用户名: 密码: 验证码:
内蒙古短花针茅草原生物多样性格局及环境解释
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物多样性是生态系统功能和服务的必然前提,是自然生态系统和人类社会发展和维持的基本保障,它不仅可以直接为人类提供物质资源而具有巨大的直接价值,而且还为人类提供生态、科学、美学等间接价值。然而近年来,人类不合理的活动加速了生境丧失和物种绝灭的速率,对生态系统构成了严重破坏,日益威胁到人类的生存和发展,因而生物多样性问题引起国际社会的广泛关注。
     本文以内蒙古短花针茅草原为研究对象,从基因、物种及群落三个层次探讨了其多样性特征、格局及其与环境因子的关系,在加深对植被生态学及生物多样性若干理论理解的同时,亦可以为科学、合理利用短花针茅草原提供指导,并为短花针茅草原受损生态系统恢复和重建提供科学依据和理论支持。主要研究结果如下:
     1内蒙古短花针茅种群遗传多样性
     采用RAPD (Random Amplified Polymorphism DNA, RAPD)分子标记技术,从102条10碱基随机引物中筛选出28条有效引物,共扩增出308条DNA带,多态性DNA带151条,占49.03%,特异性DNA带45条,占14.61%,遗传多样性较为丰富(49.03%),但低于同种方法获得的大针茅(54.75%)和克氏针茅(74.67%)的遗传多样性;等级聚类、PCA(Principal Component Analysis, PCA)分析和UPGMA (Unweighted Pair-Group Method with Arithmetic mean, UPGMA)聚类三种不同方法都将8个不同地理种群分为同样的两类:暖温性种群和中温性种群,聚类结果与种群的空间分布相吻合,经Mantel检验发现,遗传距离与地理距离存在显著相关性;DCCA (Detrended Canonical Correspondence Analysis, DCCA)与Pearson相关分析表明,短花针茅种群的遗传分化与热量因子(≥10℃积温、≥0℃积温、最冷月平均气温、年平均气温、最热月平均气温和无霜期)存在显著的相关关系。综上可知:热量差异的自然选择是导致短花针茅种群产生遗传分化的主要原因,而较强的基因流在其遗传分化中也起到了不可忽略的作用。
     2内蒙古短花针茅草原物种多样性
     研究区共统计种子植物31科,96属,161种,且集中分布在菊科(Compositae,29种)、豆科(Leguminosae,25种)、禾本科(Gramineae,23种)、百合科(Liliaceae,10种)等几个大科,区系的优势现象非常明显;该区属种比为班.68,较内蒙古自治区(1/3.33)及全国(1/8.73)均低,物种分化程度低;植物区系组成具有明显的温带性质,但与热带植物区系也存在一定的亲缘关系,具有过渡性;植物生活型特征表明本区多年生草本植物占绝对优势,表现出草原植物群落种类组成的特征,但由于该区土壤覆沙或沙质化明显,因此,灌木和半灌木种类也较多;植物水分生态类群以旱生为主,非旱生也占有很大比例,具有明显的过渡性。
     内蒙古短花针茅草原物种丰富度存在较大的空间变异,由西向东,随着经度增加物种丰富度呈现显著增多的经度格局,由南向北,随着纬度增加物种丰富度也呈现显著增多的纬度格局,物种丰富度随纬度增加而增多的纬度格局并不是纬度这一地理因子造成的,是在该特定研究区内经度和纬度的共线性造成的;年平均降水量是影响物种丰富度格局的主要气候因子,年平均温度及潜在蒸散量逐一次之,且在干旱及半干旱地区年平均降水量被作为生产力假说中的重要指标,因此,生产力假说是最适合揭示该区物种丰富度分布格局的现代气候假说;气候因子总共只解释了物种丰富度分布格局23.7%的变异,说明物种丰富度分布格局是多种因素(地史、现代气候、随机因素、人为干扰)综合作用的体现,不同区域及不同尺度下各种因素起的作用是不同的。
     既然生产力假说是最适合揭示该区物种丰富度分布格局的现代气候假说,于是从局域尺度及七个景观尺度(最小幅度为100×100 km,按照100 km连续增加,直到最大幅度为700×700 km)下探讨了生产力与物种丰富度关系的尺度依赖效应。发现局域尺度上生产力与物种丰富度呈单峰曲线关系,随着空间尺度的增大,两者间的正线性关系将变得更加普遍;生物因素是局域尺度生产力与物种丰富度呈单峰曲线关系最主要的原因,环境异质性(内蒙古草原主要是降水异质性)是生产力与物种丰富度在大尺度呈现正线性关系的主导因素;结合前人不同生态尺度下生产力与物种丰富度间关系的研究,本研究通过一系列地理尺度共同证实了生产力与物种丰富度间的正线性关系在内蒙古草原最为常见。
     3内蒙古短花针茅草原群落多样性
     运用双向指示种分析法(Two-way Indicator Species Analysis, TWINSPAN)在第四级水平上将短花针茅草原分为16个群丛,并运用除趋势典范对应分析排序方法分析了环境因子、空间因子、两者交互作用及其它因素对内蒙古短花针茅群落类型格局的影响:一方面,DCCA前两排序轴集中了大部分信息(75.3%),第一、二排序轴分别突出反映了群落类型格局在热量、水分梯度上的变化,并由此构建了内蒙古短花针茅草原生态系列图式,另一方面,环境因子对群落类型格局的解释能力为70.7%,其中26.5%为单纯环境因子引起,空间因子解释能力为55.6%,其中11.4%是独立于环境因子的,44.2%是环境因子和空间因子交互作用导致的,未能解释的部分达17.9%。综上可知,就本项研究所涉及的区域而言,环境因素(主要是热量和水分因素)是导致短花针茅草原群落类型分布格局的主导因素,且热量占主导地位。
     与此同时,选择赛汉、化德、准格尔3个典型样地,分析了局域尺度微地形对植被格局的影响及土壤效应。在群落结构方面,微地形通过地貌过程和起伏变化,外加风蚀、水蚀影响,严重改变了表层土(尤其是0-5 cm)的土壤特征,从而影响了建群种和优势种沿坡面的分布格局,进而导致缓丘上部坡面和下部坡面植被类型明显分异,且以群落复合体的形式出现,上部坡面发育的是本区气候顶级群落,下部坡面发育的为地形群落;在生态系统功能方面,微地形通过起伏作用导致了水分因子在空间的再分配,从而形导致上部坡面和下部坡面生产力的差异,且下部坡面生产力高于上部坡面,形成2个不同的功能区域;在物种多样性方面,微地形导致在极小的范围内形成了非常明显的生境异质性,提供了多样化的生存环境,为局域范围内生物多样性的形成与维持提供了一种重要机制。
Biodiversity is a necessary prerequisite of ecosystem function and ecosystem services. It maintains both the sustainability of natural ecological systems and the well-being of human society. Besides providing material resources for the humanity directly, biodiversity has other important ecological, scientific, and aesthetic values. In recent years, unreasonable exploitation of natural resources by the society has accelerated habitat loss and species extinction. These adverse effects seriously damage ecosystem integrity and pose a threat to human survival and development. Therefore, biodiversity preservation and maintenance is the matter of urgent international concern.
     In this study we chose Stipa breviflora grassland as the research object and explored biodiversity patterns and their relationships with environmental factors at multiple scales. First, our research contributes to the understanding of ecosystem function and provides additional empirical evidence for theories developed in plant ecology and biodiversity. Second, our findings can provide the needed scientific basis and theoretical support for rational utilization of grasslands and restoration of damaged grassland ecosystems. Main results from the study are outlined below.
     1. Genetic diversity of S. breviflora grassland in Inner Mongolia
     Genetic diversity of S. breviflora populations and its relationship with climatic variables were studied using Geographic Information Systems (GIS) and the Random Amplified Polymorphism DNA analysis (RAPD). The RAPD produced a total of 308 bands with twenty-eight arbitrary decamer oligonucleotides. Among those,151 (or 49.03%) were polymorphic to the populations, and 45 (or 14.61%) were unique to specific populations. The genetic diversity of S. breviflora was high, but lower than that of the other two common species in the area-S. grandis and S. krylovii. Eight different geographical populations were analyzed by 3 different methods-the Hierarchical cluster analysis, the Principal Component Analysis (PCA), and the Unweighted Pair-Group Method with Arithmetic mean (UPGMA), which resulted in 2 groups of populations-warm-temperate and temperate. Mantel test showed a significantly positive correlation between genetic distance and geographical distance. Both detrended canonical correspondence analysis (DCCA) and Pearson correlation analysis showed that correlations between genetic differentiation and temperature were strong in the area. In particular, we found significant correlations of genetic differentiation with accumulated temperature≥10°, accumulated temperature≥0°, mean temperature of the coldest and the hottest months, annual mean temperature, and the number of frost-free days. We therefore conclude that temperature variations play an important role in the genetic differentiations of the investigated S. breviflora populations. Genetic flow was found to be and important process in genetic differentiation.
     2. Species diversity of S. breviflora grassland in Inner Mongolia
     The studied populations of S. breviflora contained a total of 161 species belonging to 31 families and 96 genera of Spermatophytes. Species found belong to several families: Compositae (29), Leguminosae (25), Gramineae (23), Liliaceae (10). Hence, the floristic diversity is high. The ratio of genera to species of studied populations was 1/1.68, which is smaller than that of the entire Inner Mongolia (1/3.33) or China (1/8.73). This result suggests that the level of species differentiation is low. We found that vegetation composition is mainly characterized as being representative of the temperate zone, although certain elements of the tropical flora were also found, leading us to the conclusion about the transitional character of the local flora. Statistical analyses of life form occurrences showed that perennial herbs dominated the steppe communities. Besides, shrubs and semi-shrubs were also common life forms. They mainly occupied sandy soils that covered many areas in this region. While xerophytes generally dominated plant communities, non-xerophytes accounted for a larger proportion of species found. We found that different ecological types of water regime controlled the distribution of plant communities.
     Spatial distribution of S. breviflora grassland communities in Inner Mongolia clearly followed longitudinal and latitudinal gradients:species richness increased significantly with longitude increasing (west-east gradient) and latitude increasing (south-north gradient). We found that species richness increase along the latitudinal south-north gradient is mainly due to the collinearity between environmental factors that change along the latitudinal and longitudinal gradients in the study area. Average annual precipitation is the major climatic factor that controls species richness patterns followed by annual average temperature and potential evapotranspiration. Moreover, the average annual precipitation is the main predictor variable for primary productivity in arid and semi-arid regions. We hypothesized that primary productivity should be explained largely by modern climate patterns that, at the same time, may help us reveal distribution patterns of species richness in the area. Climate factors, however, explained only 23.7% of variation in spatial distribution of species richness suggesting that richness patterns are influenced by a variety of factors including historical legacies, modern climate, human disturbances, and other random factors. These groups of factors play different roles in different parts of our study area and at different analysis scales.
     We collected data on species diversity (richness) and productivity (peak above-ground biomass) of the S. breviflora association in Inner Mongolia grassland to examine spatial scale dependency and possible underlying mechanisms responsible for relationships found. One local and seven different landscape scales (the first level starts at a 100 x 100 km area, which is increased consecutively by 100 km at the next level resulting in the 700 x 700 km area at the highest level) were considered. Unimodal relationship dominated the local scale, but it varied depending on the position along successional gradients. Positive linear relationship was common at larger spatial scales. Biotic processes were the most likely primary factor underlying local scale unimodal relationships, but environmental heterogeneity, mainly precipitation patterns, was the main determinant of relationships found at larger spatial scales. While earlier research demonstrated positive linear species richness-productivity relationships across a number of ecological scales in the Inner Mongolia steppe, our study specifically tested a spectrum of geographical scales to confirm scale-dependency of this relationship.
     3. Community diversity of S. breviflora grassland in Inner Mongolia
     The community level analysis of the S. breviflora grassland produced a classification with 16 distinct groups evident at the fourth level of division using the two-way indicator species analysis (TWINSPAN) algorithm. We also investigated the effects of environmental and spatial factors, as well as their interaction, on the structure of S. breviflora communities by using detrended canonical correspondence analysis (DCCA). Our results showed that the first two DCCA axes, which corresponded to gradients in temperature and precipitation, respectively, explained most of the variation in community structure (75.3%). Based on these results different S. breviflora communities were arranged into an ecological series.70.7% of the total variance in S. breviflora community structure was explained by all environmental factors and 55.6% by all spatial factors. When these factors were examined separately, only 29.5% and 11.4% of the total variance was explained by the two groups of factors, respectively.44.2% was simultaneously explained by the two groups, while 17.9% was explained by other undetermined factors. According to these, we concluded that environmental factors (precipitation and temperature) play an important role in community differentiations.
     We chose 3 typical S. breviflora grassland sites (Saihantala, Huade, and Zhunger) to analyze the influence of micro-landforms and soil on vegetation patterns. Local scale species distribution patterns, i.e. species composition and dominant species distribution, were affected by micro-landforms along the slope gradient. On the other hand, vegetation associations represented by community complexes were clearly differentiated between the upper slope and the lower slope due to different types of micro-landforms of the two localities. Climatic climax community grew in dominance toward the upper slope, while terrain community developed in the lower slope locations. Such patterns can be explained by differences in soil physical properties at the top soil horizons (especially the 0-5 cm layer). Community productivity is largely controlled by soil moisture. It is sufficiently higher in the more moisture-rich lower slope locations. We found that micro-landforms also determine species diversity by forming significant habitat heterogeneity within a very limited spatial area. It provides an important mechanism for the formation and maintenance of biological diversity at local scales.
引文
[1]Bai YF, Wu JG, Clark CM et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning:evidence from inner Mongolia Grasslands[J]. Global Change Biology,2010,16(1):358-372.
    [2]Duffy JE. Why biodiversity is important to the functioning of real-world ecosystems[J]. Frontiers in Ecology and the Environment,2009,7(8):437-444.
    [3]Naeem S, Thompson LJ, Lawler SP et al. Declining biodiversity can alter the performance of ecosystems[J]. Nature,1994,368(6473):734-737.
    [4]Wilson EO. Biodiversity[M]. Washington. DC:National Academy Press,1988.
    [5]Ehrlich PR, Ehrlich AH. The value of biodiversity [J]. Ambio Stockholm,1992,21(3): 219-226.
    [6]陈灵芝.生物多样性保护现状及其对策[A].生物多样性研究的原理与方法[M].钱迎倩,马克平(主编).北京:中国科学技术出版社,1994.
    [7]李铁锋,潘懋.环境地学概论[M].北京:中国环境科学出版社,1996.
    [8]蒋志刚,马克平,韩兴国.保护生物学[M].杭州:浙江科学技术出版社,1997.
    [9]Lubchenco J, Olson AM, Brubaker LB et al. The Sustainable Biosphere Initiative:an ecological research agenda:a report from the Ecological Society of America[J]. Ecology, 1991,72(2):371-412.
    [10]Pimm SL, Russell GJ, Gittleman JL et al. The future of biodiversity [J]. Science,1995, 269(5222):347.
    [11]Walker BH, Steffen WL. Global change and terrestrial ecosystems[M]. Cambridge, UK: Cambridge University Press,1996.
    [12]Chapin III FS, Zavaleta ES, Eviner VT et al. Consequences of changing biodiversity[J]. Nature,2000,405(6783):234-242.
    [13]Wilson EO. Threats to Biodiversity [J]. Scientific American,1989,261(3):108-112,114,116.
    [14]宿兵,何光听.大熊猫遗传多样性的蛋白电泳研究[J].科学通报,1994,39(008):742-745.
    [15]Reid WV, Miller KR. Keeping options alive. The scientific basis for conserving biodiversity[M].Washington, D.C.:world Resource Institute,1989.
    [16]骆世明.普通生态学[M].北京:中国农业出版社,2005.
    [17]世界银行.世界发展报告:发展与环境[M].北京:中国财政经济出版社,1992.
    [18]Costanza R, d'Arge R, De Groot R et al. The value of the world's ecosystem services and natural capital[J]. Nature,1997,387(6630):253-260.
    [19]Watson R. Common themes for ecologists in global issues[J].Journal of Applied Ecology, 1999,36(1):1-10.
    [20]Exeler N, Kratochwil A, Hochkirch A. Does recent habitat fragmentation affect the population genetics of a heathland specialist, Andrena fuscipes (Hymenoptera: Andrenidae)?[J]. Conservation Genetics,2010,11(5):1679-1687.
    [21]Scolozzi R, Geneletti D. Spatial Rule-Based Assessment of Habitat Potential to Predict Impact of Land Use Changes on Biodiversity at Municipal Scale[J].Environmental Management,2011,47(3):368-383.
    [22]Smith AC, Fahrig L, Francis CM. Landscape size affects the relative importance of habitat amount, habitat fragmentation, and matrix quality on forest birds[J]. Ecography,2011, 34(1):103-113.
    [23]Bhattacharya A, Sarkar SK. Impact of overexploitation of shellfish:Northeastern coast of India[J]. Ambio,2003,32(1):70-75.
    [24]Thiyagarajan V, Tsoi MMY, Zhang W et al. Temporal variation of coastal surface sediment bacterial communities along an environmental pollution gradient[J]. Marine Environmental Research,2010,70(1):56-64.
    [25]Trevors JT. Biodiversity and environmental pollution[J]. Water Air and Soil Pollution,2003, 150(1-4):1-2.
    [26]彭少麟,向言词.植物外来种入侵及其对生态系统的影响[J].生态学报,1999,19(4):560-568.
    [27]McGeoch MA, Butchart SHM, Spear D et al. Global indicators of biological invasion: species numbers, biodiversity impact and policy responses[J]. Diversity and Distributions, 2010,16(1):95-108.
    [28]Spyreas G, Wilm BW, Plocher AE et al. Biological consequences of invasion by reed canary grass (Phalaris arundinacea)[J]. Biological Invasions,2010,12(5):1253-1267.
    [29]DeHaan LR, Weisberg S, Tilman D et al. Agricultural and biofuel implications of a species diversity experiment with native perennial grassland plants[J]. Agriculture Ecosystems & Environment,2010,137(1-2):33-38.
    [30]Kotschi J. Reconciling Agriculture with Biodiversity and Innovations in Plant Breeding[J]. Gaia-Ecological Perspectives for Science and Society,2010,19(1):20-24.
    [31]Araujo MB, Cabeza M, Thuiller W et al. Would climate change drive species out of reserves? An assessment of existing reserve-selection methods[J]. Global Change Biology, 2004,10(9):1618-1626.
    [32]Pearson RG, Dawson TP. Predicting the impacts of climate change on the distribution of species:are bioclimate envelope models useful?[J]. Global Ecology and Biogeography, 2003,12(5):361-371.
    [33]Peterson AT, Ortega-Huerta MA, Bartley J et al. Future projections for Mexican faunas under global climate change scenarios[J]. Nature,2002,416(6881):626-629.
    [34]Thomas CD, Cameron A, Green RE et al. Extinction risk from climate change[J]. Nature, 2004,427(6970):145-148.
    [35]Sala OE, Stuart Chapin F. Global biodiversity scenarios for the year 2100[J]. Science,2000, 287(5459):1770-1774.
    [36]Rapport DJ, Whitford WG. How ecosystems respond to stress[J]. BioScience,1999,49(3): 193-203.
    [37]Howlett R, Dhand R. Nature insight biodiversity [J]. Nature,2000,405(6783):207.
    [38]Tilman D. Causes, consequences and ethics of biodiversity [J]. Nature,2000,405(6783): 208-211.
    [39]Western D, Pearl MC. Conservation for the Twenty-first Century[M]. Oxford:Oxford University Press,1989.
    [40]马克平,钱迎倩.《生物多样性公约》的起草过程与主要内容[J].生物多样性,1994,2(1):54-57.
    [41]内蒙古植物志编辑委员会.内蒙古植物志[M].呼和浩特:内蒙古人民出版社,1994.
    [42]中国科学院内蒙古宁夏综合考察队.内蒙古植被[M].北京:科学出版社,1985.
    [43]中国植被编辑委员会.中国植被[M].北京:科学出版社,1980.
    [44]赛胜宝.内蒙古北部荒漠草原带的严重荒漠化及其治理[J].干旱区资源与环境,2001,15(4):34-37.
    [45]牛建明.内蒙古主要植被类型与气候因子关系的研究[J].应用生态学报,2000,11(1):47-52.
    [46]Ter Braak CJF. Canonical Correspondence Analysis:A New Eigenvector Technique for Multivariate Direct Gradient Analysis[J]. Ecology,1986,67(5):1167-1179.
    [47]Ter Braak CJF. CANOCO—an extension of DECORANA to analyze species-environment relationships[J]. Hydrobiologia,1989,184(3):169-170.
    [48]Hill MO. TWINSPAN-A FORTRAN program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes[M]. New York:Cornell University,1979.
    [49]Rohlf FJ. NTSYS-pc:numerical taxonomy and multivariate analysis system[M]. New York: Exeter publishing Setauket,1988.
    [50]马克平.试论生物多样性的概念[J].生物多样性,1993,1(1):20-22.
    [5]]马克平,钱迎倩.生物多样性研究的现状与发展趋势[J].科技导报,1995,(1):27-30.
    [52]李博.生态学[M].北京:高等教育出版社,2000.
    [53]Mackenzie A, Ball AS, Virdee SR. Instant notes in ecology[M]. Oxford:Bios Scientific Pbulishers,1998.
    [54]葛颂.同工酶和植物进化生物学研究[A].植物进化生物学[M].陈家宽,杨继(主编).武汉:武汉大学出版社,1994.
    [55]赵运林,江发雨.生物多样性及其研究内容[J].湘潭师范学院学报,1994,15(6):35-39.
    [56]Magurran AE. Ecological diversity and its measurement[M]. New Jersey:Princeton University Press,1988.
    [57]Solbrig OT. From genes to ecosystems:a research agenda for biodiversity[M]. Paris:IUBS, 1991.
    [58]Learn Jr GH, Schaal BA. Population subdivision for ribosomal DNA repeat variants in Clematis fremontii[J]. Evolution,1987:433-438.
    [59]Hong D. Cytotype variation and polyploidy in Scilla autumnalis L.(Liliaceae)[J]. Hereditas, 1982,97:227-235.
    [60]洪德元.植物细胞分类学[M].北京:科学出版社,1990.
    [61]Schaal B, Leverich W, Nieto-Sotelo J. Ribosomal DNA variation in the native plant Phlox divaricata[J]. Molecular biology and evolution,1987,4(6):611-621.
    [62]Hamrick J, Linhart Y, Mitton J. Relationships between life history characteristics and electrophoretically detectable genetic variation in plants[J]. Annual review of ecology and systematics,1979,10:173-200.
    [63]Avise JC. Molecular markers, natural history and evolution[M]. New York:Springer,1994.
    [64]Neale D, Saghai-Maroof M, Allard R et al. Chloroplast DNA diversity in populations of wild and cultivated barley[J]. Genetics,1988,120(4):1105.
    [65]Torimaru T, Tomaru N, Nishimura N et al. Clonal diversity and genetic differentiation in Ilex leucoclada M. patches in an old-growth beech forest[J]. Molecular Ecology,2003, 12(4):809-818.
    [66]Rossetto M, Crayn D, Ford A et al. The influence of environment and life-history traits on the distribution of genes and individuals:a comparative study of 11 rainforest trees[J]. Molecular Ecology,2009,18(7):1422-1438.
    [67]Frankel OH, Brown AHD, Burdon JJ. The conservation of plant biodiversity[M]. Cambridge:Cambridge University Press,1995.
    [68]Cowling RM, Hilton Taylor C. Patterns of plant diversity and endemism in southern Africa: an overview. In:Huntley BJ, ed. Botanical diversity in southern Africa[M]. Pretoria: National Botanical Institute,1994:31-52.
    [69]周红章.物种与物种多样性[J].生物多样性,2000,8(2):215-226.
    [70]Pielou EC. Ecological diversity[M]. New York:John Wiley and Sons Inc,1975.
    [71]Whittaker RH. Evolution and measurement of species diversity[J]. Taxon,1972,21(2/3): 213-251.
    [72]McNeely JA. Protected areas for the 21st century:working to provide benefits to society[J]. Biodiversity and Conservation,1994,3(5):390-405.
    [73]Erwin TL. Beetles and other insects of tropical forest canopies at Manaus, Brazil, sampled by insecticidal fogging.in Tropical rain forest:Ecology and Management[M]. L Sutton S, C Chadwick A, eds. Oxford:Blackwell Scientific Publications,1984:59-76.
    [74]陈灵芝,马克平.生物多样性科学:原理与实践[M].上海:上海科学技术出版社,2001.
    [75]Yoon CK. Counting creatures great and small[J]. Science,1993,260(5108):619-622.
    [76]李延梅,牛栋,张志强et al.国际生物多样性研究科学计划与热点述评[J].生态学报,2009,29(004):2115-2123.
    [77]吴征镒.种子植物分布区类型及其起源和分化[M].昆明:云南科技出版社,2006.
    [78]应俊生,张玉龙.中国种子植物特有属[M].北京:科学出版社,1994.
    [79]雷富民,卢汰春.中国鸟类特有种[M].北京:科学出版社,2006.
    [80]刘瑞玉.中国海洋生物名录[M].北京:科学出版社,2008.
    [81]孙鸿烈.中国生态系统[M].北京:科学出版社,2005.
    [82]马克平,王恩明.生物多样性监测研讨班在美国举办[J].生物多样性,1994,2(3):184-186.
    [83]赵士洞.推进全球生物多样性研究的重大步骤——生物多样性的编目和监测国际研讨会在哥斯达黎加召开[J].应用生态学报,1993,4(3):342.
    [84]Scholes R, Mace G, Turner W et al. Toward a global biodiversity observing system[J]. Science,2008,321(5892):1044-1045.
    [85]马克平,娄治平,苏荣辉.中国科学院生物多样性研究回顾与展望[J].中国科学院院刊,2010,25(6):634-644.
    [86]Swaney JA, Olson PI. The economics of biodiversity:lives and lifestyles[J].Journal of Economic Issues,1992,26(1):1-25.
    [87]Diamond J. Overview of recent extinctions. In Conservation for the twenty-first century[M]. D Western, C Pearl M, eds.Oxford:Oxford University Press,1989.
    [88]杨利民,韩梅,李建东.中国东北样带草地群落放牧干扰植物多样性的变化[J].植物生态学报,2001,25(1):110-114.
    [89]Thrush SF, Dayton PK. Disturbance to marine benthic habitats by trawling and dredging: Implications for marine biodiversity[J]. Annual review of ecology and systematics,2002, 33:449-473.
    [90]Cardinale BJ, Palmer MA. Disturbance moderates biodiversity-ecosystem function relationships:Experimental evidence from caddisflies in stream mesocosms[J]. Ecology, 2002,83(7):1915-1927.
    [91]赵海霞,江源,刘全儒.城市土地利用对植被特征影响的研究[J].地球科学进展,2002,17(2):247-253.
    [92]Wallis PD, Haynes RJ, Hunter CH et al. Effect of land use and management on soil bacterial biodiversity as measured by PCR-DGGE[J]. Applied Soil Ecology,2010,46(1): 147-150.
    [93]Polasky S, Nelson E, Pennington D et al. The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners:A Case Study in the State of Minnesota[J]. Environmental & Resource Economics,2011,48(2):219-242.
    [94]刘建锋,肖文发,江泽平et al.景观破碎化对生物多样性的影响[J].林业科学研究,2005,18(002):222-226.
    [95]Fahrig L, Baudry J, Brotons L et al. Functional landscape heterogeneity and animal biodiversity in agricultural landscapes[J]. Ecology Letters,2011,14(2):101-112.
    [96]Opdam P, Verboom J, Pouwels R. Landscape cohesion:an index for the conservation potential of landscapes for biodiversity [J]. Landscape Ecology,2003,18(2):113-126.
    [97]吴建国,吕佳佳,艾丽.气候变化对生物多样性的影响:脆弱性和适应[J].生态环境学报,2009,18(002):693-703.
    [98]Yamaura Y, Amano T, Kusumoto Y et al. Climate and topography drives macroscale biodiversity through land-use change in a human-dominated world[J]. Oikos,2011, 120(3):427-451.
    [99]Willis KJ, Bhagwat SA. Biodiversity and Climate Change[J]. Science,2009,326(5954): 806-807.
    [100]Lepetz V, Massot M, Schmeller DS et al. Biodiversity monitoring:some proposals to adequately study species' responses to climate change[J]. Biodiversity and Conservation, 2009,18(12):3185-3203.
    [101]Hooper D, Chapin F, Ewel J et al. Effects of biodiversity on ecosystem functioning:a consensus of current knowledge[J]. Ecological Monographs,2005,75(1):3-35.
    [102]Tilman D. The ecological consequences of changes in biodiversity:A search for general principles[J]. Ecology,1999,80(5):1455-1474.
    [103]Di Castri F, Vernhes JR, Youn ST. Inventorying and monitoring biodiversity:a proposal for an international network[J]. Vegetatio,1992,103(2):1-28.
    [104]Hueting R. Moet de natuur worden gekwantificeerd?(Should Nature be Quantified)[J]. Economica Statistische Berichten,1970,55(2730):80-84.
    [105]Helliwell DR. Valuation of wildlife resources[J]. Regional Studies,1969,3:41-49.
    [106]De Groot RS, Wilson MA, Boumans RMJ. A typology for the classification, description and valuation of ecosystem functions, goods and services[J]. Ecological Economics,2002, 41(3):393-408.
    [107]Costanza R, Perez-Maqueo O, Martinez ML et al. The value of coastal wetlands for hurricane protection[J]. Ambio,2008,37(4):241-248.
    [108]Howarth RB, Farber S. Accounting for the value of ecosystem services[J]. Ecological Economics,2002,41(3):421-429.
    [109]Daly HE, Cobb JB. For the common good:redirecting the economy toward community, the environment, and a sustainable future[m].Boston:Beacon Press,1994.
    [110]Barbier EB. Valuing environmental functions:tropical wetlands[J]. Land economics,1994, 70(2):155-173.
    [111]Turner RK, Paavola J, Cooper P et al. Valuing nature:lessons learned and future research directions[J]. Ecological Economics,2003,46(3):493-510.
    [112]Curtis IA. Valuing ecosystem goods and services:a new approach using a surrogate market and the combination of a multiple criteria analysis and a Delphi panel to assign weights to the attributes[J]. Ecological Economics,2004,50(3-4):163-194.
    [113]Chee YE. An ecological perspective on the valuation of ecosystem services[J]. Biological conservation,2004,120(4):549-565.
    [114]Daily GC, S derqvist T, Aniyar S et al. The value of nature and the nature of value[J]. Science,2000,289(5478):395.
    [115]Wilson MA, Carpenter SR. Economic valuation of freshwater ecosystem services in the United States:1971-1997[J]. Ecological applications,1999,9(3):772-783.
    [116]Farber SC, Costanza R, Wilson MA. Economic and ecological concepts for valuing ecosystem services[J]. Ecological Economics,2002,41(3):375-392.
    [117]Hillebrand H. On the generality of the latitudinal diversity gradient[J]. American Naturalist,2004,163(2):192-211.
    [118]Palmer MW. Variation in species richness:towards a unification of hypotheses[J]. Folia Geobotanica,1994,29(4):511-530.
    [119]Rahbek C, Gotelli NJ, Colwell RK et al. Predicting continental-scale patterns of bird species richness with spatially explicit models[J]. Proceedings of the Royal Society B: Biological Sciences,2007,274(1607):165-174.
    [120]Brown JH, Gillooly JF, Allen AP et al. Toward a metabolic theory of ecology[J]. Ecology, 2004,85(7):1771-1789.
    [121]Colwell RK, Rahbek C, Gotelli NJ. The mid-domain effect and species richness patterns: what have we learned so far[J]. The American Naturalist,2004,163(3):E1-E23.
    [122]Gillooly JF, Brown JH, West GB et al. Effects of size and temperature on metabolic rate[J]. Science,2001,293(5538):2248.
    [123]Sax D. Latitudinal gradients and geographic ranges of exotic species:implications for biogeography[J]. Journal of Biogeography,2001,28(1):139-150.
    [124]Wright DH. Species-energy theory:an extension of species-area theory[J]. Oikos,1983, 41(3):496-506.
    [125]Ricklefs RE. Community diversity:relative roles of local and regional processes[J]. Science,1987,235(4785):167-171.
    [126]Stephens PR, Wiens JJ. Explaining species richness from continents to communities:the time-for-speciation effect in emydid turtles[J]. The American Naturalist,2003,161(1): 112-128.
    [127]Hubbell SP. Neutral theory and the evolution of ecological equivalence[J]. Ecology,2006, 87(6):1387-1398.
    [128]Currie DJ. Energy and large-scale patterns of animal-and plant-species richness[J]. The American Naturalist,1991,137(1):27-49.
    [129]Hawkins BA, Diniz-Filho JAF, Soeller SA. Water links the historical and contemporary components of the Australian bird diversity gradient[J]. Journal of Biogeography,2005, 32(6):1035-1042.
    [130]Hawkins BA, Porter EE, Felizola Diniz-Filho JA. Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds[J]. Ecology,2003,84(6):1608-1623.
    [131]Turner JRG. Explaining the global biodiversity gradient:energy, area, history and natural selection[J]. Basic and Applied Ecology,2004,5(5):435-448.
    [132]Allen AP, Gillooly JF, Brown JH, eds. Recasting the species Cenergy hypothesis:the different roles of kinetic and potential energy in regulating biodiversity[M]. Cambridge, UK:Cambridge University Press,2007.
    [133]Brown JH. Two decades of homage to Santa Rosalia:toward a general theory of diversity[J]. American Zoologist,1981,21(4):877-888.
    [134]Srivastava DS, Lawton JH. Why more productive sites have more species:an experimental test of theory using tree-hole communities[J]. American Naturalist,1998: 510-529.
    [135]Field R, O'Brien EM, Whittaker RJ. Global models for predicting woody plant richness from climate:development and evaluation[J]. Ecology,2005,86(9):2263-2277.
    [136]Francis AP, Currie DJ. A globally consistent richness-climate relationship for angiosperms[J]. American Naturalist,2003:523-536.
    [137]Turner JRG, Gatehouse CM, Corey CA. Does solar energy control organic diversity? Butterflies, moths and the British climate[J]. Oikos,1987:195-205.
    [138]O'Brien EM. Climatic gradients in woody plant species richness:towards an explanation based on an analysis of southern Africa's woody flora[J]. Journal of Biogeography,1993, 20(2):181-198.
    [139]O'Brien EM. Water-energy dynamics, climate, and prediction of woody plant species richness:an interim general model[J]. Journal of Biogeography,1998,25(2):379-398.
    [140]O'Brien EM. Biological relativity to water energy dynamics[J]. Journal of Biogeography, 2006,33(11):1868-1888.
    [141]Clarke A, Gaston KJ. Climate, energy and diversity[J].Proceedings of the Royal Society B:Biological Sciences,2006,273(1599):2257.
    [142]Hawkins BA, Montoya D, Rodriguez M et al. Global models for predicting woody plant richness from climate:comment[J]. Ecology,2007:255-259.
    [143]Montoya D, Rodriguez MA, Zavala MA et al. Contemporary richness of holarctic trees and the historical pattern of glacial retreat[J]. Ecography,2007,30(2):173-182.
    [144]Whittaker RJ, Nogues-Bravo D, Araujo MB. Geographical gradients of species richness:a test of the water-energy conjecture of Hawkins et al.(2003) using European data for five taxa[J]. Global Ecology and Biogeography,2007,16(1):76-89.
    [145]Evans KL, James NA, Gaston KJ. Abundance, species richness and energy availability in the North American avifauna[J]. Global Ecology and Biogeography,2006,15(4): 372-385.
    [146]Bai YF, Wu JG, Pan QM et al. Positive linear relationship between productivity and diversity:evidence from the Eurasian Steppe[J]. Journal of Applied Ecology,2007,44(5): 1023-1034.
    [147]Chase JM, Leibold MA. Spatial scale dictates the productivity-biodiversity relationship[J]. Nature,2002,416(6879):427-430.
    [148]Guo QF. Temporal species richness-biomass relationships along successional gradients[J]. Journal Of Vegetation Science,2003,14(1):121-128.
    [149]Mittelbach GG, Steiner CF, Scheiner SM et al. What is the observed relationship between species richness and productivity?[J]. Ecology,2001,82(9):2381-2396.
    [150]Allen AP, Brown JH, Gillooly JF. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule[J]. Science,2002,297(5586):1545.
    [151]Da Silva Cassemiro FA, De Souza Barreto B, Rangel TFLVB et al. Non-stationarity, diversity gradients and the metabolic theory of ecology[J]. Global Ecology and Biogeography,2007,16(6):820-822.
    [152]Kaspari M, Ward P S, Yuan M. Energy gradients and the geographic distribution of local ant diversity[J]. Oecologia,2004,140(3):407-413.
    [153]Stegen J C, Enquist BJ, Ferriere R. Advancing the metabolic theory of biodiversity[J]. Ecology Letters,2009,12(10):1001-1015.
    [154]Qian H, Ricklefs RE. Large-scale processes and the Asian bias in species diversity of temperate plants[J]. Nature,2000,407(6801):180-182.
    [155]Taplin JRD, Lovett JC. Can we predict centres of plant species richness and rarity from environmental variables in sub-Saharan Africa?[J]. Botanical Journal of the Linnean Society,2003,142(2):187-197.
    [156]Svenning JC, Skov F. Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation?[J]. Ecology Letters,2007,10(6):453-460.
    [157]Araujo MB, Nogues-Bravo D, Diniz-Filho J A F et al. Quaternary climate changes explain diversity among reptiles and amphibians[J]. Ecography,2008,31(1):8-15.
    [158]Svenning JC, Normand S, Skov F. Postglacial dispersal limitation of widespread forest plant species in nemoral Europe[J]. Ecography,2008,31(3):316-326.
    [159]Colwell RK, Hurtt GC. Nonbiological gradients in species richness and a spurious Rapoport effect[J]. The American Naturalist,1994,144(4):570-595.
    [160]Colwell RK, Lees DC. The mid-domain effect:geometric constraints on the geography of species richness[J]. Trends in Ecology and Evolution,2000,15:70-76.
    [161]Jetz W, Rahbek C. Geometric constraints explain much of the species richness pattern in African birds[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98(10):5661-5666.
    [162]Dunn RR, Colwell R K, Nilsson C. The river domain:why are there more species halfway up the river?[J]. Ecography,2006,29(2):251-259.
    [163]Lusk CH, Chazdon RL, Hofmann G. A bounded null model explains juvenile tree community structure along light availability gradients in a temperate rain forest[J]. Oikos, 2006,112(1):131-137.
    [164]Morales MA, Dodge GJ, Inouye DW. A phenological mid-domain effect in flowering diversity[J]. Oecologia,2005,142(1):83-89.
    [165]Bai Y, Han X, Wu J et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland[J]. Nature,2004,431 (7005):181-184.
    [166]Naeem S. Ecosystem consequences of biodiversity loss:The evolution of a paradigm[J]. Ecology,2002,83(6):1537-1552.
    [167]Walker BH. Biodiversity and ecological redundancy[J]. Conservation Biology,1992,6(1): 18-23.
    [168]党承林.植物群落的冗余结构:对生态系统稳定性的一种解释[J].生态学报,1998,18(006):665-672.
    [169]Marquard E, Weigelt A, Roscher C et al. Positive biodiversity-productivity relationship due to increased plant density[J]. Journal of Ecology,2009,97(4):696-704.
    [170]Kinzig AP, Pacala SW, Tilman D. The functional consequences of biodiversity:empirical progress and theoretical extensions[M]. Princeton:Princeton University Press,2001.
    [171]张全国,张大勇.生产力,可靠度与物种多样性:微宇宙实验研究[J].生物多样性,2002,10(2):135-142.
    [172]Naeem S, Hakansson K, Lawton JH et al. Biodiversity and plant productivity in a model assemblage of plant species[J]. Oikos,1996,76(2):259-264.
    [173]Ni J, Wang GH, Bai YF et al. Scale-dependent relationships between plant diversity and above-ground biomass in temperate grasslands, south-eastern Mongolia[J]. Journal of Arid Environments,2007,68(1):132-142.
    [174]Pimm SL. The complexity and stability of ecosystems[J]. Nature,1984,307(5949): 321-326.
    [175]Elton CS. The ecology of invasions by animals and plants[M]. Chicago:University of Chicago Press,2000.
    [176]MacArthur R. Fluctuations of animal populations and a measure of community stability[J]. Ecology,1955,36(3):533-536.
    [177]May RM. Will a large complex system be stable?[J]. Nature,1972,238:413-414.
    [178]Yodzis P. The stability of real ecosystems[J]. Nature,1981,289(5799):674-676.
    [179]Tilman D, Reich P B, Knops J et al. Diversity and productivity in a long-term grassland experiment[J]. Science,2001,294(5543):843-845.
    [180]McCann KS. The diversity Cstability debate[J]. Nature,2000,405(6783):228-233.
    [181]Ewel JJ, Mazzarino M J, Berish C W. Tropical soil fertility changes under monocultures and successional communities of different structure[J]. Ecological applications,1991, 1(3):289-302.
    [182]Hooper DU, Vitousek PM. Effects of plant composition and diversity on nutrient cycling[J]. Ecological Monographs,1998,68(1):121-149.
    [183]Coupland RT. Natural grasslands. Eastern hemisphere and resume. Amsterdam, NL: Elsevier; 1993.
    [184]郭本兆,王世金,卢生莲et al.我国针茅族小穗的形态演化及其属间亲缘关系的探讨[J].西北植物学报,1983,3(1):18-27.
    [185]卢生莲,吴珍兰.中国针茅属植物的地理分布[J].植物分类学报,1996,34(3):242-253.
    [186]吴征镒.中国植被[M].北京:科学出版社;1980.
    [187]Stebbins GL. Variation and evolution in plants[M]. New York:Columbia University Press, 1957.
    [188]阎贵兴,张素贞,云锦凤et al.68种饲用植物的染色体数目和地理分布[J].中国草地,1989,(4):53-60.
    [189]阎贵兴,张素贞,云锦凤et al.52种饲用植物的染色体数目和地理分布[J].中国草地,1991,(2):53-58.
    [190]Waterman AH. Pollen grain studies of the Labiatae in Michigan[J]. Webbia.1960,15: 399-415.
    [191]宛涛,卫智军,杨静et al.内蒙古三种草原类型中主要植物花粉形态[J].内蒙古农牧学院学报,1993,14(1):10-20.
    [192]宛涛,燕玲,李红et al.贺兰山荒漠草原几种主要植物花粉形态观察[J].草地学报, 2004,12(3):231-235.
    [193]宛涛,燕玲,李红et al.贺兰山山地疏林草原主要植物花粉形态观察[J].四川草原,2004,(2):28-31.
    [194]宛涛,卫智军,杨静et al.内蒙古草原针茅属六种植物的花粉形态研究[J].草地学报,1997,5(2):117-122.
    [195]孙书存,陈灵芝.东灵山地区辽东栎叶的生长及其光合作用[J].生态学报,2000,20(2):212-217.
    [196]闫瑞瑞,卫智军,运向军et al.放牧制度对短花针茅荒漠草原主要植物种光合特性日变化影响的研究[J].草业学报,2009,18(5):160-167.
    [197]李德新,白文明,许志信.短花针茅种群密度动态与生长分析的研究[J].中国草地,1997,(6):25-28.
    [198]张称意,李德新.短花针茅枝条数消长及其与种群产量关系的研究[J].草地学报,1991,1(1):163-171.
    [199]蒙荣,慕宗杰,孙熙麟et al.短花针茅荒漠草原群落优势种群空间格局分析[J].内蒙古农业大学学报(自然科学版),2009,30(1):65-70.
    [200]徐连秀.短花针茅荒漠草原植物群落空间分布格局研究[D].呼和浩特:内蒙古农业大学;2008.
    [201]徐连秀,蒙荣,慕宗杰.短花针茅荒漠草原植物群落优势种群分布格局研究——以内蒙古四子王旗荒漠草原为例[J].内蒙古农业大学学报(自然科学版),2008,29(2):64-67.
    [202]张金屯,焦蓉.关帝山神尾沟森林群落木本植物种间联结性与相关性研究[J].植物研究,2003,23(4):458-463.
    [203]朱桂林,杨洪琴,卫智军et al.短花针茅草原群落种间联结研究[J].草业学报,2004,13(5):33-38.
    [204]王凤兰,牛建明,张庆.短花针茅群落主要物种种间关系的研究[J],华北农学报.2009,24(1):159-164.
    [205]黄富祥,高琼,傅德山et al.内蒙古鄂尔多斯高原典型草原百里香一本氏针茅草地地上生物量对气候响应动态回归分析[J].生态学报,2001,21(8):1339-1346.
    [206]李德新.短花针茅荒漠草原动态规律及其生态稳定性[J].中国草地,1990,(4):1-5.
    [207]高永革.短花针茅荒漠草原植物地上部生物量形成规律初探[J].内蒙古草业,1986,2:1-7.
    [208]李玉中,王庆锁,钟秀丽et al.羊草草地植被一土壤系统氮循环研究[J].植物生态学报,2003,27(2):177-182.
    [209]张淑艳,李德新,布彩霞.短花针茅荒漠草原群落土壤—牧草—家畜之间氮流的初步研究[J].草地学报,1991,1(1):149-155.
    [210]王仁忠.干扰对草地生态系统生物多样性的影响[J].东北师大学报:自然科学版,1996,(3):112-116.
    [211]王明玖.放牧强度对短花针茅生活力及敏殖能力的影响[J].内蒙古农牧学院学报,1993,14(3):24-29.
    [212]杨静,朱桂林,高国荣et al.放牧制度对短花针茅草原主要植物种群繁殖特征的影响[J].干旱区资源与环境,2001,15(5):112-116.
    [213]朱桂林,雅梅,卫智军et al.放牧制度对短花针茅群落植物种群有性繁殖能力的影响[J].中国草地,2002,24(5):1-4.
    [214]慕宗杰,蒙荣,韩国栋et al.短花针茅荒漠草原不同载畜率植物群落优势种群空间 分布格局的研究[J].畜牧与饲料科学,2008,29(6):17-20.
    [215]李志强.短花针茅荒漠草原土壤种子库对不同放牧强度的响应[D].呼和浩特:内蒙古农业大学,2009.
    [216]毕力格图,索培芬,康俊霞et al.载畜率对短花针茅荒漠草原植物群落影响的研究[J].内蒙古农业大学学报(自然科学版),2004,25(4):30-33.
    [217]卫智军,韩国栋,杨静et al.短花针茅荒漠草原植物群落特征对不同载畜率水平的响应(英文)[J].中国草地,2000,(6):1-5.
    [218]韩国栋,焦树英,毕力格图et al.短花针茅草原不同载畜率对植物多样性和草地生产力的影响[J].生态学报,2007,27(1):182-188.
    [219]焦树英,韩国栋,李永强et al.不同载畜率对荒漠草原群落结构和功能群生产力的影响[J].西北植物学报,2006,26(3):564-571.
    [220]焦树英,韩国栋,赵萌莉et al.荒漠草原地区不同载畜率对功能群特征及其多样性的影响[J].干旱区资源与环境,2006,20(1):161-165.
    [221]敖登高娃.载畜率对短花针茅草原植物群落及其种群生理生态的影响[D].呼和浩特:内蒙古农业大学;2004.
    [222]锡林塔娜.不同载畜率下短花针茅荒漠草原群落种间关系研究[D].呼和浩特:内蒙古农业大学,2009.
    [223]张淑艳,李德新,徐光珍.放牧对短花针茅荒漠草原草群氮贮量分配及动态的影响[J].中国草地,1998,(3):13-16.
    [224]王忠武.载畜率对短花针茅荒漠草原生态系统稳定性的影响[D].呼和浩特:内蒙古农业大学,2009.
    [225]闫瑞瑞.不同放牧制度对短花针茅荒漠草原植被与土壤影响的研究[D].呼和浩特:内蒙古农业大学,2008.
    [226]张淑艳,张永亮,刘淑贤.放牧对短花针茅草原生态系统土壤贮氮季节动态的影响[J].哲里木畜牧学院学报,1998,8(1):54-58.
    [1]李博.生态学[M].北京:高等教育出版社,2000.
    [2]Lieth H. Modeling the primary productivity of the world[M]. New York:Springer-Verlag, 1975.
    [3]Coupland R T. Ecosystems of the world 8b. Natural grasslands:Eastern hemisphere and resume[M]. Amsterdam:Elsevier,1993.
    [4]中国科学院内蒙古宁夏综合考察队.内蒙古植被[M].北京:科学出版社,1985.
    [5]李博文集编辑委员会.李博文集[M].北京:科学出版社,1999.
    [6]吴征镒.中国植被[M].北京:科学出版社,1980.
    [7]乌云其木格.内蒙古地貌的发育与特征[J].阴山学刊(自然科学版),1995,13(1):32-37.
    [8]孙金铸.内蒙古自然环境的演变与草原的发展[J].内蒙古草业,1992(2):1-7.
    [9]梁存柱,朱宗元,工炜,et al贺兰山植物群落类型多样性及其空间分异[J].植物生态学报,2004,28(3):361-368.
    [1]内蒙古植物志编辑委员会.内蒙古植物志[M].呼和浩特:内蒙古人民出版社,1994.
    [2]中国科学院内蒙古宁夏综合考察队.内蒙古植被[M].北京:科学出版社,1985.
    [3]陈世鐄,李银鹏,孟君et al.内蒙古几种针茅特性和生态地理分布的研究[J].内蒙古农业大学学报(自然科学版),1997,18(1):40-46.
    [4]卢生莲,吴珍兰.中国针茅属植物的地理分布[J].植物分类学报,1996,34(3):242-253.
    [5]宛涛,卫智军,杨静et al.内蒙古草原针茅属六种植物的花粉形态研究[J].草地学报,1997,5(2):117-122.
    [6]燕玲.内蒙古草原区针茅属植物颖果特征的比较研究[J].干旱区资源与环境,1994,8(004):76-79.
    [7]杨静,朱桂林,高国荣et al.放牧制度对短花针茅草原主要植物种群繁殖特征的影响[J].干旱区资源与环境,2001,15(5):112-116.
    [8]朱桂林,雅梅,卫智军et al.放牧制度对短花针茅群落植物种群有性繁殖能力的影响[J].中国草地,2002,24(5):1-4.
    [9]朱桂林.短花针茅草原群落种间关系的新发现[J].西北植物学报,2003,23(1):141-142.
    [10]朱桂林,杨洪琴,卫智军et al.短花针茅草原群落种间联结研究[J].草业学报,2004,13(5):33-38.
    [11]李德新,白文明,许志信.短花针茅种群密度动态与生长分析的研究[J].中国草地,1997,(6):25-28.
    [12]卫智军,韩国栋,杨静et al.短花针茅荒漠草原植物群落特征对不同载畜率水平的响应(英文)[J].中国草地,2000,(6):1-5.
    [13]朱桂林,卫智军.放牧制度对短花针茅群落植物种群地上生物量的影响[J].中国草地,2002,24(003):15-19.
    [14]占布拉,张昊.短花针茅荒漠草原撂荒恢复规律的研究[J].中国草地,2000,(006):68-69.
    [15]Turuspekov Y, Adams R, Kearney C. Genetic diversity in three perennial grasses from the Semipalatinsk nuclear testing region of Kazakhstan after long-term radiation exposure[J]. Biochemical Systematics and Ecology,2002,30(9):809-817.
    [16]张红梅,赵萌莉,李青丰et al.内蒙古地区大针茅群体遗传多样性RAPD研究[J].草地学报,2003,11(002):170-177.
    [17]Visser M, Reheul D. Producing native seed of Stipa lagascae r. and sch. inPresaharian Tunisia:high yields, high genetic variation orboth?[J]. Genetic Resources and Crop Evolution,2002,49(6):583-598.
    [18]赵念席,高玉葆,王金龙et al.内蒙古中东部草原区克氏针茅种群遗传分化的RAPD研究[J].生态学报,2004,24(3):560-566.
    [19]赵念席,高玉葆,王金龙et al.大针茅种群RAPD多样性及其与若干生态因子的相关关系[J].生态学报,2006,26(005):1312-1319.
    [20]Williams JG, Kubelik AR, Livak KJ et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J].Nucleic acids research,1990,18(22): 6531-6535.
    [21]王静,杨持,尹俊et al.冷蒿种群在放牧干扰下遗传多样性的变化[J].生态学报,2004,24(011):2465-2471.
    [22]周延清.DNA分子标记技术在植物研究中的应用[M].北京:化学工业出版社,2005.
    [23]阳含熙,卢泽愚.植物生态学的数量分类方法[M].北京:科学出版社,1981.
    [24]卢纹岱SPSS for Windows统计分析(第二版)[M].北京:电子工业出版社,2006.
    [25]Rohlf FJ. NTSYS-pc:numerical taxonomy and multivariate analysis system[M]. NY: Exeter publishing Setauket,1988.
    [26]Jaccard P. Nouvelles recherches surla distribution florale[J]. Bulletin Society Sciences Nat, 1908,44:223-270.
    [27]Mantel N. The detection of disease clustering and a generalized regression approach[J]. Cancer research,1967,27(2):209-220.
    [28]Lee KK, Yoon WC, Baek DH. A classification method using a hybrid genetic algorithm combined with an adaptive procedure for the pool of ellipsoids[J]. Applied Intelligence, 2006,25(3):293-304.
    [29]赵念席,高玉葆,上金龙et al.内蒙古中东部草原大针茅的种群遗传分化[J].生态学报,2004,24(10):2178-2185.
    [30]Michelmore R, Paran I, Kesseli R. Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations[J]. Proceedings of the National Academy of Sciences of the United States of America,1991,88(21):9828-9832.
    [31]盛红梅,陈拓,安黎哲et al.锦鸡几属植物的遗传多样性及其种间关系[J].中国沙漠,2005,25(005):697-701.
    [32]张昊,李鑫,姜风和et al.水分对克氏针茅和冷蒿生殖生长的影响[J].草地学报,2005,13(002):106-110.
    [33]赛胜宝.内蒙古北部荒漠草原带的严重荒漠化及其治理[J].干旱区资源与环境,2001,15(004):34-37.
    [34]Haig SM, Wagner RS, Forsman ED et al. Geographic variation and genetic structure in Spotted Owls[J]. Conservation Genetics,2001,2(1):25-40.
    [35]王艇,苏应娟,欧阳蒲月et al.利用RAPD标记分析濒危植物白豆杉种群的遗传结构[J].生态学报,2006,26(007):2313-2321.
    [36]Coupland RT. Natural grasslands. Eastern hemisphere and resume[M]. Amsterdam, NL: Elsevier,1993.
    [37]Millar CI, Libby WJ. Strategies for conserving clinal, ecotypic, and disjunct population diversity in widespread species[A]. Oxford:Oxford University Press,1991.
    [38]陈灵芝.生物多样性保护现状及其对策[A].生物多样性研究的原理与方法[M].钱迎倩,马克平(主编).北京:科学技术出版社,1994.
    [39]Schaal BA, Leverich WJ, Rogstad SH. A comparison of methods for assessing genetic variation in plant conservation biology[A]. New York:Oxford University Press,1991.
    [40]Bjerregaard L, Wolf PG. Strong genetic differentiation among neighboring populations of a locally endemic primrose[J]. Western North American Naturalist,2008,68(1):66-75.
    [41]Curtu AL, Gailing O, Leinemann L et al. Genetic variation and differentiation within a natural community of five oak species (Quercus spp.)[J]. Plant Biology (Stuttgart),2007, 9(1):116-126.
    [42]Kaneko S, Isagi Y, Nobushima F. Genetic differentiation among populations of an oceanic island:The case of Metrosideros boninensis, an endangered endemic tree species in the Bonin Islands[J]. Plant Species Biology,2008,23(2):119-128.
    [43]Reisch C, Poschlod P, Wingender R. Genetic differentiation among populations of Sesleria albicans Kit. Ex Schultes (Poaceae) from ecologically different habitats in central Europe[J]. Heredity.2003,91(5):519-527.
    [44]Rossetto M, Crayn D, Ford A, et al. The influence of environment and life-history traits on the distribution of genes and individuals:a comparative study of 11 rainforest trees[J]. Molecular Ecology,2009,18(7):1422-1438.
    [45]Young A.. Landscape structure and genetic variation in plants:Empirical evidence[A]. Mosaic landscapes and ecological processes[M]. Hansson L., Fahrig L., Merriam G. London:Chapman & Hall,1995.
    [46]Parsons BJ, Newbury HJ, Jackson MT. The genetic structure and conservation of aus, aman and boro rices from Bangladesh[J]. Genetic Resources and Crop Evolution,1999,46(6): 587-598.
    [47]Adams JR, Kelly BT, Waits LP. Using faecal DNA sampling and GIS to monitor hybridization between red wolves(Canis rufus) and coyotes (Canis latrans)[J]. Molecular Ecology,2003,12(8):2175-2186.
    [48]Barros AM, Faleiro FG, Karia CT et al. Genetic and ecological variability of Stylosanthes macrocephala determined by RAPD markers and GIS[J]. Pesquisa Agropecuaria Brasileira,2005,40(9):899-909.
    [49]Smith DA, Rails K, Hurt A et al. Assessing reliability of microsatellite genotypes from kit fox faecal samples using genetic and GIS analyses[J]. Molecular Ecology,2006,15(2): 387-406.
    [50]牛建明.内蒙古主要植被类型与气候因子关系的研究[J].应用生态学报,2000,11(001):47-52.
    [51]Ter Braak C. Canonical correspondence analysis:a new eigenvector technique for multivariate direct gradient analysis[J]. Ecology,1986,67(5):1167-1179.
    [52]Ter Braak CJF. Canoco—an extension of decorana to analyze species-environment relationships[J]. Hydrobiologia,1989,184(3):169-170.
    [53]张金屯.数量生态学[M].北京:科学出版社,2004.
    [54]Falk DA, Holsinger KE. Genetics and conservation of rare plants[M]. Oxford:Oxford University Press,1991.
    [55]Bibi S, Khan IA, Bughio HUR et al. Genetic differentiation of rice mutants based on morphological traits and molecular marker (RAPD)[J]. Pakistan Journal of Botany,2009, 41(2):737-743.
    [56]Nevo E, Baum B, Beiles A et al. Ecological correlates of RAPD DNA diversity of wild barley, Hordeum spontaneum, in the Fertile Crescent[J]. Genetic Resources and Crop Evolution,1998,45(2):151-159.
    [57]Zhao NX, Gao YB, Wang JL et al. Population structure and genetic diversity of Stipa grandis P. Smirn, a dominant species in the typical steppe of northern China[J]. Biochemical Systematics and Ecology,2008,36(1):1-10.
    [1]苏志珠,卢琦,吴波et al.气候变化和人类活动对我国荒漠化的可能影响[J].中国沙漠,2006,26(003):329-335.
    [2]内蒙古植物志编辑委员会.内蒙古植物志[M].呼和浩特:内蒙古人民出版社,1994.
    [3]中国科学院内蒙古宁夏综合考察队.内蒙古植被[M].北京:科学出版社,1985.
    [4]孙儒泳,李庆芬,牛翠娟et al.基础生态学[M].北京:高等教育出版社,2002.
    [5]何兴东.塔克拉玛干沙漠腹地天然植被调查研究[J].中国沙漠,1997,17(002):144-148.
    [6]胡英娣.内蒙古伊克昭盟地区的植物资源[J].中国沙漠,1995,15(003):303-307.
    [7]唐恬,廖文波,王伯荪.海南五指山地区种子植物区系的特点[J].广西植物,2002,22(004):297-304.
    [8]王世冬,白学良,雍世鹏.沙坡头地区苔藓植物区系初步研究[J].中国沙漠,2001,21(003):244-249.
    [9]张存厚,刘果厚,赵杏花.浑善达克沙地种子植物属的地理成分分析[J].中国沙漠,2006,26(006):1024-1032.
    [10]武利玉,苏世平,王蕙.兰州南北两山绿化区植物与植被类型初查[J].中国沙漠,2006,26(004):564-568.
    [11]张永智,潘伯荣,尹林克et al.新疆沙冬青群落的区系组成与结构特征[J].干旱区研究,2006,23(002):320-326.
    [12]中国植被编辑委员会.中国植被[M].北京:科学出版社,1980.
    [13]赵一之.鄂尔多斯高原维管植物[M].呼和浩特:内蒙古人民出版社,2006.
    [14]刘艳,卫智军,杨静et al.短花针茅草原不同放牧制度的植物补偿性生长[J].中国草地,2004,26(003):18-23.
    [15]朱桂林.短花针茅草原群落种间关系的新发现[J].西北植物学报,2003,23(001):141-142.
    [16]李勤奋.放牧制度对短花针茅草原植物群落和家畜体重的影响[D].呼和浩特:内蒙古农业大学,2001.
    [17]毕力格图.载畜率对短花针茅草原放牧系统植物群落和绵羊影响的研究[D].呼和浩特:内蒙古农业大学,2003.
    [18]卫智军.荒漠草原放牧制度与家庭牧场可持续经营研究[D].呼和浩特:内蒙古农业大学,2003.
    [19]王忠武.载畜率对短花针茅荒漠草原生态系统稳定性的影响[D].呼和浩特:内蒙古农业大学,2009.
    [20]王荷生.植物区系地理[M].北京:科学出版社,1992.
    [21]莎菲尔,傅子桢(译).历史植物地理学引论[M].北京:科学出版社,1958.
    [22]吴征镒.中国种子植物属的分布区类型[J].云南植物研究,1991,13(4):1-139.
    [23]郭志坚,邹秀红,刘思土et al.福建永春牛姆林自然保护区种子植物区系特征分析[J].亚热带植物科学,2004,33(001):37-41.
    [24]王国宏,车克钧,王金叶.祁连山北坡植物区系研究[J].甘肃农业大学学报,1995,30(003):249-255.
    [25]黄建辉.物种多样性的空间格局及其形成机制初探[J].生物多样性,1994,2(002):103-107.
    [26]张宏达,江润祥,毕培曦.尼泊尔植物区系的起源及其亲缘关系[J].中山大学学报 (自然科学版),1988,2.
    [27]李博文集编辑委员会.李博文集[M].北京:科学出版社,1999.
    [28]潘晓玲,党荣理,伍光和.西北干旱荒漠区植物区系地理与资源利用[M].北京:科学出版社,2001.
    [29]沈观冕.中国麻黄属的地理分布与演化[J].云南植物研究,1995,17(001):15-20.
    [30]王国宏,任继周,张自和.物种多样性与植物系统发育[J].草业学报,2003,12(001):41-46.
    [31]van Ruijven J, Berendse F. Diversity enhances community recovery, but not resistance, after drought[J]. Journal of Ecology,2010,98(1):81-86.
    [32]Bai YF, Wu JG, Clark CM et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning:evidence from inner Mongolia Grasslands[J]. Global Change Biology,2010,16(1):358-372.
    [33]Isbell FI, Polley HW, Wilsey BJ. Biodiversity, productivity and the temporal stability of productivity:patterns and processes[J]. Ecology Letters,2009,12(5):443-451.
    [34]Duffy JE. Why biodiversity is important to the functioning of real-world ecosystems[J]. Frontiers in Ecology and the Environment,2009,7(8):437-444.
    [35]Pimm SL, Russell GJ, Gittleman JL et al. The future of biodiversity[J]. Science,1995, 269(5222):347.
    [36]Gaston KJ. Global patterns in biodiversity[J]. Nature,2000,405(6783):220-227.
    [37]Brown JH, Gillooly JF, Allen AP et al. Toward a metabolic theory of ecology[J]. Ecology, 2004,85(7):1771-1789.
    [38]Wang Z, Brown JH, Tang Z et al. Temperature dependence, spatial scale, and tree species diversity in eastern Asia and North America[J].Proceedings of the National Academy of Sciences,2009,106(32):13388.
    [39]Colwell RK, Rahbek C, Gotelli NJ. The mid-domain effect and species richness patterns: what have we learned so far[J]. The American Naturalist,2004,163(3):E1-E23.
    [40]Palmer MW. Variation in species richness:towards a unification of hypotheses[J]. Folia Geobotanica,1994,29(4):511-530.
    [41]Rahbek C, Gotelli NJ, Colwell RK et al. Predicting continental-scale patterns of bird species richness with spatially explicit models[J]. Proceedings of the Royal Society B: Biological Sciences,2007,274(1607):165-174.
    [42]Gillooly JF, Brown JH, West GB et al. Effects of size and temperature on metabolic rate[J]. Science,2001,293(5538):2248.
    [43]Sax D. Latitudinal gradients and geographic ranges of exotic species:implications for biogeography[J]. Journal of Biogeography,2001,28(1):139-150.
    [44]Wright DH. Species-energy theory:an extension of species-area theory[J]. Oikos,1983, 41(3):496-506.
    [45]Allen AP, Brown JH, Gillooly JF. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule[J]. Science,2002,297(5586):1545.
    [46]Stephens PR, Wiens JJ. Explaining species richness from continents to communities:the time-for-speciation effect in emydid turtles[J]. The American Naturalist,2003,161(1): 112-128.
    [47]Hubbell SP. Neutral theory and the evolution of ecological equivalence[J]. Ecology,2006, 87(6):1387-1398.
    [48]Hillebrand H. On the generality of the latitudinal diversity gradient[J]. American Naturalist, 2004,163(2):192-211.
    [49]Currie DJ. Energy and large-scale patterns of animal-and plant-species richness[J]. The American Naturalist,1991,137(1):27-49.
    [50]Hawkins BA, Porter EE, Felizola Diniz-Filho JA. Productivity and history as predictors of the latitudinal diversity gradient of terrestrial birds[J]. Ecology,2003,84(6):1608-1623.
    [51]Hawkins BA, Diniz Filho JAF, Soeller SA. Water links the historical and contemporary components of the Australian bird diversity gradient[J]. Journal of Biogeography,2005, 32(6):1035-1042.
    [52]刘怿宁,乔秀娟,唐志尧.寻求生物多样性分布格局的形成机制[J].自然杂志,2010,(05):260-266.
    [53]冯建孟.中国种子植物物种多样性的大尺度分布格局及其气候解释[J].生物多样性,2008,(05):470-476.
    [54]牛建明.内蒙古主要植被类型与气候因子关系的研究[J].应用生态学报,2000,11(001):47-52.
    [55]Mittelbach GG, Schemske DW, Cornell HV et al. Evolution and the latitudinal diversity gradient:speciation, extinction and biogeography[J]. Ecology Letters,2007,10(4): 315-331.
    [56]王志恒,唐志尧,方精云.物种多样性地理格局的能量假说[J].生物多样性,2009,(06):613-624.
    [57]Davies RG, Irlich UM, Chown SL et al. Ambient, productive and wind energy, and ocean extent predict global species richness of procellariiform seabirds[J]. Global Ecology and Biogeography,2010,19(1):98-110.
    [58]Allen AP, Gillooly JF, Brown JH, eds. Recasting the species Cenergy hypothesis:the different roles of kinetic and potential energy in regulating biodiversity[J]. Cambridge, UK:Cambridge University Press,2007.
    [59]Clarke A, Gaston KJ. Climate, energy and diversity[J]. Proceedings of the Royal Society B: Biological Sciences,2006,273(1599):2257.
    [60]Currie DJ, Francis AP. Regional versus climatic effect on taxon richness in angiosperms: reply to Qian and Ricklefs[J]. The American Naturalist,2004,163(5):780-785.
    [61]Evans KL, James NA, Gaston KJ. Abundance, species richness and energy availability in the North American avifauna[J]. Global Ecology and Biogeography,2006,15(4): 372-385.
    [62]Espinosa CI, Cabrera O, Luzuriaga AL et al. What Factors Affect Diversity and Species Composition of Endangered Tumbesian Dry Forests in Southern Ecuador?[J]. Biotropica, 2011,43(1):15-22.
    [63]Speziale KL, Ruggiero A, Ezcurra C. Plant species richness-environment relationships across the Subantarctic-Patagonian transition zone[J]. Journal of Biogeography,2010, 37(3):449-464.
    [64]Evans KL, Warren PH, Gaston KJ. Species-energy relationships at the macroecological scale:a review of the mechanisms[J]. Biological Reviews,2005,80(1):1-25.
    [65]O'Brien EM, Water-energy dynamics, climate, and prediction of woody plant species richness:an interim general model[J]. Journal of Biogeography,1998,25(2):379-398.
    [66]O'Brien EM. Biological relativity to water energy dynamics[J]. Journal of Biogeography, 2006,33(11):1868-1888.
    [67]Bai YF, Wu JG, Xing Q et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau[J]. Ecology,2008,89(8):2140-2153.
    [68]Abramsky Z, Rosenzweig ML. Tilman Predicted Productivity Diversity Relationship Shown By Desert Rodents[J]. Nature,1984,309(5964):150-151.
    [69]Ma WH, He JS, Yang YH et al. Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites[J]. Global Ecology And Biogeography,2010,19(2):233-243.
    [70]Bai YF, Wu JG, Pan QM et al. Positive linear relationship between productivity and diversity:evidence from the Eurasian Steppe[J].Journal of Applied Ecology,2007,44(5): 1023-1034.
    [71]赵常明,陈伟烈,黄汉东et al.三峡库区移民区和淹没区植物群落物种多样性的空间分布格局[J].生物多样性,2007,15(5):510-522.
    [72]Currie DJ, Paquin V. Large-scale biogeographical patterns of species richness of trees[J]. Nature,1987,329(6137):326-327.
    [73]Svenning JC, Normand S, Skov F. Postglacial dispersal limitation of widespread forest plant species in nemoral Europe[J]. Ecography,2008,31(3):316-326.
    [74]Ricklefs RE. Historical and ecological dimensions of global patterns in plant diversity[J]. Biologiske Skrifter (Royal Danish Academy of Sciences and Letters),2005,55:583-603.
    [75]Lusk CH, Chazdon RL, Hofmann G. A bounded null model explains juvenile tree community structure along light availability gradients in a temperate rain forest[J]. Oikos, 2006,112(1):131-137.
    [76]Willig MR, Lyons SK. An analytical model of latitudinal gradients of species richness with an empirical test for marsupials and bats in the New World[J]. Oikos,1998,81(1):93-98.
    [77]Algar AC, Kerr JT, Currie DJ. Evolutionary constraints on regional faunas:whom, but not how many[J]. Ecology Letters,2009,12(1):57-65.
    [78]Wu J. Hierarchy and scaling:extrapolating information along a scaling ladder[J]. Canadian Journal of Remote Sensing,1999,25(4):367-380.
    [79]Wu J, Levin S. A spatial patch dynamic modeling approach to pattern and process in an annual grassland[J]. Ecological Monographs,1994,64(4):447-464.
    [80]Chapin III FS, Zavaleta ES, Eviner VT et al. Consequences of changing biodiversity[J]. Nature,2000,405(6783):234-242.
    [81]Naeem S, Thompson LJ, Lawler SP et al. Declining biodiversity can alter the performance of ecosystems [J]. Nature,1994,368(6473):734-737.
    [82]Hooper D, Vitousek P. The effects of plant composition and diversity on ecosystem processes[J]. Science,1997,277(5330):1302.
    [83]Tilman D. The ecological consequences of changes in biodiversity:A search for general principles[J]. Ecology,1999,80(5):1455-1474.
    [84]Bai Y, Han X, Wu J et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland[J]. Nature,2004,431(7005):181-184.
    [85]Hooper D, Chapin F, Ewel J et al. Effects of biodiversity on ecosystem functioning:a consensus of current knowledge[J]. Ecological Monographs,2005,75(1):3-35.
    [86]Boyero L, Pearson RG, Bastian M. How biological diversity influences ecosystem function: a test with a tropical stream detritivore guild[J]. Ecological Research,2007,22(4): 551-558.
    [87]Jiang XL, Zhang WG, Wang G. Effects of different components of diversity on productivity in artificial plant communities[J]. Ecological Research,2007,22(4):629-634.
    [88]Loreau M, Naeem S, Inchausti P. Biodiversity and ecosystem functioning:synthesis and perspectives[M]. Oxford:Oxford University Press,2002.
    [89]Naeem S. Ecosystem consequences of biodiversity loss:The evolution of a paradigm[J]. Ecology,2002,83(6):1537-1552.
    [90]Grime J. Control of species density in herbaceous vegetation[J]. Journal Of Environmental Management,1973,1(2):151-167.
    [91]Klironomos JN, McCune J, Hart M et al. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity[J]. Ecology Letters,2000,3(2): 137-141.
    [92]Chase JM, Leibold MA. Spatial scale dictates the productivity-biodiversity relationship[J]. Nature,2002,416(6879):427-430.
    [93]Fridley JD. Resource availability dominates and alters the relationship between species diversity and ecosystem productivity in experimental plant communities[J]. Oecologia, 2002,132(2):271-277.
    [94]Zobel M, Partel M. What determines the relationship between plant diversity and habitat productivity?[J]. Global Ecology And Biogeography,2008,17(6):679-684.
    [95]Huston MA. A general hypothesis of species diversity[J]. American Naturalist,1979,113: 81-101.
    [96]Rosenzweig ML. Species diversity gradients:we know more and less than we thought[J]. Journal Of Mammalogy,1992,73(4):715-730.
    [97]Ni J, Wang GH, Bai YF et al. Scale-dependent relationships between plant diversity and above-ground biomass in temperate grasslands, south-eastern Mongolia[J]. Journal Of Arid Environments,2007,68(1):132-142.
    [98]Laughlin DC, Moore MM. Climate-induced temporal variation in the productivity-diversity relationship[J]. Oikos,2009,118(6):897-902.
    [99]Naeem S, Hakansson K, Lawton JH et al. Biodiversity and plant productivity in a model assemblage of plant species[J]. Oikos,1996,76(2):259-264.
    [100]Ma WH, Fang JY. The relationship between species richness and productivity in four typical grasslands of northern China[J].Biodiversity Science,2006,14:21-28.
    [101]Wheeler BD, Giller KE. Species richness of herbaceous fen vegetation in Broadland, Norfolk in relation to the quantity of above-ground plant material[J]. The Journal of Ecology,1982,70(1):179-200.
    [102]Guo QF, Berry WL. Species richness and biomass:Dissection of the hump-shaped relationships[J]. Ecology,1998,79(7):2555-2559.
    [103]Gough L, Grace JB, Taylor K.L. The relationship between species richness and community biomass:the importance of environmental variables[J]. Oikos,1994,70(2):271-279.
    [104]Waide RB, Willig MR, Steiner CF et al. The relationship between productivity and species richness[J]. Annual Review Of Ecology And Systematics,1999,30:257-300.
    [105]Gross KL, Willig MR, Gough L et al. Patterns of species density and productivity at different spatial scales in herbaceous plant communities[J]. Oikos,2000,89(3):417-427.
    [106]Mittelbach GQ Steiner CF, Scheiner SM et al. What is the observed relationship between species richness and productivity?[J]. Ecology,2001,82(9):2381-2396.
    [107]Bond EM, Chase JM. Biodiversity and ecosystem functioning at local and regional spatial scales[J]. Ecology Letters,2002,5(4):467-470.
    [108]Chalcraft DR, Williams JW, Smith MD et al. Scale dependence in the species-richness-productivity relationship:The role of species turnover[J]. Ecology,2004, 85(10):2701-2708.
    [109]Gillman LN, Wright SD. The influence of productivity on the species richness of plants:A critical assessment[J]. Ecology,2006,87(5):1234-1243.
    [110]Harrison S, Davies KF, Safford HD et al. Beta diversity and the scale-dependence of the productivity-diversity relationship:a test in the Californian serpentine flora[J]. Journal Of Ecology,2006,94(1):110-117.
    [111]Wu J, Jones B, Li H et al, eds. Scaling and Uncertainty Analysis in Ecology:Methods and Applications[J]. Dordrecht:Springer; 2006.
    [112]Coupland RT. Ecosystems of the world 8B. Natural Grasslands:Eastern Hemisphere and Resume. Amsterdam[J], Netherlands:Elsevier,1993.
    [113]Sala OE, Austin AT, eds. Methods of estimating aboveground net primary productivity [A]. Methods in ecosyetem science[M], Sala OE, Jackson RB, Mooney HA et al, ed. New York:Springer,2000.
    [114]Wu J, Loucks O. From balance of nature to hierarchical patch dynamics:a paradigm shift in ecology[J]. Quarterly Review Of Biology,1995,70(4):439.
    [115]Hawth's analysis tools for ArcGIS.2004. (Accessed at http://www.spatialecology.com/htools.)
    [116]Mitchell-Olds T, Shaw R. Regression analysis of natural selection:statistical inference and biological interpretation [J]. Evolution,1987:1149-1161.
    [117]Tilman D. Resource competition and community structure[M]. Princeton:Princeton University Press,1982.
    [118]Kassen R, Buckling A, Bell G et al. Diversity peaks at intermediate productivity in a laboratory microcosm[J]. Nature,2000,406(6795):508-512.
    [119]Tilman D. Causes, consequences and ethics of biodiversity [J]. Nature,2000,405(6783): 208-211.
    [120]Guo QF. Temporal species richness-biomass relationships along successional gradients[J]. Journal Of Vegetation Science,2003,14(1):121-128.
    [121]Moore DRJ, Keddy PA. The relationship between species richness and standing crop in wetlands:the importance of scale[J]. Plant Ecology,1988,79(1):99-106.
    [122]Rosenzweig ML. Species diversity in space and time[M]. Cambridge:Cambridge University Press,1995.
    [123]Scheiner SM, Cox SB, Willig M et al. Species richness, species-area curves and Simpson's paradox[J]. Evolutionary Ecology Research,2000,2(6):791-802.
    [124]Levin S. The problem of pattern and scale in ecology.[J]. Ecology,1992,73(6): 1943-1967.
    [125]Jennings MD, Williams JW, Stromberg MR. Diversity and productivity of plant communities across the Inland Northwest, USA[J]. Oecologia,2005,143(4):607-618.
    [126]Schwinning S, Sala OE. Hierarchy of responses to resource pulses in and and semi-arid ecosystems[J]. Oecologia,2004,141(2):211-220.
    [127]Easterling DR, Meehl GA, Parmesan C et al. Climate extremes:observations, modeling, and impacts[J]. Science,2000,289(5487):2068-2074.
    [128]Meehl GA, Arblaster JM, Tebaldi C. Understanding future patterns of increased precipitation intensity in climate model simulations[J]. Geophysical Research Letter, 2005,32:L18719.
    [129]IPCC. Climate change 2007:the physical science basis[M]. Cambridge:Cambridge University Press,2007.
    [130]Sala OE, Lauenroth WK, Parton WJ. Long-term soil water dynamics in the shortgrass steppe[J]. Ecology,1992,73(4):1175-1181.
    [131]Knapp AK, Briggs JM, Koelliker JK. Frequency and extent of water limitation to primary production in a mesic temperate grassland[J]. Ecosystems,2001,4(1):19-28.
    [132]Chou WW, Silver WL, Jackson RD et al. The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall[J]. Global Change Biology,2008,14(6): 1382-1394.
    [1]宋永昌.植被生态学[M].上海:华东师范大学出版社,2001.
    [2]Legendre P, Fortin MJ. Spatial pattern and ecological analysis[J]. Plant Ecology,1989,80(2):107-138.
    [3]Pinder J, Kroh G, White J et al. The relationships between vegetation type and topography in Lassen Volcanic National Park[J]. Plant Ecology,1997,131(1):17-29.
    [4]Woodward F, McKee I. Vegetation and climate[J]. Environment International,1991,17(6):535-546.
    [5]桂东伟,雷加强,曾凡江et al.中昆仑山北坡策勒河流域生态因素对植物群落的影响[J].草业学报,2010,(03):38-46.
    [6]黄晓霞,江源,刘全儒et al.小五台亚高山草甸植物种分布的生境条件解释[J].草业学报,2007,(06):7-13.
    [7]王国宏,任继周,张自和.河西山地绿洲荒漠植物群落种群多样性研究:生态地理及植物群落的基本特征[J].草业学报,2001,(01):1-12.
    [8]方精云,神崎护,王襄平et al.西藏珠峰-卓奥友峰普士拉地区高山稀疏植被的群落特征及小地形的影响[J].生物多样性,2004,(01):190-199.
    [9]张新时.西藏阿里植物群落的间接梯度分析,数量分类与环境解释[J].植物生态学与地植物学学报,1991,15(002):101-113.
    [10]Burke A. Classification and ordination of plant communities of the Naukluft Mountains, Namibia[J]. Journal of Vegetation Science,2001,12(1):53-60.
    [11]Borcard D, Legendre P, Drapeau P. Partialling out the spatial component of ecological variation[J]. Ecology,1992,73(3):1045-1055.
    [12]沈泽昊,张新时.三峡大老岭地区森林植被的空间格局分析及其地形解释[J].植物学报,2000,42(010):1089-1095.
    [13]宋同请,彭晚霞,曾馥平et al.木论喀斯特峰丛洼地森林群落空间格局及环境解释[J].植物生态学报,2010,34(3):298-308.
    [14]辛晓平,高琼,李镇清et al.松嫩平原碱化草地植物群落分布的空间和环境因素分析[J].植物学报,1999,(07).
    [15]May RM. An overview:real and apparent patterns in community structure[A]. Ecological communities: conceptual issues and the evidence[M]. Princeton:Princeton University Press,1984:3-16.
    [16]李博.生态学[M].北京:高等教育出版社,2000.
    [17]张金屯.数量生态学[M].北京:科学出版社,2004.
    [18]Sobolev L, Ntekhin V. Russian approaches to community systematization[A]. in Ordination and classification of communities[M]. Whittaker RH, ed. London:Dr. W. Junk,1973:75-103.
    [19]Swaine MD, Greig-Smith P. An application of principal components analysis to vegetation change in permanent plots[J]. The Journal of Ecology,1980,68(1):33-41.
    [20]Ter Braak C. Canonical correspondence analysis:a new eigenvector technique for multivariate direct gradient analysis[J]. Ecology,1986,67(5):1167-1179.
    [21]Ter Braak CJF. Canocn—an extension of decorana to analyze species-environment relationships[J]. Hydrobiologia,1989,184(3):169-170.
    [22]张文辉,卢涛,马克明et al.岷江上游干旱河谷植物群落分布的环境与空间因素分析[J].生态学报,2004,24(003):552-559.
    [23]李德新.短花针茅荒漠草原动态规律及其生态稳定性[J].中国草地,1990,(4):1-5.
    [24]内蒙古植物志编辑委员会.内蒙古植物志[M],呼和浩特:内蒙古人民出版社,1980.
    [25]董鸣,蒋高明,孔繁志et al.陆地生物群落调查观测与分析[M].北京:中国标准出版社,1997.
    [26]杨持.生态学实验与实习[M].北京:高等教育出版社,2003.
    [27]牛建明.内蒙古主要植被类型与气候因子关系的研究[J].应用生态学报,2000,11(001):47-52.
    [28]李博,雍世鹏,崔海亭.内蒙古自治区资源系列地图[M].北京:科学出版社,1991.
    [29]Hill MO. TWINSPAN-A fortran program for arranging multivariate data in an ordered two-way table by classification of the individuals and attributes[D]. New York:Cornell University,1979.
    [30]中国植被编辑委员会.中国植被[M].北京:科学出版社,1980.
    [31]Ter Braak CJF. Canonical community ordination Part Ⅰ:Basic theory and linear methods[J]. Ecoscience, 1994,1:127-140.
    [32]岳跃民,王克林,张伟et al.基于典范对应分析的喀斯特峰丛洼地土壤-环境关系研究[J].环境科学,2008,29(005):1400-1405.
    [33]范玮熠,王孝安,郭华.黄土高原子午岭植物群落演替系列分析[J].生态学报,2006,26(003):706-714.
    [34]徐克学.生物数学[M].北京:科学出版社,1999.
    [35]Whittaker R植物群落分类[M].周纪伦,李博,蒋有绪译.北京:科学出版社,1985.
    [36]沈泽昊,金义兴,赵子恩et al.三峡大老岭地区森林群落的数量分类研究[J].武汉植物学研究,2000,18(2):99-107.
    [37]沈泽昊,张新时,金义兴.地形对亚热带山地景观尺度植被格局影响的梯度分析[J].植物生态学报,2000,24(4):430-435.
    [38]刘海江,郭柯.浑善达克沙地丘间低地植物群落的分类与排序[J].生态学报,2003,23(010):2163-2169.
    [39]王炜,刘钟龄.内蒙古草原退化群落恢复演替的研究:退化草原的基本特征与恢复演替动力[J].植物生态学报,1996,20(005):449-459.
    [40]刘钟龄,王炜.内蒙古草原退化与恢复演替机理的探讨[J].干旱区资源与环境,2002,16(001):84-91.
    [41]中国科学院内蒙古宁夏综合考察队.内蒙古植被[M].北京:科学出版社,1985.
    [42]Coop JD, Massatti RT, Schoettle AW. Subalpine vegetation pattern three decades after stand-replacing fire:effects of landscape context and topography on plant community composition, tree regeneration and diversity[J]. Journal of Vegetation Science,2010,21(3):472-487.
    [43]Fernandez-Alaez C, Fernandez-Alaez M, Garcia-Criado F. Spatial distribution pattern of the riparian vegetation in a basin in the NW Spain[J]. Plant Ecology,2005,179(1):31-42.
    [44]Liu HM, Wang LX, Yang J et al. Predictive modeling of the potential natural vegetation pattern in northeast China[J]. Ecological Research,2009,24(6):1313-1321.
    [45]Ostendorf B, Hilbert DW, Hopkins MS. The effect of climate change on tropical rainforest vegetation pattern[J]. Ecological Modelling,2001,145(2-3):211-224.
    [46]Yu L, Cao MK, Li KR. Climate-induced changes in the vegetation pattern of China in the 21st century[J]. Ecological Research,2006,21(6):912-919.
    [47]Levin S. The problem of pattern and scale in ecology:the Robert H. MacArthur award lecture[J]. Ecology,1992,73(6):1943-1967.
    [48]杨永川,达良俊,由文辉.浙江天童国家森林公园微地形与植被结构的关系[J].生态学报,2005,25(1]).
    [49]杨永川,达良俊.丘陵地区地形梯度上植被格局的分异研究概述[J].植物生态学报,2006,30(03):504-513.
    [50]Kikuchi T. Vegetation and landforms[M]. Tokyo:University of Tokyo Press,2001.
    [51]Reed R, Peet R, Palmer M et al. Scale dependence of vegetation-environment correlations:a case study of a North Carolina piedmont woodland[J]. Journal of Vegetation Science,1993,4(3):329-340.
    [52]Whittaker R, Niering W. Vegetation of the Santa Catalina Mountains, Arizona. V. Biomass, production, and diversity along the elevation gradient[J]. Ecology,1975,56(4):771-790.
    [53]Sakai A, Ohsawa M. Topographical pattern of the forest vegetation on a river basin in a warm-temperate hilly region, central Japan[J]. Ecological Research,1994,9(3):269-280.
    [54]Hara M, Hirata K, Fujihara M et al. Vegetation structure in relation to micro-landform in an evergreen broad-leaved forest on Amami Ohshima Island, south-west Japan[J]. Ecological Research,1996, 11(3):325-337.
    [55]Nagamatsu D, Hirabuki Y, Mochida Y. Influence of micro-landforms on forest structure, tree death and recruitment in a Japanese temperate mixed forest[J]. Ecological Research,2003,18(5):533-547.
    [56]吴大千,刘建,王炜et al.黄河三角洲植被指数与地形要素的多尺度分析[J].植物生态学报,2009,33(02):237-245.
    [57]Zeleny D, Li CF, Chytry M. Pattern of local plant species richness along a gradient of landscape topographical heterogeneity:result of spatial mass effect or environmental shift?[J]. Ecography,2010, 33(3):578-589.
    [58]Hassler SK, Kreyling J, Beierkuhnlein C et al. Vegetation pattern divergence between dry and wet season in a semiarid savanna-Spatio-temporal dynamics of plant diversity in northwest Namibia[J]. Journal of Arid Environments,2010,74(11):1516-1524.
    [59]Parker A. The topographic relative moisture index:an approach to soil-moisture assessment in mountain terrain[J]. Physical Geography,1982,3(2):160-168.
    [60]Tamura T. Landform-soil features of the humid temperate hills[J]. Pedologist,1987,31:135-146.
    [61]McDonald D, Cowling R, Boucher C. Vegetation-environment relationships on a species-rich coastal mountain range in the fynbos biome (South Africa)[J]. Plant Ecology,1996,123(2):165-182.
    [62]方精云,李意德,朱彪et al.海南岛尖峰岭山地雨林的群落结构、物种多样性以及在世界雨林中的地位[J].生物多样性,2004,12(01):29-43.
    [63]Tatian M, Arzani H, Reihan MK et al. Effect of soil and physiographic factors on ecological plant groups in the eastern Elborz mountain rangeland of Iran[J]. Grassland Science,2010,56(2):77-86.
    [64]Sieben EJJ, Mucina L, Boucher C. Scaling hierarchy of factors controlling riparian vegetation patterns of the Fynbos Biome at the Western Cape, South Africa[J]. Journal of Vegetation Science,2009,20(1): 17-26.
    [65]Del Barrio G, Alvera B, Puigdefabregas J et al. Response of high mountain landscape to topographic variables:Central Pyrenees[J]. Landscape Ecology,1997,12(2):95-115.
    [66]邹豹君.小地貌学原理[M].北京:商务印书馆,1985.
    [67]Nagamatsu D, Miura O. Soil disturbance regime in relation to micro-scale landforms and its effects on vegetation structure in a hilly area in Japan[J]. Plant Ecology,1997,133(2):191-200.
    [68]Kikuchi T, Miura O. Vegetation patterns in relation to micro-scale landforms in hilly land regions[J]. Plant Ecology,1993,106(2):147-154.
    [69]张谧,熊高明,陈志刚et al.神农架米心水青冈-曼青冈群落的地形异质性及其生态影响[J].生态学报,2004,24(12):2686-2692.
    [70]郭柯,董学军,刘志茂.毛乌素沙地沙丘土壤含水量特点一兼论老固定沙地上油蒿衰退原因[J].植物生态学报,2000,24(003):275-279.
    [71]张学礼,胡振琪,初士立.土壤含水量测定方法研究进展[J].土壤通报,2005,36(001):118-123.
    [72]胡雷芳.五种常用系统聚类分析方法及其比较[J].浙江统计,2007,(004):11-13.
    [73]Sala OE, Austin AT, eds. Methods of estimating aboveground net primary productivity[M]. New York: Springer,2000.
    [74]Bai YF, Han XG, Wu JG et al. Ecosystem stability and compensatory effects in the Inner Mongolia grassland[J]. Nature,2004,431 (7005):181-184.
    [75]祝廷成,赵毓棠.东北草原上的植被复合体[J].东北师大学报(自然科学版),1965,(02):87-102.
    [76]Tuxen R. Vorschlag zur Aufnahme von Gesellschaftskomplexen in potentiell nafrlichen Vegetationsgebieten[J]. Acta Bot. Acad. Sc. Hung.1973,19:379-384.
    [77]谢文波.荒漠草原地表蚀积格局及其环境效应的研究[D].呼和浩特:内蒙古大学,2009.
    [78]李勉,李占斌,刘普灵et al.黄土高原水蚀风蚀交错带土壤侵蚀坡向分异特征[J].水土保持学报,2004,18(001):63-65.
    [79]Nakamura F, Yajima T, Kikuchi S. Structure and composition of riparian forests with special reference to geomorphic site conditions along the Tokachi River, northern Japan[J]. Plant Ecology,1997, 133(2):209-219.
    [80]Abrams PA. Monotonic or unimodal diversity-productivity gradients:what does competition theory predict?[J]. Ecology,1995,76(7):2019-2027.
    [81]Chase JM, Leibold MA. Spatial scale dictates the productivity-biodiversity relationship[J]. Nature, 2002,416(6879):427-430.
    [82]Bai YF, Wu JG, Clark CM et al. Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning:evidence from inner Mongolia Grasslands[J]. Global Change Biology,2010,16(1):358-372.
    [83]Jonsson M, Yeates GW, Wardle DA. Patterns of invertebrate density and taxonomic richness across gradients of area, isolation, and vegetation diversity in a lake-island system[J]. Ecography,2009, 32(6):963-972.
    [84]Benton M. Diversification and extinction in the history of life[J]. Science(Washington),1995, 268(5207):52-52.
    [85]Courtillot V, Gaudemer Y. Effects of mass extinctions on biodiversity[J]. Nature,1996,381:146-148.
    [86]Gentry A. Changes in plant community diversity and floristic composition on environmental and geographical gradients[J]. Annals of the Missouri Botanical Garden,1988,75(1):1-34.
    [87]Lomolino M. Elevation gradients of species-density:historical and prospective views[J]. Global Ecology and Biogeography,2001,10(1):3-13.
    [88]Rowe R. Environmental and geometric drivers of small mammal diversity along elevational gradients in Utah[J]. Ecography.2009,32(3):411-422.
    [89]白永匕,李凌浩,上其兵et al.锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究[J].植物生态学报,2000,24(6):667-673.
    [90]Godfray H, Lawton J. Scale and species numbers[J]. Trends in Ecology & Evolution,2001,16(7): 400-404.
    [91]Berglund H, Jonsson B. Nested plant and fungal communities; the importance of area and habitat quality in maximizing species capture in boreal old-growth forests[J]. Biological Conservation,2003, 112(3):319-328.
    [92]Sabatino M, Maceira N, Aizen MA. Direct effects of habitat area on interaction diversity in pollination webs[J]. Ecological Applications,2010,20(6):1491-1497.
    [93]MacArthur R, Wilson E. An equilibrium theory of insular zoogeography [J]. Evolution,1963,17(4): 373-387.
    [94]Aldrich P, Hamrick J. Reproductive dominance of pasture trees in a fragmented tropical forest mosaic[J]. Science,1998,281(5373):103.
    [95]Wassie A, Sterck FJ, Bongers F. Species and structural diversity of church forests in a fragmented Ethiopian Highland landscape[J]. Journal of Vegetation Science,2010,21(5):938-948.
    [96]Arroyo-Rodriguez V, Pineda E, Escobar F et al. Value of Small Patches in the Conservation of Plant-Species Diversity in Highly Fragmented Rainforest[J]. Conservation Biology,2009,23(3): 729-739.
    [97]Denslow J. Disturbance and diversity in tropical rain forests:the density effect[J]. Ecological Applications,1995,5(4):962-968.
    [98]Biswas SR, Mallik AU. Disturbance effects on species diversity and functional diversity in riparian and upland plant communities[J]. Ecology,2010,91(1):28-35.
    [99]Tilman D. The ecological consequences of changes in biodiversity:a search for general principles[J]. Ecology,1999,80(5):1455-1474.
    [100]Bazzaz F. Plant species diversity in old-field successional ecosystems in southern Illinois[J]. Ecology, 1975,56(2):485-488.
    [101]Hubbell S. Neutral theory in community ecology and the hypothesis of functional equivalence[J]. Functional Ecology,2005,19(1):166-172.
    [102]Borregaard MK, Rahbek C. Dispersion fields, diversity fields and null models:uniting range sizes and species richness[J]. Ecography,2010,33(2):402-407.
    [103]Pe'er G, Heinz SK, Frank K. Connectivity in heterogeneous landscapes:analyzing the effect of topography [J]. Landscape Ecology,2006,21(1):47-61.
    [104]Ellner SP, McCauley E, Kendall BE et al. Habitat structure and population persistence in an experimental community[J]. Nature,2001,412(6846):538-543.
    [105]Davies KF, Margules CR, Lawrence JF. Which traits of species predict population declines in experimental forest fragments?[J]. Ecology,2000,81(5):1450-1461.
    [106]Bai YF, Wu JG, Xing Q et al. Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau[J]. Ecology,2008,89(8):2140-2153.
    [107]Weltzin J, Loik M, Schwinning S et al. Assessing the response of terrestrial ecosystems to potential changes in precipitation[J]. Bioscience,2003,53(10):941-952.
    [108]Schulze E, Mooney H, Sala O et al. Rooting depth, water availability, and vegetation cover along an aridity gradient in Patagonia[J]. Oecologia,1996,108(3):503-511.
    [109]Nippert J, Knapp A, Briggs J. Intra-annual rainfall variability and grassland productivity:can the past predict the future?[J]. Plant Ecology,2006,184(1):65-74.
    [110]Fay P, Carlisle J, Knapp A et al. Productivity responses to altered rainfall patterns in a C 4-dominated grassland[J]. Oecologia,2003,137(2):245-251.
    [111]Pepper D, Del Grosso S, McMurtrie R et al. Simulated carbon sink response of shortgrass steppe, tallgrass prairie and forest ecosystems to rising CO2, temperature and nitrogen input[J]. Global Biogeochemical Cycles,2005,19(1).
    [112]Sala OE, Lauenroth WK, Parton WJ. Long-term soil water dynamics in the shortgrass steppe[J]. Ecology,1992,73(4):1175-1181.
    [113]董明伟,喻梅.沿水分梯度草原群落NPP动态及对气候变化响应的模拟分析[J].植物生态学报,2008,32(3):531-543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700