用户名: 密码: 验证码:
气候变化对中国农林生物质能的区域影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候是人类生存环境的基本组成部分,政府间气候变化专业委员会(IPCC)第四次评估报告(AR4)指出最近100年(1906~2005年)地球表面平均温度上升了0.74(0.56~0.92)℃。全球气候变化问题,不仅是科学问题、环境问题,而且是能源问题、经济问题和政治问题。在当前气候变化形势下,发展生物质能不仅有助于解决农村发展和农民生活问题,也有利于保护生态环境,保证国家能源安全,缓解能源危机。作为生物质能资源利用首先要清楚有多少资源量,分布如何。在2008年国务院办公厅下达的《关于加快推进农作物秸秆综合利用的意见》要求,摸清秸秆资源情况和利用现状,分析未来发展趋势。所以定量计算我国生物质能的资源量,分析气候变化对其的区域影响,并预测未来气候变化条件下的发展趋势,对我国中长期规划和发展目标的确定具有重要的意义。
     研究采用了统计资料分析、试验验证和模型模拟的方法对我国农业生物质能进行了现状和未来发展趋势的区域分析。在气象和统计年鉴资料的基础上分析了我国气候变化的事实,即温度和降水对我国水稻、玉米和小麦三大作物秸秆量的变化的影响;在FACE系统试验平台(Free-air CO_2 enrichment,FACE)基础上验证了CO_2浓度升高对冬小麦秸秆量和经济系数等指标的影响;利用CERES系列作物模型模拟了未来气候变化情景下主要农作物秸秆的变化趋势;还研究了气候变化对林业生物质能的影响;进一步分析了中国生物质能开发利用情况。结果表明:
     (1)我国气温增暖明显,而降水呈微小的下降趋势。我国过去50年的增暖主要发生在80年代中期以后,特别是90年代,增温异常明显。我国年平均气温呈现明显的上升趋势,全国2004年的平均温度比1974年增加1.09℃,除了1986年及其以前的温度低于平均温度以外,1987年到2004年各年平均温度均高于此31年的平均温度。
     (2)气候变化对秸秆量的影响。利用农业统计年鉴(1983~2005),通过经济系数和作物产量计算得出1982~2004年我国三大主要粮食作物秸秆资源量,水稻秸秆年均产量为1.814×10~8t,小麦年均总产为1.636×10~8t,玉米年均总产量为1.206×10~8t。我国三大作物秸秆总量呈增加的趋势,当前随着温度的升高,水稻和小麦秸秆产量呈减少趋势,玉米秸秆产量呈增加的趋势,但是我国各区域变化趋势不同。温度升高对各区域的主要作物秸秆产量的影响以增加为主,且都通过了0.01水平的相关性检验,但降水则只有部分地区通过检验。可见温度对作物秸秆产量的影响比降水的影响大。
     (3)通过CO_2浓度升高对冬小麦的影响试验(FACE)可以得出,CO_2浓度升高对冬小麦的株高、生物量和秸秆量的影响大致相同,结果都是促进作用,高于对照值。而且使冬小麦的经济系数减小,即增加了秸秆在生物量中的比重。CO_2浓度升高条件下,对于两个品种平均的经济系数减小,对照的平均经济系数为0.40,高CO_2浓度下的平均经济系数减小为0.38。这符合国际FACE试验的结果规律,在CO_2浓度升高的作用下,作物生长向着植株越来越高的方向发展。而且对于试验的对照条件和FACE条件相比则符合经济系数和株高成反比的规律,在FACE条件下经济系数减小,株高明显增高。
     (4)在IPCC气候变化SRES(Special Report on Emissions Scenarios)排放情景A2和B2下,在考虑了CO_2肥效作用的影响下,利用作物模型模拟了未来主要农作物秸秆量的变化趋势,在A2情景下以减少为主,平均单位面积秸秆量在2020s增加0.13%,2050s和2080s分别减少0.24%和2.08%。B2情景增加,特别是小麦呈现幅度较大的增加,三大作物总平均单位面积秸秆量增加率分别为8.64%、11.99%和18.10%。且两个情景都是随时间变幅增大。
     (5)在保证粮食安全的前提下,农作物秸秆和非农林能源作物作为能源利用可进一步加强。
     在保证粮食安全的前提下,农作物秸秆和能源作物则是生物质能的重要原料,我国农作物秸秆资源丰富,仅三大粮食作物每年就可以产生5×10~8t左右的秸秆,除了部分还田以保持土壤碳含量外,尚有可用于生物能源的部分,此外我国尚有近1×10~8 hm~2宜农、宜林荒山荒地,可用于发展能源农业和能源林业,而且我国能源农林业物种资源非常丰富,农业主要有木薯、甘蔗、甜高粱、油菜、花生、向日葵等,林业有漆树科的黄连木,无患子科的文冠果,大戟科的小桐子,山茱萸科的光皮树等,以此为原料可以进一步加强我国的生物液体燃料等的生物质能利用方式。
     (6)从农民增收的角度,农作物秸秆和非农经济林综合利用可进一步发展。
     生物质能的开发利用对解决“三农”问题有重要的作用,农作物秸秆和非农经济林综合利用能进一步增加农民收入。在把农作物秸秆变“废”为“宝”的生物质能利用,收购农民手中的作物秸秆即可增加农民收入。另外生物质能的利用可以创造就业机会增加农民收入,而且以户用沼气为纽带的综合利用模式在很大程度上增加了农民的收入,在国家资金和政策的大力支持下,户用沼气和大中型沼气工程发展迅速。另外我国约有经济林2140×10~4hm~2,其中木本油料树总面积超过400×10~4hm~2,油料树的果实产量每年在200×104t以上,可作为生物柴油的原料。其中对林木、林果、林副产品等林业资源的经营管理,可以增加林农的收入。
     (7)从环境保护角度,保证足够的秸秆还田量以后,农林生物质替代能源工程可作为新农村的基本设施建设纳入国家计划。
     农作物秸秆用于生物质能利用减少了露天焚烧,减少了环境污染,在生物质能利用中提高了利用效率,较传统的直接燃料燃烧即节约了能源又改善了农村居民的生活环境和生态环境。而且秸秆还田可以减少CO_2和SO_2的排放,增加土壤碳,为保护环境和减缓气候变暖做出贡献。
     (8)本文利用meta分析方法分析了我国近年来秸秆还田的文献资料,估算出我国秸秆还田量最适宜为4.78t/hm~2,理论上我国作物适宜秸秆还田的数量占总秸秆资源总量的87%。我国三大作物秸秆实际的直接还田量仅为0.61~0.81×10~8t,占其总产的13%~17%。利用水稻、玉米和小麦秸秆的可收集利用系数,估算我国三大主要农作物秸秆资源可收集利用量为3.715×10~8t,占三大作物总秸秆产量的79.76%。而在我国三大作物年均秸秆生物质能可利用量估计为0.817~1.485×10~8t。根据模拟未来气候变化A2和B2情景下秸秆量变化率,在假设种植面积不变的情况下,总产的变化率与相同,符合我国中长期规划的B2情景下的主要作物秸秆产量和生物质能可利用量都是随着时间而增加的,到2050s可以达到0.92~1.66×10~8t以上。
Climate is an important part of environments that human beings depend on. As the AR4 of IPCC reported, in the resent 100 years, the global surface temperature has increased by 0.74(0.56-0.92)℃。Climate change is not only scientific and environmental issue but also energy, economic and socio-political issues. Under the climate change conditions, development of bioenergy can contribute the development of rural area of China and improve the livelihoods of farmers, as well as protect eco-environment, secure energy supply of China and alleviate energy crises. An understanding of the energy resources and distribution is a prerequisite for utilization of bio-energy. Therefore, in 2008 General Office of the State Council of the People’s Republic of China released the document on accelerating the promotion of comprehensive utilization of crop straw to find out the situation of crop straw resource, current utilization of crop straw and its future development trends. This will provide fundamental information for comprehensive utilization of crop straw and assessment of agriculture resource, as well as provide evidences for the constitution of special planning of comprehensive utilization of crop straw and resource utilization and evaluation of crop straw. So quantifying the resource reserve of bioenergy, analyzing the impacts of climate change on resource reserve of bioenergy and predicting its development trends under future climate will contribute the medium and long term development plan of energy of China.
     In this study, Chinese bioenergy from agriculture and forestry under current and future climate was investigated using the methods of statistical analysis, evaluation of field experiment and model simulation. Based on the meteorology records and statistical information of China, climate change in China, changes in rice straw, maize straw and wheat straw and the impacts of temperature and rainfall on crop straw were analyzed. The effect elevated CO_2 concentration on wheat straw was evaluated through Free-air CO_2 enrichment (FACE) experiment. The CERES crop model was used to simulate future trends in the main crop straw of China under the future climate scenarios. Also the impacts of change on bioenergy from forestry were assessed, which will provide evidence for development and utilization of bioenergy of China. The main conclusions of this study are:
     (1) In China, the air surface temperature increased significantly, and there is a slight decrease in rainfall. The warming up period in China begins at the middle of the 1970s and becomes significant in 1990s for the last 50 years. The warming trend of the average temperature of China is obvious. The average temperature of 2004 is 1.09℃higher than 1974. With the exception of 1986, the average temperature of the other years (1987-2004) is higher than the average temperature of 31 years(1974-2004).
     (2)The effect of climate change on the straw production. Based on the Yearbook of Agricultural Statistics of China (1983-2005), this paper gets the three major crop straw productions by computing the economic coefficient and the crop yield of per unit. The annual average yields of the three major crops are 1.814×10~8t (rice), 1.636×10~8t (wheat) and 1.206×10~8t (maize). The total amounts of China’s three major crop straw productions are increasing while the rice and the wheat are decreasing. With increasing temperature, rice and wheat straw production decreases while the maize straw production has an increasing trend. But the trend is varies in different regions of China. The increasing temperature leads to the increasing trend of major crop straw and it has passed the 0.01 level of correlation test. But only parts of the precipitation pass the test. It shows that the temperature plays an important part on the effect of crop straw yield than the precipitation.
     (3)It can be drawn through the increased CO_2 concentration on the impact of winter wheat experiment (FACE) that the increased CO_2 concentration can promote the plant height, biomass and the straw field of the winter wheat based on the control value. The economic coefficient of the winter wheat decreases which means an increase of straw field. Under the conditions of increased CO_2 concentration, the average economic coefficient of the two varieties decreases. The average economic coefficient is 0.38 under the high CO_2 concentration while the control value is 0.40. This is in line with the international law of FACE results that in the role of increased CO_2 concentration, the crop plant is getting higher and higher. For the control test conditions and compared FACE conditions, the economic coefficient is inversely proportional to the plant height which means the economic coefficient decreases when the plant height increased significantly under the conditions of the FACE experiment.
     (4)Under the emission scenarios A2 and B2 of the IPCC climate change SRES (Special Report on Emissions Scenarios), taking the fertilizer effect of the CO_2 into account, this paper uses the crop models to simulate the future change of the trends of major crop straw production. Under the A2 scenario, the production reduced in general. The average per unit production of the straw increased 0.13% in the 2020s and decreased 0.24 and 2.08% in the 2050s and 2080s. Under the B2 scenario, wheat production increased significantly and the per unit production of crops straw of the three major crops increased respectively by 8.64%、11.99% and 18.10%. And the amplitude is increasing with time under the two scenarios.
     (5) Based on the security of food supply of China, the energy utilization of crop strews and no bio-energy crop can be further strengthened.
     In China, crop strews and energy crops are the main resource of bioenergy under the condition of secure food safe. There are lots of resource of crop strew, and only the main tree food crop can produce about 0.5 billion ton strew, which can maintain soil carbon and was used as the resource of bioenergy. In addition, there are about 0.1 billion hm2 waste hills and and that is suitable for farming or forestry can be used for the development of agriculture and forestry energy. The main energy source crops in China are cassava、sugarcane、sweet sorghum、rape、beet、groundnut、sunflower and so on. The main forestry energy sources are Pistacia chinensi、Xanthoceras sorbifolia、Jatropha curcasL、Cornusw ilsoniana W anger and so on. All these can be used as energy resource of China to strengthen utilization of bio-liquid energy.
     (6) The comprehensive utilization of crop strews and non agriculture economic forestry can be further developed to increase the income of farmer.
     The development and utilization of bioenergy can resolve the problem from agriculture famer, rural area of China. And it can further improve the income of farmer by altering the crop strews into useful bioenergy and saling crop strew, in addition increase the work opportunity for the farmer. The comprehensive utilization pattern with biogas engineering as link such as the eco-agricultural model (Four-in-One)in North China, which can greatly improve the income of farmer. Also, there is great development in household biogas and large and medium biogas engineering under the support of governmental funding and policy. There is 21.4 million hm2 economic forestry and the total area of woody oil plant exceeds 4 million hm2. The fruit production of woody oil plant is above 2 million ton per year, which can be used as resource of bio-diesel oil. Also, the management of forestry resource such as woods, fruit tree and Forestry by-products can enhance the income of agriculture and forestry.
     (7) From the view of environment protection, alternative bioenergy engineering from agriculture and forestry can be brought into line with the state plan when enough crop strew is return to the field.
     Utilization of bioenergy from crop strew can reduce the burning of strew, hence reduce the environment pollution and improve the use efficiency of bioenergy. Compared with the traditional burning of energy, bioenergy can save energy use and improve life environment and eco-environment of rural area of China. Fertilizing soil through straw returned into field can reduce emission of CO_2 and SO_2 and increase soil carbon, which would contribute the protection of environment and relieve the warming.
     (8)In this study, meta method was used to analyze the amount of straw returned into field based on the literature, and it is estimated that in China the optimal amount of straw returned into field is 4.78t/hm2. In theory, the amount of crop straw returned into field only accounts for 87% of total strew resource of China. The main three crop straw returned into field only 0.61~0.81×10~8t, which accounts for 13~17% of total strew resource. Under the A2 and B2 climate scenarios, the change in crop strew yield and the total strew production is similar to that of current climate on the assumption that the planting area is same. Under the B2 climate scenario, the production of main crop strew and utilization of bioenergy will increase over time, and it will reach above 0.92~1.66×10~8t billion t by 2050s
引文
1. Ablonski LM,Wang X,Curtis PS.Plant reproduction under elevated CO2 conditions:a meta-analysis of reports of 79 crop and wild species.New Phytologist,2002.156:9–26
    2. Ainsworth & Long.What we have learned from 15years of free-air CO2 enrichment (FACE)?A meta-analytic review of the responses of photosynthesis,canopy properties and plant production to rising CO2.New Phytologist,2005,165:351-372
    3. Ainsworth EA,Rogers A,Nelson R,Long SP.Testing the‘source–sink’hypothesis of down-regulation of photosynthesis in elevated [CO2] in the field with single gene substitutions in Glycine max.Agricultural and Forest Meteorology,2004,122:85–94
    4. Biswas P K,Hileman D R.Response of vegetation to carbon dioxide:field studies of sweet potatoes and cowpeas in response to elevated carbon dioxide.Report 022,US Department of Energy,Carbon dioxide Research Division,Ofice of Energy Research,Washington D C.1988
    5. Bowes G.Facing the inevitable:plants and increasing atmospheric CO2.Annual Review of Plant Physiology and Plant Molecular Biology,1993,44:309-332
    6. Calfapietra,C.,B.Gielen,A.N.J.Galemma,M.Lukac,P.De Angelis,M.C.Moscatelli,R.Ceulemans and G.Scarascia-Mugnozza,Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation.Tree Phys,2003,23:805-814
    7. Chang J,Dennis Y C Leung,Wu C Z,et al.A review on the energy production, consumption,and prospect of renewable energy in China.Renewable and Sustainable Energy Reviews,2003,7:453-468
    8. Chaudhuri U N,Kirkham M B,Kanemasu E T.Root growth of winter wheat under elevated carbon dioxide and drought.Crop Sci,1990,30:853-857
    9. Cholaw B,Cubasch U,Lin Y-H.The change of North China climate in Transient simulation using the IPCC SRES A2 and B2 scenarios with a coupled atmosphere-ocean General Circulation Model.Advances in Atmospheric Sciences,2003,20 (5): 755-766
    10. Cholaw B.Simulation of the future change of East Asian monsoon climate using the IPCC SRES A2 and B2 scenarios.Chinese Science Bulletin,2003,48 (10): 1024-1030
    11. Connell M G R.Carbon sequestration and biomass energy offset: theoretical,potential and achievable capacities globally,in Europe and the UK.Biomass and Bioenergy,2003,24(2):97-116
    12. Culotta E.Will plants profit from high CO2?Science,1995,268:654-656
    13. Dale W.Johnson,Peter S.Curtis.Effects of forest management on soil C and N storage: meta analysis.Gorest Ecology and Management,2001,140:227-238
    14. Drake B C;Gonzalez M A,Long S P.More efficient plants:A consequence of rising atmospheric CO2 Ann Rev Plant Physiol Plant Mol Biol,1997,48:609-630
    15. Drake B G,Leadly P W,Arp W J.An open chamber for field studies of elevated atmosphericCO2..concentration on salt marsh vegetation.Functional Ecology,1989,3:363-371
    16. Eric V W . Lack’s clutch size hypothesis : An examination of the evidence using meta-analysis.Ecology,1992,73(5):1699-1705
    17. Firn G A,Brun W A.Effect of atmospheric CO2 enrichment on growth,nonstructural carbohydrate content and root nodule activity in soybean.Plant physiology,1982,69:327-331
    18. Fishe R A.Statistical methods for research workers.London:Oliver and Boyd.1932
    19. Fuhrer,J.,Agroecosystemresponses to combination of elevated CO2,ozone,and global climate change.Agr.Ecosyst.Environ,2003,97:1-20
    20. Gent MPN.收获指数不同的冬小麦品种光合产物的同化与分配.国外农学-麦类作物,1990,(6):42
    21. Gifford,R.M.The CO2 fertilizing effect–does it occur in the real world?New Phytol,2004,163:221-225
    22. Glass.Primary,secondary and meta-analysis of research.Educ.Res.,1976:3-8
    23. Gordon Y T,Goro U,Sharon B (Eds.) DSSAT version 3 Volume 2.International Benchmark Sites Network for Agrotechnology Transfer,University of Hawaii,Honolulu,Hawaii,1996,197-201
    24. Green paper.Towards a European strategy for the security of energy supply.Luxemburg:Office for Official Publications of the European Communities.2000
    25. Grulke N E,Riechers G H,Oechel W C, et al.Carbon balance in tussock tundra under ambient and elevated atmospheric CO2.Oecologia,1990,83:485-494
    26. Guo L B,Gifford R M.Soil carbon stocks and land use change:a meta-analysis.Glob Change Biol,2002,8:345-360
    27. Hatje W,Ruhl M,Huttl R F,et al.Use of biomass for power and heat generation: possibilities and limits . Forests and energy . 1st Hanover EXPO 2000 World Forest Forum . Selecte dpapers.Ecological-Engineering,2000,16(1):41-49
    28. Hendrey G R,Lipfert F W,Kimball B A,et al.Free-air carbon dioxide enrichment (F ACE) facility,1988.Development.ⅡField tests at Yazoo City,MS,Report 046,US Department of Energy,Carbon dioxide Research Division,Office of Energy Research,Washington DC,1987
    29. Hendrey GR,Lewin K F,Nagy J.Free air carbon dioxide enrichment:development,progress,Results.Vegetation,1993,104/105:17-31
    30. Huesemann,M.H. Can pollution problems be effectively solved by environmental science and technology An analysis of critical limitations.Ecological Economics,2001,37:271-287
    31. Huesemann,M.H.The limits of technological solutions to sustainable development.Clean Technologies and Environmental Policy,2003,5:21-34
    32. Idso K E, Idso S B.Plant responses to atmospheric CO2 enrichment in the face of environmental constraints:a review of the past 10 years' research. Agriculture and Forest Meteorology,1994,69:153-203
    33. IPCC. Special Report on Emissions Scenarios. Available on: http://www.grida.no/climate/ipcc/emission/
    34. IPCC.Summary for Policymakers of Climate Change 2007: The Physical Science Basis.Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Cambridge:Cambridge University Press,2007 (in Press)
    35. IPCC.Summary for Policymakers of Climate Change 2007:Climate Change Impacts,Adaptation and Vulnerability . Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change .Brussels, 2007 (in Press)
    36. Jin Zhi-Qing.The Simulation of Impact of Climate Change on Chinese Crop Production.Nanjing: Nanjing Agriculture University,1996:90-93
    37. Jin Zhi-Qing.The Simulation of Impact of Climate Change on Chinese Crop Production. Nanjing:Nanjing Agriculture University,1996:90-93
    38. Jones J W,Hoogenboom G,Porter C H.The DSSAT cropping system model. Europe Journal of Agronomy,2003,18:235-265
    39. Kara J.Agriculture as a user of renewable energy.Mechanizace Zemedelstvi,2000,4:11-12
    40. Karnosky,D.F.,Impact of elevated atmospheric CO2 on forest trees and forest ecosystems:knowledge gaps.Environ.Int,2003,29:161-169
    41. Kimball B A,Pinter Jr .P J,Wall G W,et al.Comparisons of responses of vegetation to elevated carbon dioxide in free-air and open-top chamber facilities.In:Allen Jr.L H,Kirkham M B,Olszyk D M,and Whitman C E,eds.Advances in Carbon Dioxide Research.Madison, Wisconsin,USA:American Society of Agronomy,Crop Science Society of America,and Soil Science Society of America,1997:113-130
    42. Kimball BA . Kobayashi K , Bindi M . Responses of agricultural crops to free-air CO2 enrichment.Advances in Agronomy,2002,77:293–368
    43. Korner,C.,R.Asshoff,O.Bignucolo,S.Hattenschwiler,S.G.Keel,S.PelaezRiedl, S. Pepin,R.T.W.Siegwolf and G. Zotz.,Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2.Science.2005,309:1360-1362
    44. Krishnan.P.,Swain,D.K.,Chandra Bhaskar,B.,Nayak,S.K.,Dash,R.N.Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies.Agr.Ecosyst,Environ,2007,122:233-242
    45. Kulshrestha VP.小麦产量的新选择标准.国外农学-麦类作物,1988,(4):22-2
    46. Lawlor D W,Mitchell R A C.The efects of increasing CO2 on crop photosynthesis and productivity:a review of field studies. Plant Cell Environ,1991,14:807-818
    47. Leadly P W,Drake B G.Open top chambers for exposing plant canopies to elevated CO2 concentration and for measuring net gas exchange.Vegetatio,1993,104/105:3-15
    48. Lei X D,Peng C H,Tian D L,et al.Meta-analysis and its application in global change research.Chinese Science Bulletin,2007,52(3):289-302
    49. Lewin K F,Hendrey G R,Kolber Z.Brookhaven National Laboratory free-air carbon dioxide enrichmentfacility.Crit Rev Plant Sci,1992,11:135-141
    50. Liberloo,M.,S.Y.Dillen,C.Calfapietra,S.Marinari,B.L.Zhi,P.DeAngelis and R.Ceulemans,Elevated CO2 concentration,fertilization and their interaction:growth stimulation in a short-rotation poplar coppice (EUROFACE). Tree Physiol,2005,25:179-189
    51. Lin Erda,et al.,Climate change impacts on crop yield and quality with CO2 fertilization in China.Philosophical Transactions of the Royal Society,2005,360:2149-2154
    52. Long,S.P.,E.A. Ainsworth,A.Rogers and D.R. Ort,Rising atmospheric carbon dioxide:plants FACE the future.Annu. Rev. Plant Biol..2004,55:591-628
    53. Long,S.P.,E.A.Ainsworth,A.D.B.Leakey and P.B.Morgan, Global food insecurity.Treatment ofmajor food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields.Philos. T..Roy.Soc.B,2005,360:2011-2020
    54. Long,S.P.,E.A.Ainsworth,A.D.B.Leakey,J.Nosberger and D.R.Ort,Food for thought:lower expected crop yield stimulation with rising CO2 concentrations.Science,2006,312:1918-1921
    55. Lough J M,Wigley M L,Palutikof J P.Climate and Climate Impact Scenarios for Europe in a Warmer World.Climate Application Meteorology,1983,22::1673-1684
    56. Mandal K G,Saha K P,Ghosh P K,et al.Bioenergy and economic analysis of soybean-based crop production systems in central India.Biomass and Bioenergy,2002,23(5):337-345
    57. McLeod A R,Long S P.Free-air carbon dioxide enrichment (FACE) in global change research: A review. Adv Ecol Res,1999,28:1-56
    58. Murty D,Kirschbaum N F,Nc Nurtrie R,et al.Does conversion of forest to agricultural land change soil carbon and nitrogen? A review of the literature.Glbal Change Biolog,2002,8:105-123
    59. Nakicenovic,N.et al.Special Report on Emissions Scenarios:A Special Report of Working Group III of the Intergovernmental Panel on Climate Change.Cambridge University Press,Cambridge,United Kingdom.2000
    60. Nie G Y,Long S P,Garcia R L ,et al.Effect of free-air CO2 enrichment on the development of the photosynthetic apparatus in wheat,as indicated by changes in leaf proteins.Plant,Cell and Environment.1995,18:855-864
    61. Nie G,Hendrix D L,Webber A N,et al.Increased accumulation of carbohydrates and decreased photosynthetic gene transcript levels in wheat grown at an elevated CO2..concentration in the field.Plant physiol,1995,108:975-983
    62. Norby RJ,Sholtis JD,Gunderson CA,Jawdy SS.Leaf dynamics of a deciduous forest canopy:noresponse to elevated CO2.Oecologia,2003,136:574–584
    63. Norby,R.J., E.H.DeLucia,B,Gielen,C.Calfapietra,C.P.Giardina,J.S.King,J.Ledford,H.R.McCarthy and Co-authors, Forest response to elevated CO2 is conserved across a broad range of productivity.P.Natl.Acad. Sci USA.005,102,18052-18056
    64. Parry ML,Carter T R.The Assessment of Effeets of Climatie Variationson Agnculture:Aims,Methods and Summary of Results . In : parry M L . The Impact Of Climatie Variations on Agrieulture.Vol.1.Assessment in Cool Temperate and Cold Regions.Dordrecht:Reidel Pub Co.,1988:11-95
    65. Peng,S.,J.Huang,J.E.Sheehy,R.C.Laza,R.M.Visperas,X.H.Zhong,G.S.Centeno,G.S.Khush and K.G.Cassman,Rice yields decline with higher night temperature from global warming.P.Natl.Acad. Sci.USA of the United States of America,2004,101:9971-9975
    66. Regional Simulation of Maize Yield Under IPCC SRES A2 and B2 Scenarios.Chin Agro-Met,2005,26(1):11-15
    67. Regional Simulation of Maize Yield Under IPCC SRES A2 and B2 Scenarios.Chin Agro-Met,2005,26(1):11-15
    68. Ritchie J T.CERES-WHEAT Book Draft #l,1991:281-282
    69. Rogers H H,Cure J D,Smith J M.Soybean growth and yield response to elevated carbon dioxide.Agriculture,Ecosystems and Environment,1986,24:113-128
    70. Sodikin E.Possibility of using plant biomass as renewable energy source in South Sumatra.Proceedings of a workshop,Sustainable development in the context of globalization and locality:challenges and options for net-working in Southeast Asia.Bogor,Indonesia,18-22 September 2000.Tropen land wirt,Beiheft.2001,73:131-135
    71. Stuhlmacher A F,Gillespie T L.Managing conflict in the literature:Meta-analysis as a research method.Int Negot,2005,10(1):67-78
    72. Tainter,J.A. Sustainability of complex societies.1995,27(4):397-407
    73. Terjung W H,Hayes J T,O’Rourke p A,and P.E.et al.Yield Responses of Crops to Changes in Environment and Management practices:Model Sensitivity Analysis.1.Maize.Int.J.Biometeorol,1984a,28:261-278
    74. Terjung W H,Hayes J T,O’Rourke p A,and P.E.et al.Yield Responses of Crops to Changes in Environment and Management Practices : Model SensitivityAnalysis . 11 . Riee , Wheat ,andPotato.Int.J.Biorneteorol,1984b,28:279-292
    75. Thorton P.Application of crop simulation models in agricultural research and development in the tropics and subtropics.Muscle Sholad,AL:International Fertilizer Development Center. 1991:15-16
    76. Tippett L H.The methods of statistics.London.England:Williams and Norgate.1931
    77. Tubiello,F.N.,J.A.Amthor,K.Boote,M. Donatelli,W.E.Easterling,G.Fisher, R.Gifford,M.Howden,J.Reilly and C.Rosenzweig,Crop response to elevated CO2 and world food supply.Eur.J.Agron,2007b,26:215-223
    78. Tubiello,F.N.,J.A.Amthor,W.E.Easterling,G.Fischer,R.Gifford,M.Howden,J.Reilly and C.Rosenzweig,2007a:Crop response to elevated CO2 at FACE value.Science,in press
    79. Tubiello,F.N.and F.Ewert,Simulating the effects of elevated CO2 on crops: approaches and applications for climate change.Eur.J.Agron,2002,18: 57-74
    80. UKCIP 2002.UKCIP Scientific Report 2002. Climate Change Scenarios for the united Kingdom,Norwich,UK:Tydndll Centre,Sehool of Environmental Seienees,University of East Angila.2002:38-43
    81. Vanhatalo,M.,J.Back and S. Huttunen.Differential impacts of long-term (CO2) and O3 exposure on growth of northern conifer and deciduous tree species.Trees-Struct. Funct,2003,17:211-220
    82. Wittig,V.E.,C.J.Bernacchi,X.G.Zhu,C.Calfapietra,R.Ceulemans,P.Deangelis,B.Gielen,F.Miglietta,P.B.Morgan and S.P.Long,Gross primary production is stimulated for three Populus species grown under free-air CO2 enrichment from planting through canopy closure.Glob.Change Biol,2005,11:644-656
    83. Xiong W,Holman I,Conway D,et al.A crop model cross calibration for use in regional climate impacts studies.Ecological Modelling,2008,213 (3-4): 365-380
    84. Xiong W,Lin E D,Ju H,Xu Y L.Climate change and critical thresholds in China's food security.Climatic Change,2007,81:205-221
    85. Xiong W,Matthews R,Holman I,Lin ED,Xu YL.Modelling China’s potential maize production at regional scale under climate change.Climatic Change,2007,85:433-451
    86. Xiong W,Xu Y-L,Lin E-D,et al.Regional Simulation of Rice Yield Change under two Emission Scenarios of Greenhouse Gases.Chinese Journal of Applied ecology,2005,16 (1):65-68.
    87. Yates F,Cochran W G.The analysis of groups of experiments.Journal of Agricultural Science,1938,28:556-580
    88. Zinn Y L,Lal R,Resck D V S.Changes in soil organic carbon stocks under agriculture in Brazil.Soil Till Res,2005,84(1):28-40
    89. Ziska,L.H.and K.George,Rising carbon dioxide and invasive,noxious plants:potential threats and consequences.World Resource Review,2004,16:427-447
    90.白卫国,张玲,翟明普.论我国林业生物质能源林培育与发展.林业资源管理,2007,4(2):7-10
    91.毕于运,寇建平,王道龙等编著.中国秸秆资源综合利用技术.北京:中国农业科学技术出版社,2008,9:65-67
    92.毕于运,王道龙,高春雨,王亚静等著.中国秸秆资源评价与利用.北京:中国农业科学技术出版社,2008,5:65-67
    93.陈益华,李志红,沈彤.我国生物质能利用的现状及发展对策.农机化研究,2006, (1):25-30
    94.大气中CO2浓度提高全球变暖危及生存[EB/OL].http://www. edu. cn/20041015/3117997. shtml,2005-5-10
    95.戴向荣,蒋立科,罗曼.发展农村生物质能的设想与建议.世界农业,2006,(7):52-55
    96.邓光联,李克伦,李唏等.沼气与社会主义新农村建设.农业工程学报,2006,10(S1):61-64
    97.段佐亮.我国作物秸秆燃烧甲烷、氧化亚氮排放量变化趋势(1990-2020) .农业环境保护,1995,14(3):111-11
    98.费世民,钱能志,陈秀明,等.林业生物质能及其研发进展.四川林业科技,2007,28(6):18-26
    99.高卫东总主编,赵林萍主编.中国种植业大观·肥料卷.北京:中国农业科学技术出版社,2001
    100.国家发展与改革委员会.规模化畜禽养殖场沼气工程设计规范.全国生物质能开发利用工作会议参阅资料之二——畜禽养殖场沼气工程标准汇编,2006
    101.国家林业局.中国林业统计年鉴(2006) .北京:中国林业出版社,2007
    102.国家能源领导小组编制.《可再生能源发展规划》.2007,8
    103.韩鲁佳,闫巧娟,刘向阳,等.中国农作物秸秆资源及其利用现状.农业工程学报,2002,18(3):87-91
    104.韩湘玲主编.作物生态学.北京,气象出版社, 1991:171-173
    105.韩雪,中期考核报告.开放式CO2浓度升高对作物生长发育的影响.中国农业科学院研究生院,2008,5
    106.胡锦涛.2005年,八国峰会上的讲话.中国新闻网http://china.rednet.cn/c/2007/01/08/1087489.htm
    107.胡强,刘振环,罗红等.云南生物能源作物资源概述.云南农业科技,2006,3:59-63
    108.胡万里,李长友.小型民用秸秆气化炉的改进设计.节能,2005(8):37-38
    109.冀星,郗小林.我国生物柴油产业发展展望.中国能源,2002,5:16-18
    110.贾治邦.大力推进林业又快又好发展发挥林业在建设节约型社会中的作用.林业经济,2006,11(172):3-7
    111.蒋高明,韩兴国.大气CO2浓度升高对植物的直接影响-国外十余年模拟试验研究之主要手段及基本结论.植物生态学报,1997,21(6):489-500
    112.蒋剑春.生物质能源转化技术与应用.生物质化学工程,2007,41(3):59-65
    113.焦瑞莲.发展沼气推动农村经济建设.节能环保,2006,(8):48-49
    114.金琳.农田管理对土壤碳储量的影响及模拟研究.博士论文,中国农业科学院研究生院,2008,5:
    115.金之庆.气候变化对中国作物生产的影响模拟研究.南京:南京农业大学,1996:90-93
    116.李建政,汪群慧.废物资源化与生物能源.北京:化学工业出版社环境科学与工程出版中心,2004
    117.李杨瑞,谭裕模等.甘蔗作为生物能源作物的潜力分析.西南农业学报,2006,4(19):742-746
    118.梁斌,闵恩泽.利用西部可再生资源发展生物柴油产业.四川大学学报,2006,38(5):33-37
    119.梁卫平.21世纪生物质能研究.科技情报开发与经济,2007,17(4):167-168
    120.林而达,吴绍洪,戴晓苏等.气候变化影响的最新认知.气候变化研究进展.2007,3(3):121-125
    121.林而达,许吟隆.中-英合作项目:评价气候变化对中国农业的影响.2004:北京,1-2
    122.林宗虎.论未来的中国能源.自然杂志,2001,23(3):125-130
    123.刘继芬.德国生物质能源开发利用的经验和启示.可再生能源,2005,122(4):77-79
    124.刘守新,李海潮,张世润.木质生物能源利用技术研究.中国林副特产,2001(3): 37-39
    125.刘巽浩,陈阜.中国农作制.北京:中国农业出版社,2005,195-209
    126.刘巽浩.农业概论.知识产权出版社,2007,201-206
    127.吕文,王春峰,王国胜,等.中国林木生物质能源发展潜力研究(2) .中国能源,2005,27(12): 29-33
    128.马常耕,苏晓华.生物质能源概述.世界林业研究,2005,18(6):32-38
    129.美国能源部.Biomass Program,http://www.eere.ener-gy.gov/biomass
    130.闵恩泽,唐忠,杜泽学等.发展我国生物柴油产业的探讨.中国工程科学,2005,7(4):1-4
    131.倪维斗,李政,靳晖.对用生物质原料生产燃料用乙醇之我见.中国工程科学,2001,3(5):44-49
    132.农业部能源环保技术开发中心.农村能源统计年鉴,2005-2007
    133.潘晓华,邓强辉.作物收获指数的研究进展.江西农业大学学报,2007,29(1):1-5
    134.钱祖香.小麦品种收获指数与其他多种性状相关性的研究.湖北农学院学报,1989,(2):9-17
    135.秦大河,陈振林,罗勇等.气候变化科学的最新认知.气候变化研究进展,2007,3(2):63-73
    136.任国玉,徐铭志,初子莹,等.气候与环境研究.2005,10(4):717-727
    137.石元春.发展生物质产业[EB/ON].http://www.cas.ac.cn/html/Dir/2005/03/02/5216.htm 2005-5-10
    138.苏永秀,李政,孙涵.基于GIS的广西甘蔗种植气候区划.中国农业气象,2006,27(3):221-225
    139.孙振钧.中国生物质产业及发展取向.农业工程学报,2004,20(5):1-5
    140.唐炼.世界能源供需现状与发展趋势.国际石油经济,2005,11(3):30-33
    141.王馥棠.农业气象产量预报概述.气象科技,1983,(2):36-4
    142.王革华.农村能源建设对减排SO2和CO2贡献分析方法.农业工程学报,1999,15(1):169-172
    143.王孟杰,谭天伟,朱卫东.中国生物质液体燃料技术发展.中国能源科技,2006,80-84
    144.王秋华.我国农村作物秸秆资源化调查研究.农村生态环境,1994,10(4): 67-71
    145.吴创之.欧洲生物质能利用的研究现状及探讨.新能源,1999,21(3):30-35
    146.吴兆苏.小麦育种学.北京:农业出版社,1990,206-22
    147.夏凤毅.农村沼气能源与农业的持续发展.云南农业大学学报,1999,6(2):211-214
    148.熊伟,许吟隆,林而达,等.两种温室气体排放方案下我国水稻产量变化模拟.应用生态学报,2005,16(1):65-69
    149.熊伟,许吟隆,林而达.IPCC SRES A2和B2情景下我国玉米产量变化模拟.中国农业气象,2005,26(1):11-15
    150.熊伟博士论文.未来气候变化情景下中国主要粮食作物生产模拟.中国农业大学,2004
    151.熊伟等编著.气候变化对中国粮食生产影响的模拟研究.北京,气象出版社, 2009:124-127
    152.许吟隆,黄晓莹,张勇等.中国21世纪气候变化情景的统计分析.气候变化研究进展,2005,1(2):80-83
    153.许吟隆,田展.利用RCM气候情景评估气候变化对中国小麦生产影响的方法论探讨.中国农业气象,2005,26(增刊):42-45
    154.许吟隆,张勇,林一骅等.利用PRECIS分析SRES B2情景下中国区域的气候变化响应.科学通报,2006,51(17):2068-2074
    155.许吟隆.中国21世纪气候变化的情景模拟分析.南京气象学院学报,2005,28(3):323-329
    156.余珂,胡兆吉,刘秀英.国内外生物质能利用技术研究进展.江西化工,2006,(4):30-33
    157.张百良,杨世关,马孝琴.中国生物质能技术应用与农业生态环境研究.中国生态农业学报,2003,11(3):178-179
    158.张宝文.齐抓共管、进一步做好秸秆禁烧与综合利用工作.生态农业研究, 2000, 8(3):1-4
    159.张金艳,李小泉,张镡.全球粮食气象产量及其与降水量变化的关系.应用生态学报,1999,10(3):327-332
    160.张培栋,王刚.中国农村户用沼气工程建设对减排CO2、SO2的贡献-分析与预测.农业工程学报,2005,21(12):147-151
    161.张以祥,曹湘洪,史济春.燃料乙醇与车用乙醇汽油.北京:中国石化出版社,2004
    162.赵立欣,张艳丽,沈丰菊.能源作物甜高粱及其可供应性研究.可再生能源,2005,4(122):37-40
    163.中国国家发展与改革委员会. http://www.ndrc.gov.cn/zjgx/t20090311265851.htm,2009-3-19
    164.中国林木生物质能源研究课题组.中国林木生物质能源发展潜力研究.中国林业产业,2006,1:6-11
    165.中华人民共和国农业部中国农业年鉴编辑委员.中国农业年鉴.北京:中国农业出版社, 1983-2005
    166.钟华平,岳燕珍,,樊江文.中国作物秸秆资源及其利用.资源科学,2003,25(4): 62-67
    167.钟华平,岳燕珍,樊江文.中国作物秸秆资源及其利用.资源科学,2003,25(4):62-67
    168.周超贤,林瑞如.发展农村沼气建设生态家园.生态环境,2004,13(3):459-460
    169.周世怀.指数平滑法在趋势产量预测上的应用及广东省早稻产量预报模式.热带气象,1987,3(3):239-244
    170.周中仁.中国北方农村家庭生物质能可持续利用研究.博士论文,中国农业大学,2008,5,51-68
    171.祝列克.我国林业生物质能源发展现状、目标与对策.绿色中国,2006,10:10-15
    172.庄贵阳.http://www.lianghui.org.cn/node_7000058/2007-04/02/content_8046237_2.htm

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700