 245(1): 111-117
    [31] Zhu H. J., Ding Y. J., Yan L., et al. The PPh3 ligand modified Rh/SiO2 catalyst for hydroformylation of olefins[J]. Catalysis Today, 2004, 93-95: 389-393
    [32] Han D. F., Li X. H., Zhang H. D., et al. Heterogeneous asymmetric hydroformylation of olefins on chirally modified Rh/SiO2 catalysts[J]. Journal of Catalysis, 2006, 243(2): 318-328
    [33] Zhang Y., Shinoda M., Shiki Y., et al. Hydroformylation of 1-hexene for oxygenate fuels via promoted cobalt/active carbon catalysts at low-pressure[J]. Fuel, 2006, 85(9): 1194-1200
    [34] Díaz-Au?ón J. A., Román-Martínes M. C., Salinas-Martínes L. C. [Rh(μ-Cl)(COD)]2 supported on activated carbons for the hydroformylation of 1-octene: effects of support surface chemistry and solvent[J]. Journal of Molecular Catalysis A: Chemical, 2001, 170(1-2): 81-93
    [35] Román-Martínes M. C., Díaz-Au?ón J. A., Salinas-Martínes L. C., et al. Rhodium- diphosphine complex bound to activated carbon: An effective catalyst for the hydroformylation of 1-octene[J]. Journal of Molecular Catalysis A: Chemical, 2004,213(2): 177-182
    [36] Yoon T. J., Kim J. I., Lee J. K. Rh-based olefin hydroformylation catalysts and the change of their catalytic activity depending on the size of immobilizing supporters[J]. Inorganica Chimica Acta, 2003, 345: 228-234
    [37] Abu-Reziq R., Alper H., Wang D. S., et al. Metal supported ondendronized magnetic nanoparticles: Highly selective hydroformylation catalysts[J]. Journal of the American Chemical Society, 2006, 128: 5279-5282
    [38] Alini S., Bottino A., Capannelli G., et al. Preparation and characterisation of Rh/Al2O3 catalysts and their application in the adiponitrile partial hydrogenation and styrene hydroformylation[J]. Applied Catalysis A: General, 2005, 292: 105-112
    [39] Wrzyszcz J., Zawadzki M., Trzeciak A. M., et al. Catalytic activity of rhodium complexes supported on Al2O3-ZrO2 in isomerization and hydroformylation of 1-hexene[J]. Catalysis Letters, 2004, 93(1-2): 85-92
    [40] Rony P. R. Diffusion kinetics within supported liquid-phase catalysts[J]. Journal of Catalysis, 1969, 14(2): 142-147
    [41] Beckmann A., Keil F. J. Increasing yield and operating time of SLP-catalyst processes by flow reversal and instationary operation[J]. Chemical Engineering Science, 2003, 58(3-6): 841-847
    [42] Arhancet J. P., Davis M. E., Merola J. S., et al. Supported aqueous-phase catalysts[J]. Journal of Catalysis, 1990, 121(2): 327-339
    [43] Li Z. H., Peng Q. R., Yuan Y. Z. Aqueous phosphine-Rh complexes supported on non-porous fumed-silica nanoparticles for higher olefin hydroformylation[J]. Applied Catalysis A: General, 2003, 239(1-2): 79-86
    [44] Jauregui-Haza U. J., Dessoudeix M., Kalck P., et al. Multifactorial analysis in the study of hydroformylation of oct-1-ene using supported aqueous phase catalysis[J]. Catalysis Today, 2001, 66(2-4): 297-302
    [45] Disser C., Muennich C., Luft G. Hydroformylation of long-chain alkenes with new supported aqueous phase catalysts[J]. Applied Catalysis A: General, 2005, 296(2): 201-208
    [46] Mehnert C. P., Cook R. A., Dispenziere N. C., et al. Supported ionic liquid catalysis - Anew concept for homogeneous hydroformylation catalysis [J]. Journal of the American Chemical Society, 2002, 124: 12932-12933
    [47] Riisager A., Eriksen K. M., Wasserscheid P., et al. Propene and 1-octene hydroformylation with silica-supported , ionic liquid-phase (SILP) Rh-phosphine catalysts in continuous ?xed-bed mode[J]. Catalysis Letters, 2003, 90(3-4): 149-154
    [48] Yang Y., Deng C. X., Yuan Y. Z. Characterization and hydroformylation performance of mesoporous MCM-41- supported water-soluble Rh complex dissolved in ionic liquids[J]. Journal of Catalysis, 2005, 232(1): 108-116
    [49] Adkins H., Krsek G. Preparation of aldehydes from alkenes by the addition of carbon monoxide and hydrogen with cobalt carbonyls as intermediates[J]. Journal of the American Chemical Society, 1948, 70(1): 383-386
    [50] Wender I., Sternberg H. W., Orchin M. Evidence for cobalt hydrocarbonyl as the hydroformylation catalyst[J]. Journal of the American Chemical Society, 1953, 75(12): 3041-3042
    [51]金松涛.有机催化[M].上海:上海科学技术出版社, 1986: 409-416
    [52] Heck R. F., Breslow D. S. Reactions of alkyl- and acyl-cobalt carbonyls with triphenylphosphine[J]. Journal of the American Chemical Society, 1960, 82(16): 4438-4439
    [53] Heck R. F., Breslow D. S. The reaction of cobalt hydrotetracarbonyl with olefins[J]. Journal of the American Chemical Society, 1961, 83(19): 4023-4028
    [54] Haumann M., Koch H., Hugo P., et al. Hydroformylation of 1-dodecene using Rh-TPPTS in a microemulsion[J]. Applied Catalysis A: General, 2002, 225(1-2): 239-249
    [55] Shirt R., Garland M., Rippin D. W. T. On the evaluation of turnover frequencies in unicyclic homogeneous catalysis. Experimental, numerical, and statistical aspects[J]. Analytica Chimica Acta, 1998, 374(1): 67-91
    [56] Li C., Guo L., Garland M. Homogeneous hydroformylation of ethylene catalyzed by Rh4(CO)12. The application of BTEM to identify a new class of rhodium carbonyl spectra: RCORh(CO)3(π-C2H4) [J]. Organometallics, 2004, 23: 2201-2204
    [57] Liu G., Li C., Guo L., et al. Experimental evidence for a significant homometallic catalytic binuclear elimination reaction: Linear-quadratic kinetics in the rhodiumcatalyzed hydroformylation of cyclooctene[J]. Journal of Catalysis, 2006, 237(1): 67-78
    [58] Lazzaroni R., Settambolo R., Uccello-Barretta G., et al. Rhodium-catalyzed hydroformylation of vinylidenic olefins: the different behaviors of the isomeric alkyl-metal intermediates as the origin of theβ-regioselectivity[J]. Journal of Molecular Catalysis A: Chemical, 1999, 143(1-3): 123-130
    [59] Moroz B. L., Moudrakovski, I. L., Likholobov V. A. Heterogenized catalysts for olefin hydroformylation containing cobalt and palladium-cobalt complexes anchored on phosphinated SiO2: 13C solid-state NMR study[J]. Journal of Molecular Catalysis A: Chemical, 1996, 112: 217-233
    [60] Zhang Y., Nagasaka K., Qiu X., et al. Low-pressure hydroformylation of 1-hexene over active carbon-supported noble metal catalysts[J]. Applied Catalysis A: General, 2004, 276(1-2): 103-111
    [61] Natta G., Ercoli R., Castellano S., et al. The influence of hydrogen and carbon monoxide partial pressures on the rate of the hydroformylation reaction[J]. Journal of the American Chemical Society, 1954, 76(15): 4049-4050
    [62] Gholap R. V., Kut O. M., Bourne J. R. Hydroformylation of propylene using unmodified cobalt carbonyl catalyst: Selectivity studies[J]. Indutrial and Engineering Chemistry Research, 1992, 31: 2446-2450
    [63] Ungváry F. Transition metals in organic synthesis: Hydroformylation, reduction, and oxidation: Annual survey covering the year 1990[J]. Journal of Organometallic Chemistry, 1992, 432(1-3): 1-214
    [64] Kiss G., Mozeleski E. J., Nadler K. C., et al. Hydroformylation of ethene with triphenylphosphine modified rhodium catalyst: kinetic and mechanistic studies[J]. Journal of Molecular Catalysis A: Chemical, 1999, 138(2-3): 155-176
    [65] Purwanto P., Delmas H. Gas-liquid-liquid reaction engineering: hydroformylation of 1-octene using a water soluble rhodium complex catalyst[J]. Catalysis Today, 1995, 24(1-2): 135-140
    [66] Yang C., Mao Z. S., Wang Y., et al. Kinetics of hydroformylation of propylene using RhCl(CO)(TPPTS)2/TPPTS complex catalyst in aqueous system[J]. Catalysis Today, 2002, 74(1-2): 111-119
    [67] Yang C., Bi X., Mao Z. S. Effect of reaction engineering factors on biphasic hydroformylation of 1-dodecene catalyzed by water-soluble rhodium complex[J]. Journal of Molecular Catalysis A: Chemical, 2002, 187(1): 35-46
    [68] Palo D. R., Erkey C. Kinetics of the homogeneous catalytic hydroformylation of 1-octene in supercritical carbon dioxide with HRh(CO)[P(p-CF3C6H4)3]3[J]. Indutrial and Engineering Chemistry Research, 1999, 38: 3786-3792
    [69] Deshpande R. M., Bhanage B. M., Divekar S. S., et al. Kinetics of hydroformylation of ethylene in a homogeneous medium: Comparison in organic and aqueous systems[J]. Indutrial and Engineering Chemistry Research, 1998, 37: 2391-2396
    [70] Zhang Y., Mao Z.S., Chen J. Macro-kinetics of biphasic hydroformylation of 1-dodecene catalyzed by water-soluble rhodium complex[J]. Catalysis Today, 2002, 74(1-2): 23-35
    [71] Balakos M. W., Chuang S. S. C. Transient response of propionaldehyde formation during CO/H2/C2H4 reaction on Rh/SiO2[J]. Journal of Catalysis, 1995, 151(2): 253-265
    [72] Balakos M. W., Chuang S. S. C. Dynamic and LHHW kinetic analysis of heterogeneous catalytic hydroformylation[J]. Journal of Catalysis, 1995, 151(2): 266-278
    [73] Brundage M. A., Chuang S. S. C., Hedrick S. A. Dynamic and kinetic modeling of isotopic transient responses for CO insertion on Rh and Mn-Rh catalysts[J]. Catalysis Today, 1998, 44(1-4): 151-163
    [74] Jáuregui-Haza U. J., Pardillo-Fontdevila E. J., Kalck P., et al. Supported aqueous phase catalysis: a new kinetic model of hydroformylation of octene in a gas-liquid-liquid-solid system[J]. Catalysis Today, 2003, 79-80: 409-417
    [75] Benaissa M., Jáuregui-Haza U. J., Nikov I., et al. Hydroformylation of linalool in a supported aqueous phase catalyst by immobilized rhodium complex: kinetic study[J]. Catalysis Today, 2003, 79-80: 419-425
    [76]宋金波. C8混合烯烃合成异壬醛的实验研究[D].东营:中国石油大学, 2004
    [77] Boehm H. P. Surface oxides on carbon and their analysis: a critical assessment[J]. Carbon, 2002, 40 (2): 145-149
    [78] Purwanto, Deshpande R. M., Chaudhari R. V., et al. Solubility of hydrogen, carbon monoxide, and 1-octene in various solvents and solvent mixtures[J]. Journal of Chemical and Engineering Data, 1996, 41(6): 1414-1417
    [79] Poling B. E., Prausnitz J. M., O’Connell J. P. The Properties of gases and liquids[M]. Fifth Edition, New York:McGraw-Hill, 2001: 371-399
    [80] Mackay D., Boethling R. S. Handbook of Property Estimation Methods for Chemicals: Environmental and Health Sciences[M]. Boca Raton: CRC Press, 2000
    [81] Lide D. R. CRC Handbook of Chemistry and Physics[M]. 88th Edition, Boca Raton: CRC Press/ Taylor & Francis, 2007
    [82] Marsh H., Rodriguez-Reinoso F. Activated Carbon[M]. New York: Elsevier Science, 2006: 182-184
    [83] Solar J. M., Leon y Leon C. A., Osseo-Asare K., et al. On the importance of the electrokinetic properties of carbons for their use as catalyst supports[J]. Carbon, 1990, 28(2-3): 369-375
    [84] Boehm H.P. Surface properties of carbons[A]. Morterra C., Zecchina A., Costa G. Structure and reactivity of surfaces[C]. New York: Elsevier Science, 1989: 145-157
    [85] Boehm H. P. Some aspects of the surface chemistry of carbon blacks and other carbons [J]. 1994, 32(5): 759-769
    [86] Montes-Morán M. A., Menéndez J. A., Fuenet E., et al. Contribution of the basal planes to carbon basicity: An ab initio study of the H3O+-πinteraction in cluster models[J]. Journal of Physical Chemistry B, 1998, 102: 5595-5601
    [87] Radovic L. R. Chemistry and physics of carbon[M]. Vol. 30, New York: CRC Press, 2008: 150-153
    [88] Srrano V. G., Villegas J. P., Florindo A. P., et al. FT-IR study of rockrose and of char and activated carbon[J]. Journal of Analytical and Applied Pyrolysis, 1996, 36: 71-80
    [89] Mawhinney D. B., Yates Jr. J. T. FTIR study of the oxidation of amorphous carbon by ozone at 300 K—Direct COOH formation[J]. Carbon, 2001, 39(8): 1167-1173
    [90] Zawadzki J., Wisniewski M., Weber J., et al. IR study of adsorption and decomposition of propan-2-ol on carbon and carbon-supported catalysts[J]. Carbon, 2001, 39 (2): 187-192
    [91] Lu C. L., Xu S. P., Gan Y. X., et al. Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH[J]. Carbon, 2005, 43 (11): 2295-2301
    [92] Manocha L. M., Patel M., Manocha S. M., et al. Carbon/carbon composites withheat-treated pitches: I. Effect of treatment in air on the physical characteristics of coal tar pitches and the carbon matrix derived therefrom[J]. Carbon, 2001, 39 (5): 663-671
    [93] Trick K. A., Saliba T. E. Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite[J]. Carbon, 1995, 33(11): 1509-1515
    [94]邢伟,张明杰,阎子峰.超级活性炭的合成及活化反应机理[J].物理化学学报, 2002, 18(4): 340-345
    [95] Auer E., Freund A., Pietsch J., et al. Carbons as supports for industrial precious metal catalysts[J]. Applied Catalysis A: General, 1998, 173(2): 259-271
    [96] Still C., Salmi T., M?ivi-Arvela P., et al. Solubility of gases in a hydroformylation solvent[J]. Chemical Engineering Science, 2006, 61(11): 3698-3704
    [97]王云龙,张生万,杜文,等.活化条件对活性炭微球结构与性能的影响[J].新型炭材料, 2006, 21(4): 369-373
    [98]吴明铂,查庆芳,郭燕生,等.大庆石油焦NaOH化学活化制备高性能活性炭的研究[J].炭素技术, 2001, (6): 9-13
    [99]商红岩,吴明铂,郑经堂. KOH活化制备高比表面积窄孔径分布的活性炭纤维的研究[J].炭素技术, 1999, (5): 9-13
    [100] G.庞斯莱特.催化剂的制备III制备非均相催化剂的科学基础[M].梁育德,缪雪如,王杰,等.北京:化学工业出版社, 1991: 37-52
    [101]杨彩虹,韩怡卓,李文彬,等.热处理对Ni/C催化剂上甲醇羰基化性能的影响[J].催化学报, 1999, 20(4): 397-402
    [102]谭波,蒋景阳,金子林.羰基合成高碳醇工艺研究进展[J].现代化工, 2006, 26(1): 10-16
    [103] He D. H., Pang D. C., Wang T. E., et al. Hydroformylation of mixture of isomeric octenes to C9-aldehydes catalyzed by Rh-phosphine oxide complexes[J]. Journal of Molecular Catalysis A: Chemical, 2001, 174: 21-28
    [104]付海燕,李敏,陈华,等.水溶性铑-膦配合物催化烯烃氢甲酰化反应—阳离子表面活性剂的加速作用[J].化工学报, 2004, 55(12): 2020-2026
    [105] Ali B. E. High catalytic activity of RhCl3, H2O in HC(OEt)3 for the hydroformylation of alkenes: effect of P(OPh)3 on the selectivity[J]. Catalysis Communications, 2003, 4: 621-626
    [106] Zhang Y., Nagasaka K., Qiu X. Q., et al. Low-pressure hydroformylation of 1-hexene over active carbon-supported noble metal catalysts[J]. Applied Catalysis A: General, 2004, 276: 101-111
    [107] Yue Z. R., Mangun C. L., Economy J. Characterization of surface chemistry and pore structure of H3PO4-activated poly(vinyl alcohol) coated fiberglass[J]. Carbon, 2004, 42 (10): 1973-1982
    [108] Dandekar A., Baker R. T. K., Vannice M. A. Characterization of activated carbon, graphitized carbon fibers and synthetic diamond powder using TPD and DRIFTS[J]. Carbon, 1998, 36(12): 1821-1831
    [109] Pamula E., Rouxhet P. G. Bulk and surface chemical functionalities of type III PAN-based carbon fibres[J]. Carbon, 2003, 41(10):1905-1915
    [110] Guan J. S., Li C. H., Miao M. Q., et al. Surface characterization and SO2 removal activity of activated semi-coke with heat treatment[J]. New Carbon Materials, 2008, 23(1): 37-43
    [111] Swiatkowski A., Pakula M., Biniak S., et al. In?uence of the surface chemistry of modi?ed activated carbon on its electrochemical behaviour in the presence of lead(II) ions[J]. Carbon, 2004, 42(15): 3057-3069
    [112] Puziy A. M., Poddubnaya O. I., Ziatdinov A. M. On the chemical structure of phosphorus compounds in phosphoric acid-activated carbon[J]. Applied Surface Science, 2006, 252(23): 8036-8038
    [113]朱洪法.催化剂载体制备及应用技术[M].北京:石油工业出版社, 2002: 482-483
    [114] Peuckert M. A comparison of thermally and electrochemically prepared oxidation adlayers on rhodium: Chemical nature and thermal stability[J]. Surface Science, 1984, 141(2-3): 500-514
    [115] Brinen J. S., Schmitt J. L., Doughman W. R., et al. X-ray photoelectron spectroscopy studies of the rhodium on charcoal catalyst:Ⅱ. Dispersion as a function of reduction[J]. Journal of catalysis, 1975, 40(3): 295-300
    [116] Suopanki A., Polvinen R., Valden M., et al. Rh oxide reducibility and catalytic activity of model Pt-Rh catalysts[J]. Catalysis Today, 2005, 100(3-4):327-330
    [117] Puziy A. M., Poddubnaya O. I., Ziatdinov A. M. On the chemical structure ofphosphorus compounds in phosphoric acid-activated carbon[J]. Applied Surface Science, 2006, 252, (23): 8036-8038
    [118] Deng J. F., Wang J. H., Xu X. H. Oxidative dehydrogenation of glycol to glyoxal on a P-modified electrolytic silver catalyst[J]. Catalysis Letters, 1996, 36(3-4):207-214
    [119] Bansal R. C., Goyal M. G. Activated Carbon Adsorption[M]. Boca Raton: Taylor and Francis /CRC Press, 2005: 361
    [120] Hanaoka T., Arakawa H., Matsuzaki T., et al. Ethylene hydroformylation and carbon monoxide hydrogenation over modified and unmodified silica supported rhodium catalysts[J]. Catalysis Today, 2000, 58(4): 271-280
    [121] Sordelli L., Guidotti M., Andreatta D. Characterization and catalytic performances of alkali-metal promoted Rh/SiO2 catalysts for propene hydroformylation[J]. Journal of Molecular Catalysis A: Chemical, 2003, 204-205: 509-518
    [122] Yamagishi T., Furikado I., Ito S., et al. Catalytic performance and characterization of RhVO4/SiO2 for hydroformylation and CO hydrogenation[J]. Journal of Molecular Catalysis A: Chemical, 2006, 244 (1-2): 201-212
    [123] Courty P., Durand D., Freund E., et al. C1-C6 alcohols from synthesis gas on copper-cobalt catalysts[J]. Journal of Molecular Catalysis, 1982, 17(2-3): 241-254
    [124] Slaa J.C., Van Ommen J.G., Ross J.R. The synthesis of higher alcohols using modified Cu/ZnO/Al2O3 catalysts[J]. Catalysis Today, 1992, 15(41): 129-148
    [125] Sordelli L., Guidotti M., Andreatta D., et al. Characterization and catalytic performances of alkali-metal promoted Rh/SiO2 catalysts for propene hydroformylation[J]. Journal of Molecular Catalysis A: Chemical, 2003, 204-205: 509-518
    [126] Lavalley J. C., Saussey J., Lamotte J., et al. Infrared study of carbon monoxide hydrogenation over rhodium/ceria and rhodium/silica catalysts[J]. Journal of Physical Chemistry, 1990, 94(15): 5941-5947
    [127] Luo H. Y., Zhou H. W., Liu L. W., et al. Role of vanadium promoter in Rh-V/SiO2 catalysts for the synthesis of C2-oxygenates from syngas[J]. Journal of Catalysis, 1994, 145(1): 232-234
    [128]梁秋霞,马磊,郑遗凡,等.浸渍法制备Pd/C催化剂过程中Pd前驱体的平衡吸附量与吸附态[J].催化学报, 2008, 29(2): 145-152
    [129] Prausnitz J. M. Molecular thermodynamics of fluid-phase equilibria[M]. Second Edition, New York: Prentice-Hall Inc., 1987: 389-396
    [130] Jáuregui-Haza U. J., Pardillo-Fontdevila E. J., Wilhelm A. M., et al. Solubility of hydrogen and carbon monoxide in water and some organic solvents[J]. Latin American Applied Research, 2004, 34: 71-74
    [131] O’Connell J. P., Prausnitz J. M. Thermodynamics of gas solubility in mixed solvents[J]. Industrial & Engineering Chemistry Fundamentals, 1964, 3(4): 347-351
    [132] Sachtler W. M. H., Ichikawa M. Catalytic site requirements for elementary steps in syngas conversion to oxygenates over promoted rhodium[J]. Journal of Physical Chemistry, 1986, 90(20): 4752-4758
    [133] Chuang S. S. C., Pien S. I., Naraynan R. C2 oxygenate synthesis from CO hydrogenation on AgRh/SiO2[J]. Applied Catalysis, 1990, 57(1): 241-251
    [134] Van den Berg F. G. A., Glezer J. H. E., Sachtler W. M. H. The role of promoters in CO/H2 reactions: Effects of MnO and MoO2 in silica-supported rhodium catalysts[J]. Journal of Catalysis, 1985, 93(2): 340-352
    [135] Watson P. R., Somorjai G. A. The hydrogenation of carbon monoxide over rhodium oxide surfaces[J]. Journal of catalysis, 1981, 72(2): 347-363
    [136] Chuang S. S. C., Pien S. I. Infrared study of the CO insertion reaction on reduced, oxidized, and sulfided Rh/SiO2 catalysts[J]. Journal of Catalysis, 1992, 135(2): 618-634
    [137] Balakos M. W., Chuang S. S. C. Transient response of propionaldehyde formation during CO/H2/C2H4 reaction on Rh/SiO2[J]. Journal of Catalysis, 1995, 151(2): 253-265
    [138] Takahashi N., Matsuo H., Kobayashi M. Kinetics and mechanism of ethylene hydroformylation over Rh-Y zeolite under atmospheric pressure[J]. Journal of the Chemical Society, Faraday Transactions, 1984, 80: 629-634
    [139] Natio S., Tanimoto M. Mechanistic study of the hydroformylation of propene over silica-supported Rh and Pd catalysts: Effect of added sodium cation[J]. Journal of Catalysis, 1991, 130(1): 106-115
    [140]陈光文,袁权.硅橡胶/陶瓷复合膜反应器中CO2合成甲醇:(I)反应动力学[J].化工学报, 2002, 53(1): 17-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700