用户名: 密码: 验证码:
青岛大气气溶胶光学特性的季节变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气溶胶通过直接和间接两条途径影响气候系统,对环境大气质量和人体健康也有重要的影响。研究大气气溶胶的气候效应和环境效应必须充分地了解气溶胶的粒子谱分布、化学组成和光学特性,其中大气气溶胶光学特性的直接观测研究是目前甚为紧迫的研究内容,其计算结果能直接为气溶胶强迫对气候变化的估计和预测的模式及其环境效应的研究提供必须的参数。青岛位于山东半岛南部,三面环海,是中国重要的沿海城市之一,是亚热带与温带的过渡区,兼具季风气候与海洋气候特点,独特的地理位置和气候环境使青岛地区的大气气溶胶受大陆和海洋的共同影响,研究青岛大气气溶胶光学特性季节变化对了解青岛及海陆交界地区的环境和气溶胶对气候的影响具有重要意义。
     由安装在中国海洋大学校内八关山上的多波段天空辐射计观测的太阳直接辐射和散射辐射,计算得到从2002年4月至2006年12月春、夏、秋、冬四季共156个晴天天气下的大气气溶胶光学厚度(Aerosol Optical Depth, AOD)、单次散射反照率(Single Scattering Albedo, SSA)、?ngstr?m浑浊度系数、波长指数、复折射指数和粒子体积谱,结合地面气象观测资料综合分析了青岛地区气溶胶光学特性的季节变化特征及影响因素。研究表明青岛地区大气气溶胶光学特性的季节变化特征有一定的共性,即:气溶胶光学厚度随波长增大而减小,各季节日平均值大都低于0.7,日变化型以早晨低下午高的类型为主;各季节单次散射反照率所体现出的散射效应较强,且与相对湿度的正相关关系明显;折射率实部、虚部随波长的变化规律不明显,根据MIE散射理论近似认为不随波长变化,各季节复折射率的平均值约为m~ = 1.51?0.01i;在爱根核模态下,体积谱分布显示出随粒径增大而迅速增长的趋势;各季节的粒子谱分布均在积聚模态下0.1-0.3μm之间达到第一个峰值;气溶胶光学厚度和实测水平能见度基本呈相反的变化趋势,各季节500nm气溶胶光学厚度>1.0时,能见度大都在10.0km以下,光学厚度<0.5时,能见度大都在10.0km以上;各季节08时和14时相对湿度与能见度的反相关关系明显。
     研究结果显示气溶胶光学参数的季节变化特征表现出更多的差异:春季气溶胶光学厚度的日变化类型较为丰富,日平均光学厚度大都在0.3-0.5之间,受沙尘与大陆污染输送等因素的影响,季节平均光学厚度较大;季节平均单次散射反照率随波长呈递减趋势,500nm波段的单次散射反照率为0.909,与夏季和冬季的值相当;季节平均浑浊度系数在四季中最大,日平均浑浊度系数在0.2-0.3之间出现频次的峰值;季节平均波长指数在四季中最小(0.862),日平均波长指数在1.1-1.2、0.8-0.9这两个区间出现较多,粒子尺度分布较丰富;季节平均复折射指数实部比夏秋季节大,比冬季小,虚部在四季中最小;粒子谱呈现三峰分布,且第一个峰值低于第二、第三个峰值,说明春季细粒子模态、粗模态粒子都较积聚态粒子数目多,可能与春季受局地扬尘或外源沙尘的影响有关。沙尘天气条件下,粒子谱分布在积聚模态下的峰值向较大粒径偏移,且细粒子和粗粒子模态的气溶胶含量增多,两方面都将导致沙尘天气条件下气溶胶光学厚度增大,波长指数减小。
     夏季14天的气溶胶光学参数数据中仅有1天为7月份的反演结果,其它均为6月份的值,故本文对夏季气溶胶光学特性的研究基本反映的是6月月平均的结果。受污染物气溶胶在沿海积聚、气粒转化形成二次气溶胶、对流层低层吸湿性气溶胶粒子的吸湿增长以及中国东部沿海地区频繁的生物质燃烧等因素的影响,夏季季节平均光学厚度在四季中最高,日平均光学厚度在0.5-0.7之间出现最多;500nm波段的单次散射反照率为0.910,与春季和秋季大小相当;?ngstr?m浑浊度系数仅次于春季,大都出现在0.2-0.4之间,夏季(6月份)季节平均波长指数在四季中最大,日平均波长指数大都在1.1-1.6之间;复折射指数实部在四季中最小,虚部的大小仅次于秋季;体积谱呈三峰分布,第一个峰值高于第二、第三个峰值,说明夏季积聚态粒子的数目要高于细粒子和粗粒子模态的数目。
     秋冬大气较为清洁,季节平均光学厚度较春季和夏季低,秋季日平均气溶胶光学厚度大都在0.7以下,小于0.3的天气出现频率最高;季节平均单次散射反照率在四季中最低(0.886),气溶胶粒子的散射作用不及其它季节强;?ngstr?m浑浊度系数在<0.20的范围内出现频率较高,波长指数在1.3-1.4之间出现频率最高;复折射指数实部相对春季和冬季小,虚部在四季中最大,说明秋季气溶胶粒子对太阳辐射的吸收效应较其他季节明显;体积谱的分布特征与夏季相似。
     冬季平均光学厚度在四季中最低,日平均值大都低于0.5;500nm单次散射反照率与春季和夏季的大小相当;季节平均?ngstr?m浑浊度系数在四季中也最低,大都出现在<0.20的范围内,波长指数大都出现在1.3-1.4之间;复折射指数实部较夏秋季节大,虚部较夏秋季节小,说明冬季气溶胶粒子的散射能力强于夏秋季节;冬季的体积谱呈现出两峰分布,且第一个峰值低于第二个峰值,说明冬季细粒子模态、粗模态粒子都较积聚态粒子数目多,这可能与冬季煤等燃料燃烧有关。
Aerosol has much influence on the climate through direct and indirect ways, and has significant effect on atmospheric quality and humans’health. In order to study the atmospheric aerosol’s environmental and climate effects, the volume size distribution of aerosol particles spectrum, chemical composition and optical properties of aerosol must be fully understood. In which the direct observation of atmospheric aerosol optical properties are regarded as the most urgent problem, because the results could be used to provide necessary parameters for estimating and forecasting model of aerosol radiation force on climate changing and aerosol’s environmental effects. Lying on the south of Shandong peninsula and surrounded on three sides by the sea, Qingdao is the most important coastal cities, and it’s the transition area of subtropical and temperate zones which has the characteristic of monsoon climate and ocean climate. Because of the unique geographical location and climate environment, atmospheric aerosol in Qingdao is commonly influenced by the continent and ocean. Therefore, study on the seasonal variations of aerosol optical properties in Qingdao has great significance on effects aerosol made on climate and environment of the land and sea border area.
     Based on the direct and scattered radiation data measured in 156 sunny days by Sky radiometer settled on the Baguanshan hill, Aerosol Optical Depth (AOD), Single Scattering Albedo (SSA), ?ngstr?m turbidity coefficient, wavelength index, complex refractive index and the volume size distribution in spring, summer, autumn and winter weather from April 2002 to December 2006 are calculated, and the seasonal variations of aerosol optical properties as well as the impact factors are discussed. The results show that seasonal variations of aerosol optical properties in Qingdao have some commonness: AOD increases with the decrease of wavelength, and a majority of values are smaller than 0.7. In addition, the diurnal variations are mostly lower in the morning and higher in the afternoon. The seasonal averaged SSA shows strong scattering effect, and it has obvious positive correlation with relative humidity. Seasonal variations of the real and imaginary part of complex refractive index are not very evident, and they are approximately considered fixed with the change of wavelength according to the MIE scattering theory. Seasonal averaged complex index is m~ = 1.51?0.01i. Under the Aitken nuclei mode, the volume size distribution in every season rapidly grows with size increase and achieves the first peak value during 0.1-0.3μm under the accumulation mode. AOD and visibilities have opposite change trend. When AOD at 500nm wave band is lager than 1.0 or smaller than 0.5, visibilities are below 10.0km or above 10.0km, respectively. The negative relationship between relative humidity and visibilities is apparent at eight and fourteen o’clock in four seasons.
     The results indicate that seasonal variations of aerosol optical properties have more differences: In spring, diurnal variation styles are rich and daily mean AOD ranges from 0.3 to 0.5 under most weather. Influenced by dust and transport of continent pollutions, seasonal averaged AOD is lager than other seasons except the value of June. Seasonal averaged SSA has decreasing trend with the increase of wavelength, and SSA at 500nm wave band is 0.909 which is nearly equal to summer and winter’s value. Seasonal averaged turbidity coefficient is the biggest in four seasons, and the frequency peak of daily mean values occurs between 0.2 and 0.3. Seasonal mean wavelength index is smaller than any other season with value of 0.862, and not a few of values are between 1.1 and 1.2, or between 0.8 and 0.9. In addition, dimensions of particles are various. Seasonal mean real part of complex refractive index is bigger than summer and autumn, yet smaller than winter. In the meanwhile, the imaginary part is the smallest in four seasons. Volume size distribution presents three peaks besides the first peak is lower than the second and third. The result shows that, fine and coarse mode particles are richer than the accumulation mode with the influence of local or external dust. Under the dust weather, peaks of volume size distribution under accumulation mode shift to the lager particle size as well as the content of fine and coarse mode particles increases. These two factors make lager AOD and smaller wavelength index.
     Except one day of July, the other 13 days’data are all of June, so the summer result mostly reflects monthly mean result of June. The AOD and wavelength index maximum are caused by a build-up of pollutant aerosol in the coast, the secondary aerosol formation by gas-to-particle conversion, hygroscopic growth of hydrophilic aerosols in the lower troposphere and the frequent occurrence of biomass burning emissions in eastern coastal regions of China, and daily mean AOD ranges from 0.5 to 0.7. SSA at 500nm wave band is 0.910. ?ngstr?m turbidity coefficient is about 0.2 ~0.4 which is smaller than spring and daily mean wavelength ranges from 1.1 to 1.6. The real part of complex refractive index is the smallest in the four seasons, and the imaginary part is just smaller than autumn. Volume size distribution presents three peaks besides the first peak is higher than the second and third. It indicates that the accumulation mode particles are more than fine mode and coarse mode particles.
     The air is clean in autumn and winter, and the seasonal averaged AOD is smaller than spring and summer. Daily mean AOD is lower than 0.7, and most values are smaller than 0.3. Seasonal averaged SSA is the lowest in four seasons with the value of 0.886, and the aerosol particles have lower scattering ability than the other seasons. Most of the ?ngstr?m turbidity coefficient is lower than 0.2, and wavelength index is always between 1.3 and 1.4. The real part of complex refractive index is smaller than spring and winter, yet the imaginary part is the biggest in all seasons. The characteristic of volume size distribution is some like summer.
     The seasonal mean AOD is the smallest in winter, and daily mean values are almost lower than 0.5 as well as the ?ngstr?m turbidity coefficient with most values lower than 0.2. SSA at 500nm wave band has the value equal to spring and summer. The same as autumn, seasonal mean wavelength is almost between 1.3 and 1.4. The fact that real part of complex refractive is bigger than summer and autumn, yet imaginary part smaller than those two seasons indicates that the scattering ability of winter is stronger than summer and autumn. Volume size distribution presents two peaks besides the first peak is lower than the second. It shows that fine and coarse mode particles are richer than the accumulation mode, and this may have some relation with the fuel burning such as coal in winter.
引文
[1]王明星.大气化学(第二版).北京:气象出版社,1999. 166.
    [2] Charlson R, Schwartz S, Hales J, et al. Climate Forcing by Anthropogenic Aerosols. Science, 1992, 255(5043): 423–430.
    [3] Kiehl J, Briegleb B. The Relative Roles of Sulfate Aerosols and Greenhouse Gases in Climate Forcing. Science, 1993, 260(5106): 311-314.
    [4] Jacobson M. Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. Nature, 2001, 409: 695-697 .
    [5] Twomey S. The Influence of Pollution on the Shortwave Albedo of Clouds. Journal of Atmospheric Science, 1977, 34: 1149-1152.
    [6] Bruce A. Albrecht. Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science, 1989, 245(4923): 1227-1230.
    [7] Houghton J T, et al. Intergovernmental panel on climate ( IPCC) , Third assessment report, climate change 20011 New York: Cambridge University Press, 2001.
    [8] Breon F M, Tanre D , Generoso S. Aerosols effect on the cloud droplet size monitored from satellite. Science, 2002, 295: 834-838. [9 ] Shi G Y. Radiative forcing and greenhouse effect due to the atmospheric trace gases. Science in China(B), 1992, 35(2): 21-229.
    [10] Linker F. Transmission coefficient und trubungs factor. Beitraege zur Physik der Atmosphaere, 1922, 10: 91.
    [11] Angstrom A. On the atmospheric transmission of sun radiation and on dust in the air. Geografisha Annaler, 1929, 11: 156-166.
    [12] Angstrom A. On the atmospheric transmission of sun radiationⅡ. Geografisha Annaler, 1930, 2: 130-159.
    [13] Twitty J T. The inversion of aureole measurements to derive aerosol size distributions. Journal ofAtmospheric Science, 1975, 32: 584-591.
    [14] Twitty J T , Parent R J, Weinman J A, et al. Aerosol size distributions: remote determination from air-borne measurements of the solar aureole. Applied Optics, 1976, 15(4): 980-989.
    [15] King M D, Byrne D M, Herman B M, et al. Aerosol size distributions obtained by inversion of spectral optical depth measurements. Journal of Atmospheric Science, 1978, 35: 2153-2167.
    [16] Tanaka M, Nakajima T, Takamura T. Simultaneous determination of complex refractive index and size distribution of airborne and water suspended particles from light scattering measurements. Journal of the Meteorological Society of Japan, 1982, 60: 1259-1272.
    [17] Romanov P, O’Neill N T, Royer A, et al. Simultaneous Retrieval of Aerosol Refractive Index and Particle Size Distribution from Ground-Based Measurements of Direct and Scattered Solar Radiation. Applied Optics, 1999, 38: 7305-7320.
    [18] Wendisch M, von Hoyningen-Huene W. Possibility of refractive index determination of atmospheric aerosol particles by ground-based solar extinction and scattering measurements. Atmospheric Environment, 1994, 28: 785-792.
    [19] Yamasoe M A, Kaufman Y J, Dubovik O, et al. Retrieval of the real part of the refractive index of smoke particles from Sun/sky measurements during SCAR-B. Journal of Geophysical Research, 1998, 103(D24): 31893–31902.
    [20] Hanel G. Single scattering albedo, asymmetry parameter, apparent refractive index, and apparent soot content of dry atmospheric particle. Applied Optics, 1988, 27: 2287-2295.
    [21] Dubovik O, Holben B N, Kaufman Y J, et al. Single-scattering albedo of smoke retrieved from the sky radiance and solar transmittance measured from ground, Journal of Geophysics Research, 1998, 103(D24): 31903–31923.
    [22] Weinman J A, Twitty J T, Browning S R, et al. Derivation of Phase Functions from Multiply Scattered Sunlight Transmitted Through a Hazy Atmosphere. Journal of the Atmospheric Sciences, 1975, 32(3): 577-583.
    [23] Wang M, Gordon H R. Retrieval of the columnar aerosol phase function and single-scattering albedo from sky radiance over the ocean: simulations. Applied Optics, 1993, 32: 4598-4609.
    [24] Rao, P. K.等编译,许健明等译.气象卫星-系统、资源及其在环境中的应用.北京:气象出版社,1994. 409-411.
    [25] Stowe L L, Ignatov A M, Singh R R. Development, validation, and potential enhancements to thesecond-generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration, Journal of Geophysics Research, 1997, 102(D14):16923–16934.
    [26] Wiscombe W J. Improved Mie scattering algorithms. Applied Optics, 1980, 19: 1505-1509.
    [27] Tonna G, Nakajima T, Rao R. Aerosol features retrieved from solar aureole data: a simulation study concerning a turbid atmosphere. Applied Optics, 1995, 34: 4486-4499.
    [28] Dubovik O, King M D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. Journal Geophysics Research, 2000a, 105(D16): 20673-20696.
    [29] Dubovik O, Smirnov A, Holben B N, et al. Accuracy assessment of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET)sun and sky radiance measurements. Journal of Geophysical Research, 2000b, 105: 9791-9806.
    [30] Dubovik O, Holben B N, Eck T F, et al. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. Journal of Atmospheric Sciences, 2002, 59: 590-608.
    [31] Nahajima T, Tonna G, Rao R, et al. Use of sky brightness measurements from ground for remote sensing of particulate polydispersions. Applied Optics, 1996, 35: 2672-2686.
    [32] Kim D H, Sohn B J, Nakajima T, et al. Aerosol optical properties over East Asia determined from ground2based sky radiation measurements. Journal of Geophysical Research, 2004, 109, D02209, doi: 1011029P2003JD003387.
    [33]刘树华,熊康.南极瑞穗站大气光学特性研究.北京大学学报(自然科学版),1993,30(1):98-105.
    [34]邱金桓.从全波段太阳直接辐射确定大气气溶胶光学厚度I:理论.大气科学,1995a, 19(4):385-394.
    [35]邱金桓,杨景梅,潘继东.从全波段太阳直射辐射确定大气气溶胶光学厚度II:实验研究.大气科学,1995,05:586-596.
    [36]邱金桓,潘继东,杨理权,等.中国10个地方大气气溶胶1980-1994年间变化特征研究.大气科学,1997,21(6):725-733.
    [37]罗云峰,周秀骥,李维亮.大气气溶胶辐射强迫及气候效应的研究现状.地球科学进展,1998,13(6):572-581.
    [38]罗云峰,吕达仁,李维亮.近30年来中国地区大气气溶胶光学厚度的变化特征.科学通报,2000,45(5):549-554.
    [39]赵柏林,王强,毛节泰,等.光学遥感大气气溶胶和水汽的研究.中国科学(B),1983 , 10:951-962.
    [40]毛节泰,王强,赵柏林.大气透明度光谱和浑浊度的观测.气象学报,1983,41 (3) : 322-331.
    [41]张军华,刘莉,毛节泰.地基多波段遥感西藏当雄地区气溶胶光学特性.大气科学,2000,24(4):349-358.
    [42]吕达仁,周秀骥,邱金桓.消光-小角散射综合遥感气溶胶分布的原理与数值试验.中国科学,1981,12:1516-1523.
    [43]邱金桓,周秀骥.角散射法遥感气溶胶折射率的理论分析.中国科学,1984,8(2):205-210.
    [44] Qiu J H, Zhou X J. Simultaneous determination of aerosol size distribution and refractive index and surface albedo from radiance-part I:Theory.Advance of Atmospheric Science, 1986, 3: 162-171.
    [45] Qiu J H, Sun J H, Xia Q L, et al. Simultaneous determination of aerosol size distribution and refractive index and surface albedo from radiance-Part II: Application, Advance of Atmospheric Science, 1986, 3: 341-348.
    [46] Qiu J H, Sun J H, Xia Q L, et al. Simultaneous determination of aerosol size distribution and refractive index and surface albedo from radiance-Part III: Parameterization and application, Advance of Atmospheric Science, 1986, 3: 341-348.
    [47]石广玉,王喜红,张立盛,等.人类活动对气候影响的研究II:对东亚和中国气候变化的影响.气候与环境研究,2002,7(2):255-266.
    [48]黎杰,毛节泰.光学遥感大气气溶胶特性.气象学报,1989,47(4):450-456.
    [49]赵增亮,毛节泰.联合反演大气气溶胶光学特性和地面反照率.大气科学,1999,23(6):722-732.
    [50]邱金桓,孙金辉,夏其林,等.北京大气气溶胶光学特性的综合遥感和分析.气象学报,1988,46(1):49-58.
    [51]周军,胡欢陵,龚知本. Mt. Pinatub火山云激光雷达探测.科学通报,1993,38(9):811-813.
    [52]邱金桓,郑斯平,黄其荣,等.北京地区对流层中上部云和气溶胶的激光雷达探测.大气科学,2003,27(1):115-122.
    [53] Qiu J H. A method for spaceborne synthetic remote sensing of aerosol optical depth and vegetation reflectance. Advance of Atmospheric Science, 1998, 15: 17-30.
    [54]吕达仁,李卫,章文星.地球环境和气候变化探测与过程研究:大气气溶胶光学厚度与地表反照率的同时遥感-原理和初步数值试验.北京:气象出版社,1999.
    [55]夏祥鳌,王明星,张仁健.基于卫星观测的中国地区沙尘气溶胶时空变化特征分析.过程工程学报,2002,2:264-267.
    [56]李成才,毛节泰,刘启汉,等.利用MODIS研究中国东部地区气溶胶光学厚度的分布和季节变化特征.科学通报,2003,48(19):2094-2100.
    [57]郝增周,潘德炉,白雁. SeaWiFS遥感资料分析中国海域气溶胶光学厚度的季节变化和分布特征.海洋学研究,2007,25(1):80-87.
    [58]姚济敏,张文煌,袁九毅,等.典型干旱区沙尘气溶胶光学厚度及粒度谱分布的初步分析.中国沙漠,2006,26(1):77-80.
    [59]牛生杰,孙继明.贺兰山地区大气气溶胶光学特征研究.高原气象,2001,20(3):298-301.
    [60]宗雪梅,邱金桓,王普才.近10年中国16个台站大气气溶胶光学厚度的变化特征分析.气候与环境研究,2005,10(2):201-208.
    [61]李正强,赵凤生,赵崴,等.黄海海域气溶胶光学厚度测量研究.量子电子学报,2003,20(5):635-640.
    [62]麻金继,杨世植,张玉平.厦门海域气溶胶光学特性的观测研究.量子电子学报,2005,22(3):473-476.
    [63]谭浩波,吴兑,毕雪岩.南海北部气溶胶光学厚度观测研究.热带海洋学报,2006,25(5):21-25.
    [64]罗云峰,吕达仁,何晴,等.华南沿海地区太阳直接辐射、能见度及大气气溶胶变化特征分析.气候与环境研究,2000,5(1):36-44.
    [65]邱明燕,盛立芳,房岩松,等.气象条件对青岛地区气溶胶光学特性的影响.中国海洋大学学报,2004,34(6):925-930.
    [66]宋磊,吕达仁.上海地区大气气溶胶光学特性的初步研究.气候与环境研究,2006,11(2):203-208.
    [67]徐新华,姚荣奎,李金龙.青岛地区大气气溶胶海洋因子贡献研究.海洋环境科学,1997,16(2):55-59.
    [68]王珉,胡敏.青岛沿海大气气溶胶中海盐源的贡献.环境科学,2000,5:83-85.
    [69]刘咸德,贾红,齐建兵,等.青岛大气颗粒物的扫描电镜研究和污染源识别.环境科学研究, 1994,7 (3) :10-18.
    [70]王珉,胡敏.青岛沿海大气气溶胶中无机组分在粗、细粒子上的分布.环境科学,2001,22(5):35-37.
    [71]陈兴茂,冯丽娟,张安慧,等.青岛地区总悬浮颗粒物中金属元素沉降通量.海洋环境科学,2003,4:18-20.
    [72]张仁健,浦一芬,徐永福,等.青岛大气气溶胶的浓度分布和干沉降的观测研究.气候与环境研究,2004,2:390-395.
    [73]祁建华,李培良,李先国,等.青岛近海海域气溶胶干沉降通量模拟研究I-Williams干沉降模型中潮湿粒子增长效应的改进.中国海洋大学学报(自然科学版),2005,3:445-450.
    [74]祁建华,李培良,李先国,等.青岛近海海域气溶胶干沉降通量模拟II--几种微量金属的干沉降通量研究.中国海洋大学学报(自然科学版),2006,3:461-467.
    [75]毛节泰,张军华,王美华.中国大气气溶胶研究综述.气象学报,2002,60(5):625-634.
    [76] Tanaka M, Nakajima T, Shiobara M. Calibration of a sunphotometer by simultaneous measurements of direct-solar and circumsolar radiations. Applied Optics, 1986, 25: 1170-1176.
    [77] Kuo-Nan Liou著,周诗键,阮忠家,陶丽君,朱文琴译.大气辐射导论.北京:气象出版社,1985.
    [78]刘长盛,刘文保.大气辐射学.南京:南京大学出版社,1990.
    [79] Nakajima T Y, Murakami H, Hori M, et al. Efficient Use of an Improved Radiative Transfer Code to Simulate Near-Global Distributions of Satellite-Measured Radiances. Applied Optics, 2003, 42: 3460-3471.
    [80]申彦波,沈志宝,汪万福. 2001年春季中国北方大气气溶胶光学厚度与沙尘天气.高原气象,2003,22(2):185-190.
    [81]盛立芳,郭志刚,高会旺,等.渤海大气气溶胶元素组成及物源分析.中国环境监测,2005,21(1):16-20.
    [82]肖辉,Gregory R C.东亚地区沙尘气溶胶影响硫酸盐形成的模式评估.大气科学,1998,22(3):343-353.
    [83]杨绍晋,杨亦男,陈冰如.近中国海域大气微量元素输入量研究.环境化学,1994,13(5):382-388.
    [84] Kim S W, Yoon S C, Kim J, et al. Seasonal and monthly variations of columnar aerosol optical properties over East Asia determined from multi-year MODIS, LIDAR, and AERONET Sun/sky radiometer measurements. Atmospheric Environment, 2007, 41:1634-1651.
    [85]辛金元.中国地区气溶胶光学特性地基联网观测与研究:[博士学位论文].兰州:兰州大学,2007年.
    [86] http://amsglossary.allenpress.com/glossary/browse?s=s&p=43
    [87] Penner J E, et al. in Climate Change 2001:The Scientific Basis [Working Group 1 to the Third Assessment Report of the Intergovermmental Panel on Climate Change (IPCC).Cambridge Univ. Press ,Cambridge, 2001]: 289-348.
    [88] Haywood J, Boucher 0. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Review of Geophysics, 2000,38:513-543.
    [89] Bergstrom R W, Russell P B. Estimation of aerosol radiative effects over the mid-latitude North Atlanticregion from satellite and in situ measurements. Geophysical Research Letters, 1999, 26: 1731–1734.
    [90] Hansen J, Sato M, Ruedy R. Radiative forcing and climate response. Journal of Geophysical research,1997,102:6831-6864.
    [91] Carrico C M, Rood M J. Aerosol light scattering properties at Cape Grim, Tasmania, during the Fist Aerosol Characterization Experiment(ACE-1). Journal of Geophysical research, 1998, 103(D13): 16,565-16,574.
    [92] ?ngstr?m A K. The parameters of atmospheric turbidity. Tellus, 1964, 16 : 64–75.
    [93]章澄昌,周文贤.大气气溶胶教程.北京:气象出版社, 1995. 112~123 .
    [94] TanréD, Kaufman Y J, Holben B N, et al. Climatology of dust aerosol size distribution and optical properties derived from remotely sensed data in the solar spectrum. Journal of Geophysical Research, 2001, 106(D16): 18,205–18,217.
    [95] Remer L A, Kaufman Y J. Interannual variation of ambient aerosol characteristics on the east coast of the United States. Journal of Geophysical Research, 1999, 104(D2):2223-2232.
    [96] Gillame A D’Almeida. A model for Saharan dust transport. Journal of Climate Applied Meteorology, 1986,25:903-916.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700