用户名: 密码: 验证码:
离心泵内部固液两相流动数值模拟与磨损特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固液两相输送离心泵在国民经济各行业应用广泛,但这类泵存在以下关键技术难题,一是由于存在固体物质导致效率低,二是由于磨损问题而导致的可靠性差,这两个问题一直制约着固液两相输送离心泵的研制和应用。
     本文以固液输送流道式离心泵为研究对象,对其水力性能和磨损性能开展计算和实验研究。首先通过对固液两相流场中颗粒所受作用力进行分类和量级分析,确定了颗粒直径和所受作用力的关系,提出固液两相的流动和磨损计算模型;针对不同直径颗粒,分别采用Mixture模型和DPM模型结合UDF引入颗粒体积效应的影响,对不同体积分数的固液两相流动进行数值计算,并在此基础上进行了内部流动对性能的影响以及磨损规律分析;搭建固液两相实验台对流道式离心泵进行固液两相流动工况下的外特性实验研究;最后基于理论分析,推导出设计流量点固液混输工况的扬程下降率预测公式,可供实际工程使用。
     论文的主要工作和结论具体如下:
     1.确立了离心泵内部固液两相流场的流动和磨损计算模型。
     首先根据液体与颗粒之间的相互作用关系,将作用力进行分类;然后将各作用力与流动阻力进行量级对比分析,确定颗粒直径与作用力的关系,在此基础上确定相应的两相流模型;考虑湍流扩散对颗粒的影响,建立基于随机游走方法的颗粒轨迹计算模型,并选择单颗粒磨损模型结合泰勒级数展开,确定颗粒碰撞磨损计算模型。
     2.数值模拟并验证了离心泵内部的固液两相流场。
     分别选择基于欧拉-欧拉方法的Mixture两相流模型和基于欧拉-拉格朗日方法的DPM两相流模型对离心泵内部固液两相流场进行数值模拟,并将离心泵性能参数的计算值与文献中的实验值对比,发现根据颗粒直径选择相应的两相流模型进行计算可以准确模拟离心泵内部的固液两相流动。
     3.得到了固液两相流场特性与水力性能和磨损性能的关系。
     分析不同颗粒直径和体积分数工况下,全流道内部的液相压力、液相流线和蜗壳内部的固液两相速度差与颗粒直径和体积分数的关系。发现不同工况下的泵流道内压力总体分布差不多,但是随着颗粒直径和固相体积分数的增加,流道内的压力值呈减小趋势。
     分析不同颗粒直径和体积分数工况下,流道内部不同部位的磨损速率、剪应力和颗粒分布与颗粒直径和体积分数的关系。发现在叶轮和蜗壳流道的不同部位,磨损速率均随体积分数的增加而增加;随着颗粒直径的增加,蜗壳内磨损速率呈下降趋势,叶轮流道内部则随部位的变化不尽相同。
     4.进行了离心泵的固液两相外特性实验研究。
     与清水输送工况的性能相比,随着颗粒直径和固相体积分数的增加,固液两相输送工况的扬程和效率基本呈缓慢下降趋势,仅在输送微小颗粒时,效率略有增加。效率总体下降幅值比扬程下降幅值小。实验值与计算值的对比发现,实验曲线的变化趋势与计算曲线的趋势基本一致,实验值略小于计算值。
     5.推导并验证了固液两相工况下的扬程下降率预测公式。
     基于泵出口处固液两相速度相等的假设,进行理论分析与推导,得到设计流量工况下固液两相混合输送时的扬程下降率预测公式,该公式主要通过当地体积分数来体现固相对性能参数的影响,可以较为准确方便的对设计流量点固液混输工况的扬程下降率进行计算,但预测值略小于实验值。
The solid-liquid two-phase flow transportation by centrifugal pump has been more andmore widely. As the existence of solid phase and its abrasion, there were two key problems: poorefficiency and poor reliability. These two problems restrict the research and application of thesolid-liquid two-phase pump.
     In this dissertation, hydraulic performance and wear property of channel-type centrifugalpump were studied through numerical simulation and experimental research. The forces actingon particle in the solid-liquid two-phase flow were classified. Based on analyzing the order offorce magnitude, the solid-liquid two-phase flow model and erosion model were proposed. Aimat different particle diameters, the Mixture model and the DPM model were used to simulate thetwo-phase flow respectively on the condition of different volume fraction. The influence ofinternal flow characteristic on pump performance was analyzed. The test rig for solid-liquidtwo-phase flow transportation was constructed. And characteristic tests of the channel-typecentrifugal pump were carried out. Based on theoretical analysis, the prediction formula of headdescent ratio was derived at best efficiency point when pumping solid-liquid two-phase mixture.
     The main contents and conclusions of this dissertation are showed as the follows:
     1. Solid-liquid two-phase flow model and abrasion model for the centrifugal pump aredetermined.
     Firstly, acting forcesare classified according to the relationship between the particle and theliquid phase. The magnitude of each force is compared with that of resistance force to confirmthe relation between the particle diameter and the acting force. Accordingly, different two-phaseflow models are proposed. Consideringthe influence of turbulence on particle, the kinetic modelof particle motion is established based on random walk method. The model of particle abrasionfor simulation is got by the Taylor expansion of suitable abrasion model for single particle.
     2. The numerical simulation and results validation are carried out for the solid-liquidtwo-phase flow in the centrifugal pump.
     Mixture model and DPM model are used to simulate the solid-liquid two-phase internalflow field separately. Compared the simulated results with the test results in a publisheddissertation, it can be found that these two models differentiated by particle diameter are properly used in computation.
     3. The relationship of the solid-liquid two-phase flow characteristic, hydraulic performanceand abrasion property is revealed.
     On the conditions of different particle diameter and different volume fraction, the pressureand streamline of liquid phase in whole flow channel, the velocity difference between the solidphase and the liquid phase in volute channel are analyzed. It is concluded that pressuredistributions are almost the same on different working conditions. The values of pressure in flowchannel decrease with the increasing of the particle diameter and the volume fraction.
     On the conditions of different particle diameter and different volume fraction, the erosionvelocity ratio, shear stress and particle concentration are analyzed. It can be found that theerosion velocity ratio on the flow channel wall increases along with the increasing of the volumefraction. But along with the increasing of the particle diameter, the erosion velocity ratio on thevolute wall decreases. And the variation trend of erosion velocity ratio on the impeller channelwall changes according to the wear position.
     4. The performance experiments of the centrifugal pump transporting solid-liquid two-phasemixture are carried out.
     Compared with head and efficiency values of the water transportation, values of solid-liquidtwo-phase transportation decrease slowly as the increasing of particle diameter and volumefraction. The decreasing values of efficiency are totally smaller than the decreasing values ofhead. The comparing results indicate that the change trend of experimental values is the same asthat of simulated values basically. But experimental values are smaller than simulated values.
     5. The prediction formula of head descent ratio is derived and validated when pumping thesolid-liquid two-phase mixture.
     Assumping that two phases’velocities of pump outlet are equal, the head prediction formulaof two-phase mixture transportation is derived based on the theory analysis. The influence ofsolid phase is introduced in pump performance by local volume fraction in this formula. So theformula can be conveniently applied to compute the head at the best efficiency point. But thepredicted values are smaller than the test values.
引文
[1] LIU Cheng, SHEN Yong-Ming. A three dimensional k-ε-Ap model for water-sedimentmovement[J]. International Journal of Sediment Research,2010,25(1):17-27.
    [2] Xin Feng, Xiangyang Li, Jingcai Cheng, Chao Yang, Zai-Sha Mao. Numericalsimulation of solid–liquid turbulent flow in a stirred tank with a two-phase explicitalgebraic stress model[J]. Chemical Engineering Science,2012,82:272–284.
    [3] Y Cheng, Y C Guo, F Wei, Y Jin, W Y Lin. Modeling the Hydrodynamics of DownerReactors Based on Kinetic Theory[J]. Chemical Engineering Science.1999,54(13):2019-2027.
    [4] Y. Zheng, X. T. Wan, Z. Qian, F. Wei, Y. Jin. Numerical simulation of the gas-particleturbulent flow in riser reactor based on the k-ε-kp-εp-Θtwo fluid model[J]. ChemicalEngineering Science.2001,56(24):6813-6822.
    [5] Zeng Z X, Pan Y, Zhong C, et al. A sencond-order moment turbulence moder for powerlaw fluid with particles[J]. Journal of Hydrodynamics,2007,19(5):607-612.
    [6] S B Sabage, D J Jeffrey. The Stress Tensor in a Granular Flow at High Shear Rates[J].Journal of Fluid Mechanics.1981,110:255-272.
    [7] Makkawi, Y T, Wright, P C, Ocone, R. The effect of friction and inter-particle cohesiveforces on the hydrodynamics of gas–solid flow: a comparative analysis of theoreticalpredictions and experiments[J]. Powder Technology,2006,163(1):69–79.
    [8] Boon Ho Ng, Yulong Ding, Mojtaba Ghadiri. Assessment of the kinetic–frictional modelfor dense granular flow[J]. Particuology,2008,6(1):50–58.
    [9] Fede P, Simonin O. Application of a perturbated two-Maxwellian approach for themodelling of kinetic stress transfer by collision in non-equilibrium binary mixture ofinelastic particles[C]. ASME2005Fluids Engineering Division Summer Meeting.American Society of Mechanical Engineers,2005:581-590.
    [10]Zaichik L I, Fede P, Simonin O, et al. Statistical models for predicting the effect ofbidisperse particle collisions on particle velocities and stresses in homogeneousanisotropic turbulent flows[J]. International Journal of Multiphase Flow,2009,35(9):868-878.
    [11]Wei L, Shi W D, Jiang X P, et al.Analysis on Internal Solid-liquid Two-phase Flow inthe Impellers of Sewage Pump[C]. International Conference on Advances inComputational Modeling and Simulation, Procedia Engineering,2012,31:170-175.
    [12]Han W, Ma W, Li R N, et al. The Numerical Analysis of Radial Thrust and Axial Thrustin the Screw Centrifugal Pump[C]. International Conference on Advances inComputational Modeling and Simulation, Procedia Engineering,2012,31:176-181.
    [13]张来平,邓小刚,张涵信.动网格生成技术及非定常计算方法进展综述[J].力学进展,2010,40(4):424-447.
    [14]周璇,李水乡,孙树立,刘剑飞,陈斌.非结构网格变形方法研究进展[J].力学进展2011,41(5):547-561.
    [15]Nakahashi K, Togashi F, Sharov D. Intergrid-boundary definition method for oversetunstructured grid approach[J]. AIAA journal,2000,38(11):2077-2084.
    [16]Lohner R, Sharoy D, Luo H, et al. Overlapping unstructured grids[R]. AIAA-01-0439,2001.
    [17]Klingner B M, Feldman B E, Chentanez N, et al. Fluid animation with dynamicmeshes[C]. ACM Transactions on Graphics (TOG). ACM,2006,25(3):820-825.
    [18]Villa A, Formaggia L. Implicit tracking for multi-fluid simulations[J]. Journal ofComputational Physics,2010,229(16):5788-5802.
    [19]Gruber B, Carstens V. Computation of the unsteady transonic flow in harmonicallyoscillating turbine cascades taking into account viscous effects[J]. Journal ofturbomachinery,1998,120(1):104-111.
    [20]Zhao, P; Heinrich, JC; Poirier, DR. Numerical modeling of fluid-particle interactions[J].Computer Methods in Applied Mechanics and Engineering,2006,195(41):5780-5796.
    [21]Masud A, Hughes T J R. A space-time Galerkin/least-squares finite element formulationof the Navier-Stokes equations for moving domain problems[J]. Computer Methods inApplied Mechanics and Engineering,1997,146(1):91-126.
    [22]Blom F J. Considerations on the spring analogy[J]. International Journal for NumericalMethods in Fluids,2000,32(6):647-668.
    [23]Batina J T. Unsteady Euler airfoil solutions using unstructured dynamic meshes[J].AIAA journal,1990,28(8):1381-1388.
    [24]Blom F J, Leyland P. Analysis of fluid-structure interaction on moving airfoils by meansof an improved ALE method[R]. AIAA97-1770,1997,28th Fluid DynamicsConference.
    [25]Hassan O, Probert E J, Morgan K. Unstructured mesh procedures for the simulation ofthree-dimensional transient compressible inviscid flows with moving boundarycomponents[J]. International Journal for Numerical Methods in Fluids,1998,27(1-4):41-55.
    [26]P. J. SLIKKERVEER, E. P. VAN LOHUIZEN, S. B. G. O'BRIEN. An implicit surfacetension algorithm for Picard solvers of surface-tension-dominated free and movingboundary problems[J]. International Journal for Numerical Methods in fluids,1996,22(9):851-865.
    [27]Jones W T, Samareh-Abolhassani J. A grid generation system for multi-disciplinarydesign optimization[C]. NASA CONFERENCE PUBLICATION. NASA,1995:657-657.
    [28]J. Reuther, J.J. Alonso, M.J. Rimlinger, A. Jameson.Aerodynamic shape optimization ofsupersonic aircraft configurations via an adjoint formulation on distributed memoryparallel computers[J]. Computers and Fluids,1999,28(4):675-700.
    [29]Piperno S. Explicit/implicit fluid/structured staggered procedures with a structuralprediction and fluid subcycling for2D inviscid aeroelastic simulation[J]. InternationalJournal for Numerical Methods in Fluids,1997,25(10):1207-1226.
    [30]Farhat C, Lesoinne M, Maman N. Mixed explicit/implicit time integration of coupledaeroelastic problems: three-field formulation, geometric conservation and distributedsolution[J]. International Journal for Numerical Methods in Fluids,1995,21(10):807-835.
    [31]Robinson B A, Yang H T Y, Batina J T. Aeroelastic analysis of wings using the Eulerequations with a deforming mesh[J]. Journal of Aircraft,1991,28(11):781-788.
    [32]Liu X Q, Qin N, Xia H. Fast dynamic grid deformation based on Delaunay graphmapping[J]. Journal of Computational Physics,2006,211(2):405-423.
    [33]Pin F D, Idelsohn S, O ate E, et al. The ALE/Lagrangian particle finite element method:a new approach to computation of free-surface flows and fluid–object interactions[J].Computers and Fluids,2007,36(1):27-38.
    [34]Paluszny A, Zimmerman R W. Numerical fracture growth modeling using smoothsurface geometric deformation[J]. Engineering Fracture Mechanics,2013,108:19-36.
    [35]Li J, Gao Z, Huang J, et al. Aerodynamic design optimization of nacelle/pylon positionon an aircraft[J]. Chinese Journal of Aeronautics,2013,26(4):850-857.
    [36]Bogaers A E J, Kok S, Malan A G. Highly efficient optimization mesh movementmethod based on proper orthogonal decomposition[J]. International Journal forNumerical Methods in Engineering,2011,86(8):935-952.
    [37]Nakahashi K, Deiwert G S. Self-adaptive-grid method with application to airfoil flow[J].AIAA journal,1987,25(4):513-520.
    [38]Nakahashi K, Deiwert G S. Three-dimensional adaptive grid method[J]. AIAA journal,1986,24(6):948-954.
    [39]Zhang L, Chang X, Duan X, et al. Applications of dynamic hybrid grid method forthree-dimensional moving/deforming boundary problems[J]. Computers and Fluids,2012,62:45-63.
    [40]张来平,王振亚,杨永健.复杂外形的动态混合网格生成方法[J].空气动力学学报,2004,22(2):231-236.
    [41]郭正,刘君,瞿章华.非结构动网格在三维可动边界问题中的应用[J].力学学报,2003,35(2):140-146.
    [42]王志东,吴贺贺,杨爽,等.动网格技术中局部重构方法的改进研究[J].江苏科技大学学报(自然科学版),2012,26(6):523-527.
    [43]郭正,何勇,刘君.网格变形与局部重构相结合的非结构动网格实现[C].第十二届全国计算流体力学会议论文集,西安,2004.8.17-20:461-465.
    [44]郭正.包含运动边界的多体非定常流场数值模拟方法研究[D].长沙:中国人民解放军国防科学技术大学,2002.
    [45]Tezduyar, Tayfun E. Interface-tracking and interface-capturing techniques for finiteelement computation of moving boundaries and interfaces[J]. Computer Methods inApplied Mechanics and Engineering,2006,195(23):2983-3000.
    [46]Peskin C S. Flow patterns around heart valves: a numerical method [J]. Journal ofComputational Physics,1972,10(2):252-271.
    [47]MITTAL R,ICCARINO G. Immersed boundary methods[J].AnnualReview of FluidMechanics,2005,37:239-261.
    [48]MOHD-YUSOF J. Combined immersed-boundary/b-spline methods for simulations offlow in complex geometries[J].AnnualResearchBriefs ofCenterforTurbulence Research,1997:317-327.
    [49]MOHD-YUSOF J. Development of immersed boundary methods for complexgeometries[J]. Annual Research Briefs of Center for Turbulence Research,1998:325-336.
    [50]Peskth C S. The mimmersed boundary method[J]. Acta Numerica,2002,11:479-517.
    [51]Fadlun E A, Verzicco R, Orlandi P, et al. Combined immersed-boundaryfinite-difference methods for three-dimensional complex flow simulations [J].Journal ofComputational Physics,2000,161(1):35-60.
    [52]Kim J, Kim D, Choi H. An immersed-boundary finite-volume method for simulations offlow in complex geometries[J]. Journal of Computational Physics,2001,171(1):132-150.
    [53]Peskin C S, Printz A B F. Improved volume conservation in the computation of flowswith immersed elastic boundaries[J]. Journal of Computational Physics,1993,105(1):33-46.
    [54]Roma A M, Peskth C S, Berger M J. An adaptive version of the immersed boundarymethod [J]. Journal of Computational Physics,1999,153(2):509-534.
    [55]Majumdar S, laccarino G, Durbin P A. RANS solver with adaptive structured boundarynon-conforming grids [J]. Annual Research Briefs,2001:353-366.
    [56]KIM D, CHOI H. Immersed boundary method for flow around an arbitrarily movingbody [J].Journal of Computational Physics,2006,212(2):622-680.
    [57]Huang W X, Sung H J. Improvement of mass source/sink for an immersed boundarymethod[J]. International journal for numerical methods in fluids,2007,53(11):1659-1671.
    [58]Boffi D, Gastaldi L. A finite element approach for the immersed boundary method[J].Computers and structures,2003,81(8):491-501.
    [59]Wang X D, Liu W K. Extended immersed boundary method using FEM and RKPM[J].Computer Methods in Applied Mechanics and Engineering,2004,193(12):1305-1321.
    [60]Verzicco R, Mohd-Yusof J, Orlandi P, et al. Large eddy simulation in complexgeometric configurations using boundary forces[J]. AIAA Journal,2000,38(3):427-433.
    [61]Balaras E. Modeling complex boundaries using an external force field on fixedCartesian grids in large-eddy simulations[J].ComputersandFluid,2004,33(3):375-404.
    [62]Hoomans B P B, Kuipers J A M, Briels W J, et al. Discrete particle simulation of bubbleand slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach[J].Chemical Engineering Science:1996,51(1):99-118.
    [63]Goldschmidt M J V, Beetstra R, Kuipers J A M. Hydrodynamic modelling of densegas-fluidised beds: comparison and validation of3D discrete particle and continuummodels[J]. Powder Technology:2004,142(1):23-47.
    [64]Tsuji Y., Tanaka T., Ishida T. Lagrangian numerical simulation of plug flow ofcohesionless particles in a horizontal pipe[J]. Powder technology:1992,71(3):239-250.
    [65]Rong D., Horio M. Behavior of particles and bubbles around immersed tubes in afluidized bed at high temperature and pressure: a DEM simulation[J]. Internationaljournal of multiphase flow:2001,27(1):89-105.
    [66]Kuwagi K., Horio M. A numerical study on agglomerate formation in a fluidized bed offine cohesive particles[J]. Chemical engineering science:2002,57(22):4737-4744.
    [67]Yamada, Y., Sakai, M. Lagrangian-Lagrangian simulations of solid-liquid flows in abead mill[J]. Powder Technology,2013,239:105-114.
    [68]Tsuji Y., Tanaka T., Yonemura S. Cluster patterns in circulating fluidized beds predictedby numerical simulation (discrete particle model versus two-fluid model)[J]. PowderTechnology,1998,95(3):254-264.
    [69]Shuyan W., Huanpeng L., Huilin L., et al. Flow behavior of clusters in a riser simulatedby direct simulation Monte Carlo method[J]. Chemical Engineering Journal,2005,106(3):197-211.
    [70]Huilin L., Zhiheng S., Ding J., et al. Numerical simulation of bubble and particlesmotions in a bubbling fluidized bed using direct simulation Monte-Carlo method[J].Powder technology,2006,169(3):159-171.
    [71]Wang S., Li X., Lu H., et al. DSMC prediction of granular temperatures of clusters anddispersed particles in a riser[J]. Powder Technology,2009,192(2):225-233.
    [72]Ge W, Li J. Macro-scale phenomena reproduced in microscopic systems-pseudo-particlemodeling of fluidization[J]. Chemical Engineering Science,2003,58(8):1565-1585.
    [73]Sun Q H, Li J H. A novelpseudo-particlemodelforgasingas-solidtwo-phaseflow [J].Engineeringchemistry andmetallurgy,1999,3:019.
    [74]Vignjevic R, De V T, Campbell J C, et al. Modelling of Impact on a Fuel Tank UsingSmoothed Particle Hydrodynamics [C]. DCSSS,the5th conference, Kings College,Cambridge, July,2002.
    [75]Colagrossi A, Landrini M. Numerical simulation of interfacial flows by smoothedparticle hydrodynamics[J]. Journal of Computational Physics,2003,191(2):448-475.
    [76]Li, X K; Chu, X H; Sheng, DC.A saturated discrete particle model andcharacteristic-based SPH method in granular materials[J]. International Journal forNumerical Methods in Engineering,2007,72(7):858-882.
    [77]Ferrari A, Dumbser M, Toro E F, et al. A new3D parallel SPH scheme for free surfaceflows[J]. Computers&Fluids,2009,38(6):1203-1217.
    [78]Grenier N, Antuono M, Colagrossi A, et al. An Hamiltonian interface SPH formulationfor multi-fluid and free surface flows[J]. Journal of Computational Physics,2009,228(22):8380-8393.
    [79]Das A K, Das P K. Bubble evolution through submerged orifice using smoothed particlehydrodynamics: basic formulation and model validation[J]. Chemical EngineeringScience,2009,64(10):2281-2290.
    [80]Leduc J, Leboeuf F, Lance M, et al. Improvement of multiphase model usingpreconditioned Riemann solvers[C]. Proceedings of the5th International SPHERICWorkshop, Manchester, UK, June,2010.
    [81]Andersson B, Jakobsson S, Mark A, et al. Modeling surface tension in sph by interfacereconstruction using radial basis functions[C]. Proceedings of the5th InternationalSPHERIC Workshop, Manchester, UK, June,2010.
    [82]Shadloo MS,Yildiz M. ISPH modeling of Reyleigh-Taylor instability [C].Proceedings ofthe6th International SPHERIC Workshop, Hamburg, Germany, June,2011
    [83]MarongiuJC, Parkinson E, Lais S, et al. Application of SPH-ALE method to Peltonhydraulic turbines [C]. Proceedings of the5th International SPHERIC Workshop,Manchester, UK, June,2010.
    [84]Shao, S D. Incompressible SPH flow model for wave interactions with porous media[J].Coastal Engineering,2010,57(3):304-316.
    [85]Shakibaeinia A, Jin Y C. A mesh-free particle model for simulation of mobile-bed dambreak[J]. Advances in Water Resources,2011,34(6):794-807.
    [86]Akbari H, Namin M M. Moving particle method for modeling wave interaction withporous structures[J]. Coastal Engineering,2013,74:59-73.
    [87]周大庆,米紫昊,茅媛婷.基于欧拉固液两相流模型的泵站进水侧流场三维模拟[J].农业机械学报,2013,44(1):48-52.
    [88]魏进家,姜培正,宇波.离心泵叶轮内密相液固两相湍流的数值模拟[J].应用力学学报,2000,17(1):1-7.
    [89]袁寿其,徐宇平,张金凤,等.流固耦合作用对螺旋离心泵流场影响的数值分析[J].农业机械学报,2013,44(1):38-42,47.
    [90]Liu X, Deng H C, Ma W X. Numerical Analysis for Solid-liquid Two-phase Flow Fieldof Draining-sand Jet Pump[C]. The2009IEEE International Conference onMechatronics and Automation,2009:4116-4121.
    [91]Yuan S Q, Zhang P F, Zhang J F. Numerical simulation of3-D dense solid-liquid two-phase turbulent flow in a non-clogging mud pump [J]. Chinese Journal of MechanicalEngineering,2004,17(4):623-627.
    [92]刘建瑞,徐永刚,王董梅.离心泵叶轮固液两相流动及泵外特性数值分析[J].农业机械学报,2010,41(3):32,86-90.
    [93]Engin T, Gur M. Performance Characteristics of Centrifugal Pump Impeller withRunning Tip Clearance Pumping Solid-Liquid Mixtures [J]. Journal of FluidsEngineering,2001,123(3):532-538.
    [94]Gandhi B K, Singh S N, Seshadn, V. Effect of Speed on the performance Characteristicsof a Centrifugal Slurry Pump[J]. Journal of Hydraulic Engineering,2002,128(2):225-233.
    [95]Mehta M, Kadambi J R, Sastry S, et al. Study of particulate flow in the impeller of aslurry pump using PIV[C]. ASME2004Heat Transfer/Fluids Engineering SummerConference (HT-FED2004),2004:489-499.
    [96]刘厚林,陆斌斌,谈明高,等.双流道泵内固液两相流动的数值模拟[J].排灌机械,2009,27(5):297-301.
    [97]Zhang Y, Li Y, Cui B, et al. Numerical simulation and analysis of solid-liquid two-phaseflow in centrifugal pump[J]. Chinese Journal of Mechanical Engineering,2013,26(1):53-60.
    [98]Wang P W, Zhao J, Zou W J, et al. Experimental study and numerical simulation of thesolid-phase particles' influence on outside characteristics of slurry pump[C]. IOPConference Series: Earth and Environmental Science. IOP Publishing,2012,15(6):062057.
    [99]Zhang Y, Li Y, Zhu Z, et al. Computational analysis of centrifugal pump deliveringsolid-liquid two-phase flow during startup period[J]. Chinese Journal of MechanicalEngineering,2014,27(1):178-185.
    [100] Li Y, Zhu Z, He W, et al. Numerical simulation and experimental research on theinfluence of solid-phase characteristics on centrifugal pump performance[J]. ChineseJournal of Mechanical Engineering,2012,25(6):1184-1189.
    [101] Chandel S, Singh S N, Seshadri V. A Comparative Study on the PerformanceCharacteristics of Centrifugal and Progressive Cavity Slurry Pumps with HighConcentration Fly Ash Slurries[J]. Particulate Science and Technology,2011,29(4):378-396.
    [102]权辉,李仁年,苏清苗,等.基于型线的螺旋离心泵叶轮做功能力研究[J].机械工程学报,2013,49(10):156-162.
    [103]张玉良,李昳,崔宝玲,等.两相流离心泵水力输送性能计算分析[J].机械工程学报,2012,48(14):169-176.
    [104] Finnie I. The mechanism of erosion of ductile metals[C].Proceedings of the3rd USNational Congress of Applied Mechanics, Rhode Island, F,1958.
    [105] Finnie I. Erosion of surfaces by solid particles[J]. Wear,1960,3(2):87-103.
    [106] Bitter J G A. A study of erosion phenomena part I[J]. Wear,1963,6(1):5-21.
    [107] Bitter J G A. A study of erosion phenomena: Part II[J]. Wear,1963,6(3):169-190.
    [108] Neilson J H, Gilchrist A. Erosion by a stream of solid particles[J]. Wear,1968,11(2):111-122.
    [109] Sheldon G L, Kanhere A. An investigation of impingement erosion using singleparticles[J]. Wear,1972,21(1):195-209.
    [110] Tilly G P. A two stage mechanism of ductile erosion[J]. Wear,1973,23(1):87-96.
    [111] Tabakoff W, Kotwal R, Hamed A. Erosion study of different materials affected bycoal ash particles[J]. Wear,1979,52(1):161-173.
    [112] Hutchings I M. A model for the erosion of metals by spherical particles at normalincidence[J]. Wear,1981,70(3):269-281.
    [113] McLaury B S. A model to predict solid particle erosion in oilfield geometries[D].University of Tulsa,1993.
    [114] Zhang Y, McLaury B S, Shirazi S A, et al. Simulations of particle-wall-turbulenceinteractions, particle motion and erosion in with a commercial CFD code[C]. ASME20062nd Joint US-European Fluids Engineering Summer Meeting Collocated With the14th International Conference on Nuclear Engineering. American Society of MechanicalEngineers,2006:1639-1654.
    [115] Zhang Y, Reuterfors E P, McLaury B S, et al. Comparison of computed andmeasured particle velocities and erosion in water and air flows[J]. Wear,2007,263(1):330-338.
    [116] Haugen K, Kvernvold O, Ronold A, et al. Sand erosion of wear-resistant materials:Erosion in choke valves[J]. Wear,1995,186:179-188.
    [117] Oka Y I, Okamura K, Yoshida T. Practical estimation of erosion damage caused bysolid particle impact: Part1: Effects of impact parameters on a predictive equation[J].Wear,2005,259(1):95-101.
    [118] Oka Y I, Yoshida T. Practical estimation of erosion damage caused by solid particleimpact: Part2: Mechanical properties of materials directly associated with erosiondamage[J]. Wear,2005,259(1):102-109
    [119] Song X G, Park J H, Kim S G, et al. Performance comparison and erosionprediction of jet pumps by using a numerical method[J]. Mathematical and ComputerModelling,2013,57(1):245-253.
    [120] Zhong Y, Minemura K. Measurement of erosion due to particle impingement andnumerical prediction of wear in pump casing[J]. Wear,1996,199(1):36-44.
    [121] Bross S, Addie G. Prediction of impeller nose wear behaviour in centrifugal slurrypumps[J]. Experimental thermal and fluid science,2002,26(6):841-849.
    [122]王长安.密相液-固两相三维湍流流动的研究及其在泵叶轮内流场计算与分析中的应用[D].西安:西安交通大学,1996.
    [123] Kadambi J. R., Charoenngam P., Subramanian A., Wernet M. P., Sankovic J. M.,Addie G., Courtwright R.. Investigations of Particle Velocities in s Slurry Pump UsingPIV: Part1, The Tongue and Adjacent Channel Flow[J]. Journal of Energy ResourcesTechnology,2004,(126):271-278.
    [124]朱祖超,崔宝玲,李昳,等.双流道泵输送固液介质的水力性能及磨损试验研究[J].机械工程学报,2009,45(12):65-69.
    [125] Roco M C, Addie G R, Dennis J, et al. Modeling erosion wear in centrifugal slurrypumps[C]. Proceedings of Hydrotransport.1984,9:291-315.
    [126] Li Y, Zhu Z C, He Z H, et a1. Abrasion characteristic analyses of solid-liquidtwo-phase centrifugal pump[J]. Journal of Thermal Science,2010,20(3):283-287.
    [127]刘娟,许洪元,唐澍,等.离心泵内固体颗粒运动规律与磨损的数值模拟[J].农业机械学报,2008,39(6):54-59.
    [128] Batalovi V. Erosive Wear Model of Slurry Pump Impeller[J]. Journal of Tribology,2010,132(2):1-5.
    [129] Pagalthivarthi K V, Gupta P K, Tyagi V, et al. CFD Prediction of Erosion Wear inCentrifugal Slurry Pumps for Dilute Slurry Flows[J]. Journal of ComputationalMultiphase Flows,2011,3(4):225-246.
    [130] Dong X G, Zhang H L, Wang X Y. Finite element analysis of wear for centrifugalslurry pump[C]. The6th International Conference on Mining Science&Technology,2009:1532-1538.
    [131]李昳,何伟强,朱祖超,等.脱硫泵固液两相流动的数值模拟与磨损特性[J].排灌机械,2009,27(2):124-128.
    [132] Hinze J O. Turbulent fluid and particle interaction[M]. Delft University ofTechnology, Department of Mechanical Engineering,1971.
    [133] Gouesbet G, Berlemont A, Picart A. Dispersion of discrete particles by continuousturbulent motions. Extensive discussion of the Tchen’s theory, using a two-parameterfamily of Lagrangian correlation functions[J]. Physics of Fluids,1984,27(4):827-837.
    [134] Maxey M R, Riley J J. Equation of motion for a small rigid sphere in a nonuniformflow[J]. Physics of fluids,1983,26(4):883-889.
    [135] Lazaro B J, Lasheras J C. Particle dispersion in a turbulent, plane, free shearlayer[J]. Physics of Fluids A: Fluid Dynamics,1989, A1(6):1035-1044.
    [136] Tio K K, Ga án‐Calvo A M, Lasheras J C. The dynamics of small, heavy, rigidspherical particles in a periodic Stuart vortex flow[J]. Physics of Fluids A: FluidDynamics,1993, A5(7):1679-1693.
    [137]刘小兵,程良骏.水涡轮机械流场中的颗粒运动[J].华中理工大学学报,1994,22(1):10-16.
    [138]黄社华,李炜,程良骏.任意流场中稀疏颗粒运动方程及其性质[J].应用数学和力学,2000,21(3):265-275.
    [139] Happel, John, Howard Brenner, eds. Low Reynolds number hydrodynamics[M]:with special applications to particulate media. Vol.1. Springer,1983.
    [140] Kazim K A, Maiti B. Effect of particle size, particle size distribution, specificgravity, and solids concentration on centrifugal pump performance[C]. Fuel and EnergyAbstracts. Elsevier,1998,39(1):67-67.
    [141] Kazim K A, Maiti B, Chand P. A correlation to predict the performancecharacteristics of centrifugal pumps handling slurries[J]. Proceedings of the Institutionof Mechanical Engineers, Part A: Journal of Power and Energy,1997,211(2):147-157.
    [142] Burgess K E, Reizes J A. The effect of sizing, specific gravity and concentration onthe performance of centrifugal slurry pumps[J]. Proceedings of the Institution ofMechanical Engineers,1976,190(1):391-399.
    [143] Gahlot V K, Seshadri V, Malhotra R C. Effect of density, size distribution, andconcentration of solid on the characteristics of centrifugal pumps[J]. Journal of fluidsengineering,1992,114(3):386-389.
    [144] Mez W. The Influence of Solid Concentration, Solid Density and Grain SizeDistribution on the Working Behavior of Centrifugal Pumps[J]. Proceedings ofHydrotransport-9, Paper H,1984,1:345-358.
    [145] Sellgren A. Performance of a centrifugal pump when pumping ores and industrialminerals[C]. Proceedings of6th International Conference on the Hydraulic Transport ofSolids in Pipes.1979:291-304.
    [146]怀特,F M.粘性流体动力学[M](魏中磊,甄思森译).北京:机械工业出版社,1995.
    [147]岑可法,樊建人.工程气固多相流动的理论及计算[M].杭州:浙江大学出版社,1990.
    [148]窦国仁.紊流力学[M].北京:人民教育出版社,1981.
    [149] Odar F. Verification of the proposed equation for calculation of the forces on asphere accelerating in a viscous fluid[J]. Journal of Fluid Mechanics,1966,25(03):591-592.
    [150] Tsuji Y, Morikawa Y, Mizuno O. Experimental measurement of the Magnus forceon a rotating sphere at low Reynolds numbers[J]. Journal of fluids engineering,1985,107(4):484-488.
    [151] Mei R. An approximate expression for the shear lift force on a spherical particle atfinite Reynolds number[J]. International Journal of Multiphase Flow,1992,18(1):145-147.
    [152] MCLAURY B S. A model to predict solid particle erosion in oilfield geometries [D];University of Tulsa,1993.
    [153] GRANT G, TABAKOFF W. Erosion prediction in turbomachinery resulting fromenvironmental solid particles [J]. Journal of Aircraft,1975,12(5):471-478.
    [154]林哲.闸阀内部气固两相流动及磨损研究[D].杭州:浙江大学,2013.
    [155] Engin T, Gur M. Comparative evaluation of some existing correlations to predicthead degradation of centrifugal slurry pumps[J]. Journal of Fluids Engineering,2003,125(1):149-157.
    [156] Sellgren A, Addie G, Scott S. The effect of sand-clay slurries on the performance ofcentrifugal pumps[J]. The Canadian Journal of Chemical Engineering,2000,78(4):764-769.
    [157]查森.叶片泵原理及水力设计[M].北京:机械工业出版社,1988.
    [158] Wiedenroth W. The influence of sand and gravel on the characteristics of
    centrifugal pumps, some aspects of wear in hydraulic transportation installations[C].
    Proceedings of First Int. Conference on the Hydraulic Transportation of Solids in Pipes,
    AL King, MJ Rowat and HS Stephens, Eds., BHRA Fluid Engineering, Cranfield,
    Bedford, UK.1970: E1-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700