用户名: 密码: 验证码:
西北太平洋年际和季内尺度海气相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气候变化作为一个全球性的环境问题,受到大气科学和海洋科学研究的重视。海洋和大气作为气候系统的两个重要组成部分,在不同的空间和时间尺度上存在相互作用。海气相互作用研究,有助于理解气候变化过程,为气候模拟和预报提供理论基础。故本文采用美国伍兹霍尔海洋研究所客观分析海气通量项目提供的OAFlux资料和美国气候诊断中心提供NCEP再分析资料,利用EOF分析、小扰动方法、线性回归、相关分析和合成分析等方法研究了西北太平洋年际和季内尺度的海气相互作用,包括西北太平洋海气界面湍流热通量的年际变化、西北太平洋海气界面湍流热通量季内变化强度的特征、热带西太平洋暖池年际尺度上的局地海气相互作用以及南海夏季风爆发期间海气相互作用的季内变化。主要结论有:
     1.西北太平洋湍流热通量的年际变化在冬季最为显著。我国东部海域及其向中东太平洋的延伸部分为冬季潜热通量和感热通量年际变化的关键区。冬季潜热通量的年际变化在副热带太平洋和菲律宾海域主要受风速变化影响,在西北太平洋的高纬和低纬海域尤其是赤道中太平洋主要受比湿差变化影响,而冬季感热通量的年际变化在整个西北太平洋都主要受海气温差变化影响。受大尺度环流影响,异常低压中心的东(西)侧海气比湿差和海气温度差偏小(偏大),所以异常低压中心的东(西)侧潜热输送和感热输送偏弱(偏强)。
     2.西北太平洋潜热低频振荡强度的空间分布主要受海气比湿差低频振荡强度(Δq′)和海气比湿差平均值(Δq)的空间分布影响;感热低频振荡强度的空间分布主要受海气温差低频振荡强度(ΔT′)的空间分布影响。湍流热通量低频振荡强度冬季最强,夏季最弱。潜热低频振荡强度的季节变化受Δq′强度季节变化、海表面风速低频振荡强度(U′)季节变化、Δq季节变化和风速平均值U季节变化共同影响;感热低频振荡强度的季节变化主要受ΔT′强度季节变化和U季节变化的影响。20°N以北海域和热带西太平洋,潜热(感热)低频振荡主要受大气变量qa′( Ta′)和U′的影响,表现为海洋对大气强迫的响应;20°N以南的热带中东太平洋, q s′( Ts′)的变化对潜热(感热)的低频振荡也有较大影响。
     3.暖池区域海洋对大气的强迫在3月份最为显著,大气对海洋的反馈在6月份最为显著。海洋强迫大气占主导时,海温趋势(dSST/dt)的年际变化小于海温;而大气反馈海洋占主导时,海温趋势的年际变化则大于海温。ENSO会减弱暖池区域3月份海洋对大气的强迫,而6月份大气对海洋的反馈受ENSO影响不大;去除IOD影响后海气关系基本维持不变。3月份ENSO通过增强暖池上空的对流,减少短波入射,从而使海温呈降低趋势,减弱海洋对大气的强迫。
     4.根据南海夏季风爆发前后水汽通量的特征分析,定义了南海夏季风爆发指数IVIMT ,并确定出1951~2000年南海夏季风的爆发日期。通过分析发现,利用该指数可以合理地确定南海夏季风的爆发时间。依据该指数确定的季风爆发日期,分析南海夏季风爆发期间海气相互作用的准双周变化,可以发现伴随南海夏季风爆发的海气相互作用的准双周变化主要表现为大气通过风蒸发和云辐射影响海水温度,海洋通过水汽辐合影响上空的大气对流,二者的响应时间均为4天,所以在演变上体现为弱对流领先正海温4天,而正海温领先强对流4天。
Climate variability has received much attention by atmospheric and oceanic scientific research as a global environmental issue. Ocean and atmosphere, being two important components of climate system, interact on different spatial and temporal scales. The study of air-sea interaction, which helps to understand the process of climate variability, provides theoretical basis of climate simulation and prediction. Based on the heat fluxes and related meteorological variables datasets from Objectively Analyzed Air-sea Fluxes (OAFlux) Project of Woods Hole Oceanographic Institution and the reanalysis datasets from National Centers for Enviromental Prediction (NCEP), the air-sea interaction on interannual and intraseasonal timescales over the northwest Pacific, including interannual variability of air-sea turbulent heat fluxes over the northwest Pacific, characteristics of intraseasonal oscillation intensity of air-sea turbulent heat fluxes over the northwest Pacific, local air-sea interaction over the tropical western Pacific warm pool on the interannual timescale, as well as intraseasonal variability of air-sea interaction during the South China Sea summer monsoon onset is studied by means of empirical orthogonal functions (EOF) analysis, perturbation method, linear regression and correlation analysis. The main conclusion are as follows.
     1. Interannual variability of air-sea turbulent heat fluxes over the northwest Pacific is the most prominent in winter among four seasons. East China Sea and its extension to mid-east Pacific are the key regions of interannual variability of air-sea turbulent heat fluxes over the northwest Pacific. The anomalous wind speed has the greatest influence on the interannual variability of latent heat fluxes in winter in the subtropical Pacific and Philippine Sea, while the anomalous specific humidity difference has the greatest impact in the high-latitude and low-latitude oceans, especially in the equatorial mid-Pacific. The interannual variability of sensible heat fluxes in winter depends primarily on the air-sea temperature difference anomalies in the whole northwest Pacific. Under the influence of large-scale atmospheric circulation, negative (positive) air-sea specific humidity difference and temperature difference anomalies tend to occur to the east (west) of an anomalous low, therefore negative (positive) latent heat fluxes and sensible heat fluxes anomalies are found to the east (west) of an anomalous low.
     2. The distribution of low-frequency oscillation intensity of latent heat flux (LHF) over the northwest Pacific is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea humidity gradient (Δq′) as well as mean air-sea humidity gradient (Δq), while the distribution of low-frequency oscillation intensity of sensible heat flux (SHF) is mainly affected by that of low-frequency oscillation intensity of anomalous air-sea temperature gradient (ΔT′). The low-frequency oscillation of turbulent heat fluxes over the northwest Pacific is the strongest in winter and the weakest in summer. And the seasonal transition of low-frequency oscillation intensity of LHF is jointly influenced by those of low-frequency oscillation intensity ofΔq′, low-frequency oscillation intensity of anomalous wind speed (U′),Δq and mean wind speed (U ), while the seasonal transition of low-frequency oscillation intensity of SHF is mainly influenced by those of low-frequency oscillation intensity ofΔT′and U . Over the tropical west Pacific and sea areas north of 20°N, the low-frequency oscillation of LHF (SHF) is mainly influenced by atmospheric variables qa′(Ta′) and U′, indicating an oceanic response to overlying atmospheric forcing. In contrast, over the tropical eastern and central Pacific south of 20°N, qs′(Ts′) also greatly influences the low-frequency oscillation of LHF (SHF).
     3. Oceanic forcing is dominant in March but atmospheric forcing is dominant in June. While the interannual variability of sea surface temperature anomaly (SSTA) is larger than that of anomalous SST tendency in the case that oceanic forcing is dominant, the opposite is true when atmospheric forcing is dominant. The magnitude of the oceanic forcing of atmosphere tends to decrease in March for the occurrence of ENSO, however ENSO has little influence on the atmospheric feedback to ocean in June. The local air-sea interaction is substantially the same before and after removing the effect of Indian Oceanic Dipole (IOD). The reduction of shortwave radiation fluxes into the western pacific warm pool, due to the enhanced convection overlying the western pacific warm pool in March associated with ENSO, leads to the declination of SST tendency that will weaken the oceanic forcing of atmosphere.
     4. An index of SCS summer monsoon onset (IVIMT) is defined according to the characteristics analysis of VIMT before and after the SCS summer monsoon onset, then the onset dates of the SCS summer monsoon from 1951-2000 are ascertained with the index IVIMT. By analysis it is found that the onset dates of the SCS summer monsoon can be reasonably defined with the index IVIMT. Biweekly variability of air-sea interaction during the South China Sea summer monsoon onset is analyzed according to the above onset dates. It shows that atmosphere may play a role on sea surface temperature by wind-evaporation and cloud-radiation while the ocean impacts on the overlying atmospheric convection by moisture convergence. The response time between atmosphere and ocean is four days. Therefore suppressed convection leads th positive sea surface temperatue by four days while positive sea surface temperature leads the enhanced convections by four days.
引文
Alexander, L.V., P. Uotila, N. Nicholls, 2009: Influence of sea surface temperature variability on global temperature and precipitation extremes. J. Geophys. Res., 114, D18116, doi:10.1029/2009JD012301.
    An S I. 2003: Conditional maximum covariance analysis and its application to the tropical Indian Ocean SST and surface wind stress anomalies. J Clim, 16: 2932–2938
    Arkin P A, Ardanuy P E. 1998: Estimating climatic-scale precipitation from space: A review. J. Clim, 2: 1229-1238
    Ashok, K., and T. Yamagata, 2009: Climate change: The El Ni?o with a difference. Nature, 461, 481–484.
    Bao Ming. 2008: Relationship between persistent heavy rain events in the Huaihe River Valley and the distribution pattern of convective activities in the tropical western Pacific warm pool[J]. Advances in Atmospheric Sciences, 25: 329-338.
    Barsugli J J, Battisti D S. 1998: The basic effects of atmosphere–ocean thermal coupling on midlatitude variability. J Atmos Sci, 1998, 55: 477-493
    Cayan D R. 1992a. Variability of latent and sensible heat fluxes estimated using bulk formulae[J]. Atmos.-Ocean, 30:1-42.
    Cayan D R. 1992b:. Latent and sensible heat flux anomalies over the northern oceans: The connection to monthly atmospheric circulation[J]. J. Climate, 5: 354-369.
    Cayan D R. 1992c: Latent and sensible heat flux anomalies over the Northern. Oceans: Driving the sea surface temperature. J Phy Oceanogr, 22: 859―881
    Fairall C W, Bradley E F, Rogers D P, et al. 1996: Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response Experiment[J]. J. Geophys. Res., 101: 3747-3764.
    Fairall C W, Hare J E, Grachev A A, et al. 2003. Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm[J]. J. Climate, 16: 571-591.
    Fasullo J, Webster P J. 2003: A hydrological definition of Indian monsoon onset and withdrawal. J. Climate, 16: 3200~3211
    Fu Congbin, Henry D, Fan Huijun. 1992: Variability in latent heat flux over the tropical pacific in association with recent two enso events[J]. Advances in Atmospheric Sciences, 9: 351-358.
    Gill A E. 1980: Some simple solutions for heat-induced tropical circulation. Quart J Roy Meteor, 1980, 106:447-462
    Godfred-Spenning C R, Reason C J C. 2002: Interannual variability of lower-tropospheric moisture transport during the Australian Monsoon. Int. J. Climatol. , 22: 509~532
    Gutzler D S, Madden R A. 1989: Seasonal variation in the spatial structure of intraseasonal tropical wind fluctuations. J Atmos Sci, 1989, 46 (5) : 641―660
    Hendon H H, Glick J. 1998: Intraseasonal Air-Sea Interacyion In the Tropical India and Pacific Oceans. J Clim, 11: 1685―1702
    Hendon, H. H., 2000: Impact of air-sea coupling on the Madden-Julian oscillation in a general circulation model. J. Atmos. Sci., 57, 3939-3952
    Hsiung J. 1986: Mean surface energy fluxes over the global ocean. J Geophys Res, 91: 10585–10606
    Huang Ronghui, Sun Fengying, 1992: Impacts of the tropical western Pacific on the East Asian summer monsoon, J Meteor Soc, Japan, 70: 243-256
    Huang Ronghui, Gu Lei, and Zhou Liantong et al., 2006: Impact of the thermal state of tropical western Pacific on onset date and process of the South China Sea summer monsoon. Adv. Atmos. Sci. 23(6): 909-924
    Jiang Hua, Wang Hui, Wu Dexing. 2007: Seasonal variability of turbulent heat fluxes in the tropical Atlantic Ocean based on WHOI flux product[J]. Acta Oceanologica Sinica, 26(5): 1-11.
    Kalnay E, M Kanamitsu, R Kistler et al., 1996: The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc., 77(3): 437-471
    Kistler R, Kalnay E, Collins W, et al., 2001: The NCEP-NCAR 50-year reanalysis: Monthly means cd-rom and documentation. Bull. Am. Meteorol. Soc., 82(2): 247-267
    Liu J, Curry J A. 2006: Variability of the tropical and subtropical ocean surface latent heat flux during 1989-2000[J]. Geophys. Res. Lett., 33: L05706.
    Liu W T, Katsaros K B, Businger J A. 1979: Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface[J]. J. Atmos. Sci., 36: 1722-1735.
    Lu R Y.2001: Atmospheric circulation and sea surface temperatures related to the convection over the western Pacific warm pool on the interannual scale. Adv Atmo Sci, 2001, : 270-282
    Mao Jiangyu and Johnny C.L. Chan, 2005: Intraseasonal variability of the South China Summer monsoon. J. Climate 18:2388-2402
    Niu Ning, Li Jianping. 2008. Interannual variability of Autumn precipitation over South China and its relation to atmospheric circulation and SST anomalies[J]. Advances in Atmospheric Sciences, 25: 117-125.
    North G R, Bell T L, Cahalan R F. 1982: Sampling errors in the estimation of Empirical Orthogonal Functions[J]. Mon. Wea. Rev., 110: 699-706.
    Pegion K, Kirtman B P. 2008: The Impact of Air-Sea Interactions on the Simulation of Tropical Intraseasonal Variability. J Clim, doi:10.1175/2008JCLI2180.1
    Rasmusson, E.M., and T.H. Carpenter, 1982: Variations in Tropical Sea Surface Temperature and Surface Wind Fields Associated with the Southern Oscillation/El Ni?o. Mon. Wea. Rev., 110, 354–384.
    Ren B H, Huang R H. 2003: 30-60-day Oscillations of Convection and Circulation Associated with the Thermal State of the Western Pacific Warm Pool during Boreal Summer. AdvAtmos Sci, 2003, 20 (5): 123―135
    Saji N H, Goswami B N, Vinayachandran P N, et al. 1999: A dipole mode in the tropical Indian Ocean. Nature, 1999, 401: 360-363
    Saji N H, Yamagata T. 2003: Possible impacts of Indian Ocean dipole mode events on global climate. Clim Res, 25: 151-169
    Shinoda T, Hendon H H, Glick, et al. 1997: Intraseasonal Variability of Surface Fluxes and Sea
    Surface temperature in the Tropical Western Pacific and Indian Oceans. J Clim, 1997, 10: 647―661
    Soman M K, Kumar K K. 1993: Space-time evolution of meteorological features associated with the onset of Indian summer monsoon. Mon. Weather. Rev. , 121: 1177~1194
    Tanimoto Y, Nakamura H, Kagimoto T, et al. 2003: An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux[J]. J. Geophys. Res., 108: 3304-3315.
    Tao Shiyan, Chen Longxun. 1987: A review of recent research on the East Asian summer monsoon in China. In: Monsoon Meteorology, Oxford: Oxford University Press, 60~92
    Wang B, Fei Huang, et al., 2009: Multi-scale climate variability of the South China Sea monsoon: A review. Dynamics of Atmospheres and Oceans, 47, 15-37.
    Wang C, Fiedler PC, 2006: ENSO variability and the eastern tropical Pacific: a review. Progress in Oceanography, 69, 239–266.
    Wen Zhiping, He Haiyan and Huang Ronghui, 2004: The influence of 30~60d oscillation on the development of the South China Sea summer monsoon. Acta Oceanologica Sinica, 23: 569~579
    Wu B, Zhou T, Li T, 2009: Contrast of Rainfall–SST Relationships in the Western North Pacific between the ENSO-Developing and ENSO-Decaying Summers. J Clim, 22:4398–4405.
    Wu Rengguang, 2010: Subseasonal variability during the South China Sea summer monsoon onset. Clim Dyn, 34: 629-642
    Wu Renguang and Bin Wang, 2000: Interannual Variability of Summer Monsoon Onset over the Western North Pacific and the Underlying Processes. J. Climate, 13:2483-2501
    Wu R, Kirtman B P. 2007: Regimes of seasonal air-sea interaction and implications for performance of forced simulations. Clim Dyn,, 29: 393-410
    Yu L, Weller R A. 2007a. Objectively Analyzed Air-Sea Heat Fluxes for the Global Ice-Free Oceans (1981-2005) [J]. Bull. Amer. Meteor. Soc., 88: 527-539.
    Yu L, Jin X, Weller R A. 2007b. Annual, seasonal, and interannual variability of air–sea heat fluxes in the Indian Ocean[J]. J. Climate, 20: 3190-3209.
    Yu L, Jin X, Weller R A. 2008. Multidecade Global Flux Datasets from the Objectively Analyzed Air-sea Fluxes (OAFlux) Project: Latent and sensible heat fluxes, ocean evaporation, and related
    surface meteorological variables[R]. Woods Hole Oceanographic Institution, OAFlux Project Technical Report. :64pp.
    Yu L. 2007: Global Variations in Oceanic Evaporation (1958–2005): The Role of the Changing wind Speed. J Clim, 20: 5376―5390
    Yu L, Weller R A, Sun B. 2004: Improving latent and sensible heat flux estimates for the Atlantic Ocean (1988–99) by a synthesis approach. J Clim, 17: 373―393
    Zhang G J, Mcphaden M J. 1995: The Relationship between Sea Surface Temperature and Latent
    Heat Flux in the Equatorial Pacific. J Clim, 8: 589―605
    Zhang C, 2005: Madden-Julian Oscillation, Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000 158.
    Zhou W and Johnny C.L. Chan., 2007: ENSO and the South China Sea summer monsoon ontest. Int. J. Climate, 27: 157-167.
    Zhou W and Johnny C.L. Chan., 2005: Intraseasonal oscillations and the South China Sea summer monsoon onset. Int. J. Climate, 25: 1585-1609.
    冯瑞权,王安宇,吴池胜,等. 2001,南海夏季风建立的气候特征Ⅰ——40年平均.热带气象学报, 17(4): 345~354
    高辉,何金海,谭言科,等.2001: 40a南海夏季风建立日期的确定.南京气象学院学报, 2001, 24(3): 379~38
    何金海,丁一汇,高辉,等. 2001:南海夏季风建立日期的确定与季风指数.北京:气象出版社, 2001. 118~120
    金祖辉. 1999:揭示的南海季风爆发的气候特征.见:丁一汇,李崇银主编,南海季风爆发和演变及与海洋的相互作用.北京:气象出版社, 57~65
    李崇银,张利平. 1999:南海夏季风活动及其影响.大气科学,, 23(3): 257~266
    李崇银. 1993:大气低频振荡.北京:气象出版社,, 76―78
    李崇银. 2004:大气季节内振荡研究的新进展.自然科学进展, 14(7): 734—741
    刘衍韫,刘秦玉,潘爱军. 2004:太平洋海气界面净热通量的季节、年际和年代际变化[J].中国海洋大学学报, 34 (3): 341-350.
    秦正坤,孙照渤,林朝晖,等. 2007:一个海气耦合模式对东亚夏季气候预测潜力的评估[J]. 气候与环境研究, 12(3): 426-436.
    吴国雄,李建平,周天军,等.影响我国短期气候异常的关键区:亚印太交汇区.地球科学进展, 2006, 21(11): 1109-1118
    余贞寿,孙照渤,王学忠. 2005.东部夏季降水变化及其与北太平洋SSTA的联系[J].南京气象学院学报, 28(2): 189-196.
    吴国雄,李建平,周天军,等.影响我国短期气候异常的关键区:亚印太交汇区.地球科学进展, 2006, 21(11): 1109-1118
    吴尚森,梁建茵. 2001:南海夏季风强度指数及其变化特征.热带气象学报, 17(4): 337~344
    谢安,张振洲. 1994:南海夏季风的推进.气象学报, 52(3): 372~378
    张秀芝,李江龙,闫俊岳,等.2002:南海夏季风爆发的环流特征及指标研究.气候与环境研究7(3): 321~331
    张学洪,俞永强,刘辉. 1998.冬季北太平洋海表热通量异常和海气相互作用[J].大气科学, 22 (4): 511-521.
    郑建秋,任保华,李根.北太平洋海气界面湍流热通量的年际变化.大气科学, 2009, 33(5):

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700