用户名: 密码: 验证码:
超细水雾抑制瓦斯煤尘混合爆炸模拟实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是我国重要的工业能源之一,为我国的经济发展做出了重要贡献。但是,煤矿频发的瓦斯煤尘爆炸事故,极大的影响了我国煤炭产业的安全高效运营和健康发展,也使得煤矿安全成为我国最受关注的安全问题之一。煤矿井下是一个瓦斯和煤尘共存体系,煤矿瓦斯爆炸事故所造成的严重后果很多情况下是瓦斯爆炸的冲击波扬起了沉积的煤尘,形成了危险性更大的瓦斯、煤尘混和爆炸。细水雾作为一种绿色高效灭火剂,被广泛应用于建筑、工业等许多场所。目前大部分研究者认为粒径小于20μm的细水雾可以称为超细水雾,超细水雾具有能够扑灭具有障碍物的火灾和隐蔽火灾的优点。关于超细水雾灭火机理的研究已经有很多学者在开展,但是目前缺少关于超细水雾抑制爆炸的研究资料。并且超细水雾雾滴粒径均匀、悬浮性好、雾通量控制方便,雾滴速度小,可有效的避免雾滴流场对抑爆的影响等。因此,开展超细水雾抑制瓦斯煤尘爆炸特性的研究,具有重要的科学意义和实用价值。
     本文通过自行研制的小尺度模拟实验台开展研究了不同煤尘浓度、煤尘粒径、瓦斯浓度、混合气体初始压力下的瓦斯煤尘混合爆炸的最大爆炸压力和压力上升速率、爆炸火焰温度等特征参数,为超细水雾抑爆试验做参考和对比,结果发现:混合爆炸的最大爆炸压力、压力上升速率均随着煤尘浓度的增加先增加后减小,存在一个煤尘浓度使得最大爆炸压力和压力上升速率均达到最大值,偏离这个煤尘浓度值,最大爆炸压力和压力上升速率将逐渐减小:同时,火焰温度、爆炸压力、压力上升速率均随着煤尘粒径的增大而减小,说明煤尘粒径越大,比表面积越小,和氧气反应越缓慢,使得混合爆炸的强度变小;另外,随着瓦斯浓度接近于瓦斯空气反应的化学当量比浓度,瓦斯燃烧放出的热量逐渐增加,引起爆炸火焰温度、最大爆炸压力、压力上升速率逐渐上升。
     为了研究超细水雾对混合爆炸抑制作用的规律和机理,本文开展了超细水雾抑制瓦斯煤尘混合爆炸以及煤尘浓度和煤尘粒径对细水雾抑爆效率影响的小尺度实验,结果发现:在一定的条件下,爆炸压力、压力上升速率都随着超细水雾雾通量的增大而减小,超细水雾的吸热作用,稀释氧气作用以及对煤尘粒子的吸附作用,使混合爆炸的发展受到抑制;同时超细水雾完全抑爆的临界水雾量随着煤尘浓度和煤尘粒径的增加而减少。由于气体湍流度的强度对混合爆炸强度的(?)响极大,为了最大程度的减少初始气流湍流度对爆炸的影响,将气体和煤尘充进爆炸管后,延迟5s才开始点火。结果发现点火延迟时间对超细水雾抑爆效果有很非常明显的影响,可以更有效的抑制瓦斯煤尘混合爆炸
     根据矿井巷道内存在障碍物的情况,本文实验考虑设计了四种类型的障碍物。通过小尺寸实验研究了障碍物条件下的超细水雾抑制瓦斯煤尘混合爆炸特征参数,并讨论了障碍物和煤尘粒径对混合爆炸最大爆炸压力、压力上升速率、爆燃指数和临界水雾量的影响,同时也比较了施加细水雾前后最大爆炸压力的变化,发现障碍物的形状、数量和位置均对混合爆炸的强度有很大的影响。在阻塞率相同的情况下,边缘阻塞型障碍物比中心阻塞型障碍物能引起更强的湍流效果导致更大的爆炸压力和压力上升速率。由于超细水雾的加入对气体湍流度有强化作用,和障碍物的强化作用叠加到一起,所以当超细水雾雾量小于某一范围时,混合爆炸出现了强化,只有当超细水雾雾旱增大到一定程度后,混合爆炸的爆炸压力和压力上升速率才逐渐减小。
     为了直观的观察混合爆炸火焰传播的动态过程,本文采用高速摄影机拍摄了爆炸的动态过程,分析发现,在未添加超细水雾之前,火焰前锋有非常明显的脉动,火焰呈不规则的卷曲状,气体和粉尘充分燃烧爆炸后的火焰颜色呈明亮的白色,随着燃烧爆炸过程的进行,在爆炸过程快结束的时候,火焰变成橘黄色。加入超细水雾之后,火焰前锋呈近似半圆的光滑弧形,脉动现象几乎消失,爆炸火焰颜色呈橘黄色。同时,障碍物的加入使得爆炸火焰的湍流强度明显增强,火焰经过障碍物时被压缩,脉运非常明显,并且在障碍物上方出现了很多湍流涡团,说明障碍物的存在确实使混合爆炸的火焰湍流度加强,爆炸反应加快,强化了整个爆炸过程。添加超细水雾后,火焰前锋变得平滑,火焰颜色更加明亮,从橘黄色变成明亮的白色,在障碍物附近可以看到明显的橘黄色涡团。Ⅲ型障碍物起火焰的湍流效应是从下面的一个障碍物中心上一个障碍物边缘扩展,。而Ⅳ型障碍物引起混合爆炸火焰湍流效应是从下面的一个障碍物整体边缘同时向上一个障碍物扩展,在两个障碍物之间呈紊乱的湍流结构,验证边缘阻塞型障碍物和中心阻塞型碍物对混合爆炸火焰传播影响机制的不同。
     同时,本文还采用了La Vision激光流场诊断系统对障碍物和超细水雾条件下的混合爆炸流场进行了测量,进一步验证了上述结果的准确性,也更进一步的提示了障碍物和超细水雾对混合爆炸的影响机理。
China is one of the largest coal production countries in the world, and the coal has made significant contribution to China's economic development. However, frequent safety accidents in the coal mine make the coal mine safety becoming the focus of current security issues in China and the gas explosion accidents has greatly influence the coal mine safety and coal production in China. As is known to all, the coal mine is a coexistence system of methane and coal dust, then the gas explosion shock wave tends to induce coal dust explosion, forming mixed gas and coal dust explosion. As a clean and high efficient fire extinguishing agent, water mist is widely used in construction, industrial and many other fields as fire prevention measure. Besides that researchers generally considered that water mist with particle size of less than20μm can extinguish obstacles fires and the hidden fire. Therefore, taking into account the particularity of coal mine and explosion, water mist has good applicability in coal mine. However, there is hardly any previous research in this area. Therefore, carrying out the water mist suppression on gas and coal dust explosion has important scientific significance.
     In this paper, self-developed small-scale experiment platform is applied to carry out experiments on hybrid explosion with different coal dust concentration, coal dust particle size, methane concentration, and initial pressure of methane-air mixture. And the characteristic parameters of explosion such as the maximum explosion pressure, the rate of explosion pressure rise, the explosion flame temperature and so on are obtained. The results show that:the maximum explosion pressure and explosion pressure rise rate of the hybrid explosion increase with the increase of the coal dust concentration and then decrease, there exists in an optimal concentration of coal dust where the maximum explosion pressure and the rate of explosion pressure rise reach the summit. When the coal dust concentration deviates from the optimal value, the maximum explosion pressure and the rate of explosion pressure rise will reduce. Simultaneously, the explosion flame temperature, explosion pressure and rate of explosion pressure rise decrease with the increase of particle size of coal dust, this because the larger the coal dust particle size is, the smaller the specific surface area is and then the strength of the explosion is smaller. At the same time, when methane concentration gets close to the optimum reaction concentration, the reaction and combustion become fierce, and more heat is released. causing the explosion flame temperature, the maximum explosion pressure and the rate of explosion pressure ris become higher. In addition, the turbulence effect caused by initial pressure of the mixed gas could accelerate the reaction and strengthen the explosion.
     In order to reveal the regularity and mechanism of inhibition on hybrid explosion with water mist, the inhibition effect on hybrid explosion with water mist is carried out on small-scale experimental platform and different coal dust concentration, coal dust particle size and water mist volume flux are considered. The results show that: the explosion pressure and rate of explosion pressure rise decrease with the increas of the volume flux of ultra-fine water mist, this because the endothermic effect. pxygen dilution effect and soot adsorption effect of ultra-fine mist suppress the hybrid explosion. The critical volume flux of ultra fine water mist reduces with the increas of the coal dust concentration and coal dust particle size. In addition, in order to minimize the initial airflow turbulence influence on explosion, ignition delays5s after the coal dust is dispersed into explosion vessel, founding that delaying for a period of time to ignition can be more effective to inhibit the hybrid explosion.
     According to the coal mine roadway with obstacles, four types of obstacles are designed in this paper and the experiment on hybrid explosion with obstacles and ultra fine water mist is carried out by changing the type of obstacles, coal dust particle size and volume flux of ultra-fine water mist. The maximum explosion pressure, rate of explosion pressure rise, deflagration index and the critical volume flux of water mist are obtained, the results show that the shape, the quantity and location of the obstacles have great influence on the strength of the hybrid explosion. Meanwhile, under the same blocking rate, the obstacles with sharp edges and corners can cause stronger turbulence effect than the obstacles with smooth surface, leading to the rise of explosion pressure and the rate of pressure rise. The turbulence reinforcement to gas flow caused by water mist and obstacles superpose together. When the volume flux of water mist is less than a certain range, the hybrid explosion is intensified, until the volume flux of water mist increases to a certain extent, and then the inhibition effect of water mist is stronger than the reinforcement effect, the explosion pressure and the rate of pressure rise gradually decrease.
     For the sake of intuitive observation of explosion flame propagation process, a high-speed camera is adopted to shoot the explosion dynamic process. It finds that before adding ultra-fine water mist, the pulsation of the flame front is obvious, and the flame structure curls irregularly with bright white or orange color; while after ultra-fine water mist is applied, the flame front is smooth curved as semicircle, pulsation almost disappears and the flame color becomes orange. In addition, the explosion flame turbulence intensity is significantly enhanced by obstacles, the flame is compressed and pulsates obvious around the obstacle, and lots of turbulence vortexes appear around the obstacle, indicating that the existence of obstacle make the explosion more reinforcement. In addition, the explosion flame turbulence effects caused by type Ⅲ obstacles extends from the center of the lower obstacles to the upper obstacle, forming a V-shaped structure of turbulence between two obstacles. Meanwhile, the explosion flame turbulence effect caused by type Ⅳ obstacle extends as disorder turbulence structure between the two obstacles. This result verifies that the explosion reinforcement mechanism of type Ⅲ and type IV obstacle is different.
     The explosion flow field under the condition of obstacles and ultra fine water mist is measured through La Vision laser diagnostic system, further validating the accuracy of the results, and revealing the influence mechanism of obstacles and ultra fine water mist on mixture explosion.
引文
[1]. Ibrahim S. S., Masri A. R.2001. The effects of obstructions on overpressure resulting from premixed flame deflagration[J]. Journal of Loss Prevention in the Process Industries 14:213-221.
    [2]. K.-H. Oh, H. Kim, J.-B. Kim, S.-E. Lee.2001. A study on the obstacle-induced variation of the gas explosion characteristics[J]. Journal of Loss Prevention in the Process Industries 14:597-602.
    [3]. A.R. Masri, S.S. Ibrahim, N. Nehzat, A.R. Green.2000. Experimental study of premixed flame propagation over various solid obstructions[J], Experimental Thermal and Fluid Science,21:109-117.
    [4]. Kenneth L. Cashdollar.2001. Coal dust explosibility[J]. Journal of Loss Prevention in the Process Industries,9:69-77.
    [5]. Ritsu Dobashi.1997. Experimental study on gas explosion behavior in enclosure[J]. Journal of Loss Process Industry,10:83-89.
    [6]. D. Bradley, M.Z. Haql, R.A. Hicks, T. Kitagawa, M. Lawes, C.G.W. Sheppard, R. Woolley 2003. Turbulent burning velocity burned gas distribution and associated flame surface definition[J]. Combustion and Flame,133:415-430.
    [7]. Ritsu Dobashi, Kazuya Senda.2006. Detailed analysis of flame propagation during dust explosions by UV band observations[J]. Journal of Loss Prevention in the Process Industries, 19:149-153.
    [8]. Di Benedetto, P. Russo, P.Amyotte, N. Marchand.2010. Modeling the effect of particle size on dust explosions[J]. Chemical Engineering Science,65:772-779
    [9]. Tom Forcier, Robert Zalosh.2000. External pressures generated by vented gas and dust explosions[J]. Journal of Loss Prevention in the Process Industries,13:411-417
    [10].Kenneth L. Cashdollar, Isaac A. Zlochower.2007. Explosion temperatures and pressures of metals and other elemental dust clouds[J]. Journal of Loss Prevention in the Process Industries,20:337-348
    [11]. Jerome Taveau.2010. Correlations for blast effects from vented dust explosions[J]. Journal of Loss Prevention in the Process Industries,23:15-29
    [12].R.K. Eckhoff.2005. Current status and expected future trends in dust explosion research[J]. Journal of Loss Prevention in the Process Industries,18:225-237
    [13].Qingming Liu, Chunhua Bai, Xiaodong Li, Li Jiang, Wenxi Dai.2010. Coal dust/air explosions in a large-scale tube[J],.Fuel,89:329-335
    [14].laiuealher M. et al. 1999. Studies of premixed tlanic propagation in explosion tubes [J]. Combustion and Flame. 116:504-518
    [15].Faiuealher M. et al. 14%. Turbulent Premixed llame Propagation in a cylindrical vessel[M]. Twenty-sixth Symposiim (International) on Combustion. The Combustion Institute Pittsburgh. 365-371
    [16].G. Ciccarelli. et al. 2005. Kfleet of obstacle size and spacing on the initial stage of flame acceleration in a rough tube[J]. Shock Waves. 56-58.
    [17]. Abdel-Ciayed R D . Bradley D. 1981. The influence of turbulence upon the rate of turbulent burning[M]. Proceedings of the First Specialist Meeting on Fuel-Air Explosion. Montreal. Canada.
    [18].UIrich Bielert. Martin Siehel. 1998. Numerical simulation of premixed combustion processes in closed tubes[J]. Combustion and Flame, 114:397-419.
    [19]. M.Fairvveather. C K Hargrave. S.S.Ibrahim. 1999. Studies of fixed llame propagation in explosion tubes[J]. Combustion and Flame. 116:504-518.
    [20].E Salnazo, et al. 2002. Numerical simulation of turbulent gas flames in tubes[J]. Journal of hazardous Materials. 95:233-247.
    [21]. 周心权,吴兵,徐景德.2002.煤矿井下瓦斯爆炸的基本特性[J].中国煤炭,9:8-11.
    [22]. 周凯元,李宗芬.2000.内烷-空气爆燃波的火焰面在直管道中的加速运动[J].爆炸与冲击,20:137-142.
    [23]. 卢捷,宁建国,王成,林柏泉.2004.煤气火焰传播规律及其加速机理研究[J].爆炸与冲击,24:305-310.
    [24]. 杨宏伟,范宝春,李鸿志.2002.障碍物导致火焰变形的数值撒气[J].流体力学实验与测量,16:47-51.
    [25]. 徐景德,徐胜利,杨庚宇.2004.矿井瓦斯爆炸传播的试验研究[J].煤炭科学技术,32:55-57.
    [26]. 钟圣俊,邓煦帆.2002.有机粉尘爆炸的数值模拟[J].中国粉体技术,:239-243
    [27]. 何学秋,杨艺,王恩元,刘贞堂.2004.障碍物对瓦斯爆炸火焰结构及火焰传播影响的研宄[J].煤炭学报,29:186-189.
    [28]. 景国勋,段振伟,程磊,杨书召.2009.瓦斯煤尘爆炸特性及传播规律研究进展[J].中国安全科学学报,19:67-72.
    [29]. 翟成,林柏泉,菅从光,李超.2006.(?)面粗糙度对瓦斯爆炸火焰波传播的影响[J].中国矿业大学学报,35:39-43
    [30]. 王新,李润之,张延松.2009.瓦斯爆炸引起沉积煤尘爆炸传播实验研究[J].中国安全科学学报,19:73-77
    [31]. 司荣军,王春秋.2006.瓦斯对煤尘爆炸特性影响的实验研究[J].中国安全科学学报,12:86-91
    [32]. 王玉贵.2005.井下爆破中引起瓦斯、煤尘爆炸的防治[J].煤炭技术,24:64-66
    [33]. 李加护.超细煤粉爆炸特性[M].中国电机工程学会第七届青年学术会议论文集:9-12
    [34]. 吴红波,陆守香,张立.2004.障碍物对瓦斯煤尘火焰传播过程影响的实验研究[J].矿业安全与环保.31:6-8
    [35]. 王从银,何学秋.2001.瓦斯爆炸传播火焰高内聚力特性的试验研究[J].中国矿业大学学报:217-220.
    [36]. 林柏泉,周世宁,张仁贵.1999.障碍物对瓦斯爆炸过程中火焰和爆炸波的影响[J].中国矿业大学学报:104-107.
    [37]. 林柏泉,周世宁,张仁贵.1998.瓦斯爆炸过程中激波的诱导条件及其分析[J].实验力学463-468
    [38].余立新,尤寒,盛宏至,孙文超,吴承康.2003.障碍物结构对预混火焰压力发展的影响[J].工程热物理学报:537-539
    [39].陈东梁.甲烷_煤尘复合火焰传播特性及机理的研究[D].中国科学技术大学,2007
    [40].李孝斌.矿井瓦斯爆炸感应期内反应动力学分析及光学特征研究[D].西安科技大学,2009
    [41].尉存娟.水平管道内甲烷空气预混气体过程研究[D].中北大学
    [42].王洪雨.密闭空间甲烷煤尘复合爆炸强度研究[D].大连理工大学,2007
    [43].李江波.密闭管内甲烷-煤粉复合爆炸实验研究[D].大连理工大学,2010
    [44].刘义.甲烷、煤尘火焰结构及传播特性的研究[D].中国科学技术大学,2006
    [45].王岳.煤尘-甲烷爆炸的实验研究[D].大连理工大学,2006
    [46].潘鹏飞.复杂障碍物对瓦斯爆炸影响研究[D].中北大学,2011
    [47].梁春利.内置障碍物受限空间内可燃气体爆炸数值模拟[D].大连理工大学.2005
    [48].LIAO G X, HUANG X. CONG B H.2006. Progress in water mist fire suppression technology[J]. Journal of University of Science and Technology of China,36:9-21.
    [49].YAO Bin, LIAO Guangxuan, QIN Jun, etal.1999. Study on the suppression of diffusion flames with fine water mist[J]. Journal of University of Science and Technology of China, 28:610-617
    [50].Adiga K C. Adiga R, Williams F W.2004. Water mist suppression of PMMA boundary layer combustion-a comoparision of nanomist and spray nozzle performance[R]. Washington. D C:Naval Research Laboratory.
    [51]. Pilao R., Ramalho E., Ponho C.2004. Influence of initial pressure on the explosibility of cork dust/air mixtures[J]. Jounal of Loss Process Industry,17:87-97.
    [52]. He C.Y.1996.Research on explosion hazard under co-presence of coal dust and gas[J]. Collierv Safety,12:5-7.
    [53]. 刘其志,费国去.1998.浅析瓦斯爆炸的特征及控制[J].矿业安全与环保:39-42.
    [54]. 张莉陪,徐景德,吴兵等.2004.甲烷-煤尘爆炸波与障碍物相互作用的数值研究[J].中国安全科学学报,14:82-85.
    [55]. 王志荣,蒋军成.2005.受限空间工业气体爆炸研究进展[J].工业安全与环保,31:43-46.
    [56]. 王东武,张延松.2009.瓦斯爆炸界限的影响因素研究[J].矿业安全与环保,36:17-19.
    [57]. 王省身.矿井灾害防治理论与技术[M].中国矿业大学出版社,1986.
    [58]. 梁春利,李芳.2006.管道内可燃气体爆炸研究进展[J].化工装备技术,27:38-41.
    [59]. 司荣军.2009.管道内瓦斯爆炸传播试验研究[J].煤炭科学技术,37:47-49.
    [60]. 邵卫,毕明树,丁信伟.2002.可燃气云爆炸火焰加速机制的探讨[J].化工机械,29:113-115.
    [61]. 刘向军,陈昊.2005.初始压力对矿井瓦斯爆炸过程影响的理论研究[J].矿冶,15:5-9.
    [62]. 吴洪波.甲烷火焰及其诱导的煤尘燃烧爆炸机理的实验研究[D].安徽理工大学, 2002
    [63]. 万成略,江莉.1999.可燃性气体含氧量安全限值的探讨[J].中国安全科学学报,9:48-83.费国去.1996.瓦斯爆炸沿巷道传播特性探讨[J].煤矿安全:32-34
    [64]. 秦友花,陆守得,于春红等.1999.障碍物与煤尘对气体火焰传播过程影响的实验研究[J].煤矿安全:41-43.
    [65]. 张英浩,王志杰.2009.管道内瓦斯爆炸压力的传播研究[J].工业安全与环保,35:43-44.
    [66]. 聂百生,何学秋,张金锋等.2008.泡沫陶瓷对瓦斯爆炸火焰传播的影响[J].北京理工大学学报,28:573-576.
    [67]. 郑有山,王成.2009.变截面管道对瓦斯爆炸特性影响的数值模拟[J].北京理工大学学报:947-949.
    [68]. 王省身,谢之康.1989.矿井沼气爆炸安全距离的探讨[J].中国矿业大学学报,18:1-8.
    [69]. 徐胜利,张红杰,岳朋涛.2000.管道内运动火焰生成压力波及其特性的研究[J].中国科学技术大学学报,30:387-392.
    [70]. 谭迎新,张景林,张小春.1995.可燃气体(或蒸汽)爆炸特性参数测定[J].兵工学报:56-60.
    [71]. 李小东,刘庆明,白春华.2008.管道中瓦斯爆炸超压场的数值模拟[J].煤矿安全:5-7.
    [72]. 邱雁,高广伟,罗海珠.2003.充注惰气抑制矿井火区瓦斯爆炸机理[J].煤矿安全,34:8-11.
    [73]. 吴征艳,蒋曙光,王兰云,何新建,林柏泉.2006.多层丝网结构抑制瓦斯爆炸传播的数学模型[J].工业安全与环保,32:1-3.
    [74]. JIANG Shu-guang.WU Zheng-yan. Ll Qing-hua, HE Xin-jian.SHAO Hao,QIN Jun-hui. WANG Lan-yun, HU Li-ming, LIN Bai-quan.2008. Vacuum chamber suppression of gas-explosion propagation in a tunnel[J]. J China Univ Mining & Technol,18:0337-0341
    [75].Sung Chan Kim, Hong Sun Ryou.2003. An experimental and numerical study on $re suppression using a water mist in an enclosure[J]. Building and Environment,38:1309-1316.
    [76]. Wang Xishi, Liao Guangxuan, Yao Bin, Fan Weicheng, et al.2001. Preliminary Study on the Interaction of Water Mist with Pool Fires[J]. J. of Fire Sciences,19:45-61
    [77]. Wang Xishi, Liao Guangxuan, Qin Jun, Fan Weicheng.2002. Experimental Study on Effectiveness of Extinction of a Pool Fire with Water Mist[J]. J. of Fire Sciences,20:279-295
    [78].陆守香,刘晅亚.2004.管道内甲烷火焰穿越水雾区的传播特性[J].热科学与技术,3:125-128.
    [79].Teresa Parra, Francisco Castro, Cesar Mendez. Jose M. Villafruela, Miguel A. Rodriguez. 2004. Extinction of premixed methane-air flames by water mist[J]. Fire Safety Journal, 39:581-600.
    [80].Marian Gieras.2008. Flame acceleration due to water droplets action[J]. Journal of Loss Prevention in the Process Industries,21:472-477.
    [81].Hiroshi Shimizu, Manai Tsuzuki, Yasuo Yamazaki, A. Koichi Hayashi.2001. Experiments and numerical simulation on methane flame quenching by water mist[J]. Journal of Lc Prevention in the Process Industries,14:603-608
    [82]. Andrew Kim and George Crampton.2005. Water Mist System for Explosion Protection of an Armoured Vehicle Crew Compartment[M]:1-8.5th International Water Mist Conference, Berlin, Germany.
    [83]. Heather D.Willauer, Ramagopal Ananth, John P. Farley, Frederick W.Williams.2008. Mitigation of TNT and Destex explosion effects using water mist[J]. Journal of Hazardous Materials,1-6
    [84].李成兵,吴国栋,经福谦.2009.水蒸气抑制甲烷燃烧和爆炸实验研究与数值计算[J].中国安全科学学报:118-124.
    [85].刘永明.2004.采用喷雾技术防止爆破引起瓦斯爆炸研究[J].煤矿爆破,2:1-4.
    [86].陈晓坤,林滢,罗振敏,邓军..2006.水系抑制剂控制瓦斯爆炸的实验研究[J].煤炭学报,31:603-607.
    [87].刘晅亚,陆守香,秦俊,张立.郭子如.2003.水雾抑制气体爆炸火焰传播的实验研究[J].中国安全科学学报,13:71-77
    [88].刘晅亚.水雾作用下甲烷/空气层流预混火焰燃烧特性研究[D].中国科学技术大学,2006
    [89].谢波,范宝春,王克全.2002.大型通道中被动式水雾抑爆效果的实验[J].实验力学, 17:118-124
    [90].刘志超.2006.细水雾扑灭瓦斯抽放钻孔火灾的实验研究[J].矿业安全与环保.33:10-14.
    [91].李永怀,蔡周全.2010.700mm管道细水雾抑制瓦斯爆炸试验研究[J].煤炭科学技术,38:49-54
    [92].李振峰,王天政,安安,曹韶龙.2011.细水雾抑制煤尘与瓦斯爆炸实验[J].西安科技大学学报,31:698-702
    [93].余明亮,安安,赵万里,郑立刚,褚廷湘.2011.含添加剂细水雾抑制瓦斯爆炸有效试验研究[J].安全与环境学报,11:149-153
    [94].安这.细水雾抑制管道瓦斯爆炸的实验研究[D].河南理工大学,2011
    [95].唐建军.细水雾抑制瓦斯爆炸实验与数值模拟研究[D].西安科技大学,2009
    [96].李铮.瓦斯爆炸及其细水雾抑制的实验研究[D].大连理工大学,2011
    [97].谷睿.超细水雾抑制甲烷爆炸的实验研究[D].中国科学热核大学,2010
    [98].秦文茜.超细水雾抑制含障碍物甲烷爆炸的实验研究[D].中国科学技术大学,2011
    [99].林滢,李孝斌,宋久壮.2006.超细水雾抑制瓦斯爆炸的可行性研究[J].矿业安全与环保,33:15-20
    [100]. 梁天水.超细水雾灭火有效性的模拟实验研究[D].中国科学技术大学,2012
    [10]. Michele Maermonti.1999.Numerical simulation of gas explosion in Linked vessels[J]. Journal of Loss Prevention in the Process Industries,12:189-194.
    [102]. 刘义,孙金华,陈东梁.2006.管道内甲烷煤尘复合火焰结构的实验[J],中国科学技术大学学报,36:65-68.
    [103]. 陆守香,何杰,于春红.1998.水抑制瓦斯爆炸的机理研究[J].煤炭学报,23:417-421.
    [104]. 周自本.2003.煤质特性与制粉系统防爆设计[J].热机技术,4:33-37.
    [105]. 胡双启,张景林.1992.燃烧与爆炸[M].北京:兵器工业出版社.
    [106]. 张守中.1988.爆炸基本原理[M].北京:国防工业出版社.
    [107]Bartknecht W.1985爆炸过程和防护措施[M].北京:化学工业出版社.
    [108]. 赵江平.1997.煤粉粉尘爆特性及其惰化技术研究[M].西安:西安建筑科技大
    [109]. 赵衡阳.1996.气体和粉尘爆炸原理[M].北京.北京理工大学出版社.
    [110]. 李加护.2003.超细煤粉爆炸特性的实验研究与分析[D].华北电力大
    [111]NFPA750.200.Standard for hte installation of water mist fire suppression systems[J].1996 Edition National Fire Proteetion Association.Quiney
    [112]. 秦俊.廖光煊,王喜世.范志航.2002.细水雾抑制火旋风的实验研究[J].自然灾害学报,11:60-65.
    [113]. 房玉东,刘江虹,廖光煊,徐强,周晓猛.2005.含MC添加剂超细水雾作用下电 气设备击穿强度变化规律的实验研究[J].消防科学与技术,18:103-109.
    [114].陶玉灵.2006.手提式超细水雾装置的研究[J].消防科学与技术,25:233-235
    [115].李刚,秦岩,郭剑峰.2005.移动电源车用超细水雾灭火装置的研究[J].移动电源与车辆,2:21-23.
    [116]. Forssell E.W., Scheffey. J.L., Dinenno P.J.2004. False deck testing of nanomist water mist systems[C] Proceedings of the Halon Options Technical Working Conference (HOTWC), Albuquerque, NM.
    [l17].张小艳,郭强,李全.2003.微细水雾除尘技术的实验研究[J].环境污染与防治,25:104-110.
    [118]. Bennett Mike, K.C., Adiga. Aerospace.2006. Applications of nanomist ultra fine fog [C]. The international aircraft systems fire protection working group meeting Atalantic city. New Jersey, USA.
    [119].梁泽饮,邱红喜,杨明丰,严飞,王旺平.2006.超声雾化加湿系统研究与设计[J].武汉工业学院学报,25:63-69.
    [120].陈卓楷,陈凡植,周炜煌,祝光.2006.超声雾化水雾在除尘试验中的应用[J].广东化工,33:52-58.
    [121].程存弟.1993.超声技术[M].山西师范大学出版社.
    [122].徐立成,孙和平.1995.超声雾化抑尘器以及应用[J].工业安全与防尘,5:82-87.
    [123].胡富强,赵寒涛,牛晓明.2000.喷射式超声波发生器及应用[J].机械工程师,45:44-46.
    [124].葛飞.1999.超声波技术的应用现状及发展前景[J],卷州牧业工程高等专科学校学报,19:58-59.
    [125].应崇福.1990.超声学[M].科学技术出版社.
    [126]. Mawhinney J R, Back G G.2000. Water mist fire suppression Technology[J]. National Fire Protection Association,2000:29-37.
    [127].马鸿雁.2011.超细水雾作用下乙醇火的抑制特性研究[D].河南理工大学.
    [128].崔克清.2005.安全工程燃烧爆炸理论与技术[M].北京:中国计量出版社.
    [129].岑可法.2002.高等燃烧学[M].杭州:浙江大学出版社.
    [130].陈卓楷.2007.超声雾化水雾的除尘机理和在实验中的应用研究[D].广东工业大学.
    [131].毕明树.银建中.王淑兰.丁信伟.2003.气云内在在障碍物时的爆炸压力计算[J].爆炸与冲击,23:81-85
    [132]. Philip R C, Clive G R.1996. An analysis of the mechanisms of overpressure generation in vapor cloud explosions[J]. Journal of Hazardous Materials,45:27-44.
    [133].娇海斌.2003.瓦斯煤尘爆炸的防治[J].煤炭技术,22:35-37.
    [134].邓煦帆.1991.粉尘爆炸危险性分级研究[J].防爆电机,3:14-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700