用户名: 密码: 验证码:
金柑(Fortunella crassifolia)三个抗逆基因克隆、功能鉴定及作用机制解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱、盐、低温、病虫害等逆境严重影响着柑橘的生长发育,继而影响产业发展。传统的育种方法需要投入大量的时间和精力以获得抗性较好的品种,依托基因工程对柑橘进行遗传改良获得抗性品种相对而言非常高效。金柑在柑橘类果树中虽不如枳耐低温,但是其综合抗性比较优良,本研究在实验室已有的研究基础上,从金柑中筛选得到3个逆境响应的基因,分析它们各自的功能及潜在的作用机制,得到的结果如下:
     1.FcWRKY70全长1196bp,编码328个氨基酸,蛋白的相对分子量及等电点分别是36.78kD和5.89. FcWRKY70包含一个保守的WRKY结构域,定位于细胞核。除干旱、盐以外,FcWRKY70还可以响应生物逆境(柑橘溃疡病菌接种)及不同的激素处理(水杨酸SA及脱落酸ABA)。FcWRKY70超表达可明显增强转基因烟草的抗旱性。同时发现,转基因烟草中多胺含量高于野生型,特别是腐胺(Put),多胺合成相关的基因表达也明显比较活跃。Put合成抑制剂D-Arg处理抑制了转基因烟草的气孔关闭,降低了其干旱抗性。在柠檬中超表达FcWRKY70,与野生型相比转基因柠檬抗脱水能力增强,腐胺含量及介导腐胺合成的ADC表达水平均高于野生型。同时在金柑FcWRKY70干涉系中腐胺含量及ADC的表达被抑制,干涉系相对失水增多。分离金柑ADC启动子,分析表明其上分布数个W-box元件或其核心元件,利用酵母单杂及双荧光素酶检测的方法证明FcWRKY70可与ADC启动子结合。
     2. FcWRKY40属于IIa类WRKY蛋白,编码257个氨基酸,所组成的蛋白相对分子量及等电点分别为28.7kD和8.83。FcWRKY40包含一个卷曲螺旋结构域和一个保守的WRKY结构域,定位于细胞核。该基因可被低温、盐、ABA和SA诱导表达,但被干旱抑制。超表达FcWRKY40可明显示增强转基因烟草对氧化胁迫的抗性。转基因烟草与野生型相比,H202积累较少,02-积累没有差异性;在转基因烟草中与H202清除相关的过氧化氢酶CAT和过氧化物酶POD的表达上调非常显著。CAT和POD启动子上均存在W-box元件,酵母单杂及双荧光素酶检测分析表明FcWRK40可分别与CAT及POD启动子结合,调控它们的表达。
     3. FcSISP (Fortunella crassifolia stress-inducible small protein)编码47个氨基酸,其蛋白相对分子量和等电点分别是4.94kD和3.76。该基因定位于细胞核,不具备转录激活活性。FcSISP可被干旱、低温、盐、外源激素(ABA和SA)以及柑橘溃疡病菌诱导表达,其中盐对其诱导效果非常显著。FcSISP在烟草中超表达,提高了转基因植株的耐盐性。转基因烟草中脯氨酸含量、脯氨酸合成相关P5CS和P5CR的表达均高于野生型。盐处理后,转基因烟草根和叶中的Na+量均低于野生型,叶中差异尤其明显。根中K+量较高,由此导致较低的Na/K比值。此外,发现转基因烟草中与Na+外排及区域化隔离相关的SOS基因和NHX基因表达水平均比野生型高。
The abiotic and biotic stresses, including drought, salt, extreme temperature and pathogens, severely affect the normal growth and development of citrus, restricting the development of citrus industry world wild. It is time-consuming to obtain desirable cultivars with enhanced stress tolerance via traditional breeding methods, while genetic improvement mediated by modern biotechnology has been shown to be crucial in coping with the adverse environmental cues. Meiwa kumquat (Fortunella crassifolia) is not tolerant to low temperature as well as trifoliate orange (Poncirus trifoliata (L.)), but it displayed moderate resistance to multiple stress. In this study, we isolated three stress responsive genes from meiwa kumquat based on the previous study. For the sake of revealing the function of the three genes under various stress and their potential mechanisms, all of them were over expressed or suppressed in tobacco and citrus, respectively. The main results are as follows:
     1. The full length cDNA of FcWRKY70was1196bp, encoding a putative protein of328amino acids, with calculated molecular mass of36.78kD and theoretical isoelectric point of5.89. FcWRKY70contained a conserved WRKY domain, localized in the nucleus. Besides drought and salt treatment, the expression level of FcWRKY70can be induced by hormones, salicylic acid (SA) and abscisic acid (ABA), and citrus canker pathogen. Overexpression of FcWRKY70in tobacco (Nicotiana nudicaulis) led to enhanced tolerance to dehydration and drought stress. Meanwhile, transgenic tobacco accumulated much more polyamines (PAs) in comparison with wild type (WT), especially putrescine (Put), coupled with activated expression of genes involved in PAs synthesis. When treated with D-Arg, an inhibitor of Put synthesis, the stomatas of transgenic tobacco were prevented from closure, and transgenic plants showed to be a little more sensitive to dehydration treatment compared with WT. Overexpression of Fc WRKY70in lemon (Citrus limon Burm.f.) led to enhanced tolerant to dehydration treatment in comparison with WT. The accumulation of Put in transgenic plants was much higher than in WT, consisting with increased expression level of ADC which involved in the synthesis of Put. Knock-down of FcWRKY70in meiwa kumquat repressed the synthesis of Put, and the transgenic kumquat displayed higher relative water loss under dehydration. Isolation of ADC promoter from kumquat revealed that several W-box and the core elements distributed on it. The yeast one-hybrid assay and transient dual luciferase assay demonstrated that FcWRKY70interacted with the promoter of ADC.
     2. FcWRKY40was classified into Group Ⅱa WRKY gene in meiwa kumquat, encoding a putative protein of257amino acids with calculated molecular mass of28.7kD and theoretical isoelectric point of8.83. FcWRKY40consisted of a coiled-coil domain and a WRKY domain, localized in the nuclei. Transcript levels of FcWRKY40were upregulated by cold, salt, ABA and SA, but repressed by dehydration. Transgenic tobacco plants overexpressing FcWRKY40were shown to be more tolerant to the oxidative stresses than the WT. The accumulation of H2O2in transgenic tobacco were much lower than in WT, while the O2levels were almost the same between them. In addition, mRNA abundances of two genes related to H2O2scavenging, POD and CAT, were higher in the transgenic plants than in WT. The promoters of POD and CAT contained W-box elements. Both yeast one-hybrid and transient expression assay demonstrated that FcWRKY40could interact with the two promoters, regulating the expression of POD and CAT.
     3. FcSISP encoded a putative protein of47amino acids, with calculated molecular mass of4.94kD and theoretical isoelectric point of3.76, and was localized in the nucleus without trans-activation activity. Transcript levels of FcSISP were induced by various treatments, such as dehydration, cold and salt, hormones (SA and ABA), and citrus canker pathogen, with the greatest induction being observed under salt treatment. Transgenic tobacco plants overexpressed FcSISP displayed ehanced tolerance to salt stress compared with WT. The accumulation of proline was much more in transgenic lines than in WT, coupled with higher expression levels of P5CS and P5CR. After salt treatment, the Na+levels were significantly lower in the transgenic lines relative to the WT, the dramatic difference being particularly observed in the leaves. The difference in K+contents can be only observed in roots between transgenic lines and WT. As a result, the Na+/K+ratios in the leaf and root of transgenic lines were significantly lower than those of WT. QRT-PCR analyses demonstrated that the expression levels of the examined genes, SOS1-3and NHX1-4, related to efflux or compartmentation of Na+, were almost higher in the two transgenic lines in comparison with WT, excepted for NHX4.
引文
1.付行政.农杆菌介导的MdSPDSl、AhBADH、PtrICEl基因转化柑橘及转基因植株抗性机理研究.[博士学位论文].武汉:华中农业大学图书馆,2011
    2.李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000
    3.陶大立,何兴元.国内植物环境胁迫研究应注意的几个基本问题.生态学杂志,2009,28:102-107
    4.杨莉.金柑遗传转化体系的建立与应用.[博士学位论文].浙江:浙江大学图书馆,2006
    5.章文才,江受良.中国柑橘冻害研究.北京:农业出版社,1983
    6. Alcazar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta,2010b,231:1237-1249
    7. Alcazar R, Bitrian M, Bartels D, Koncz C, Altabella T, Tiburcio AF. Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum. Plant Signal Behav,2011,6:" 243-250
    8. Alcazar R, Cuevas JC, Patron M, Altabella T, Tiburcio AF. Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Physiol Plant,2006,128:448-455
    9. Alcazar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas J, Bitrian M, Tiburcio AF, Altabella T. Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene. Plant Physiol Bioch,2010a,48:547-552
    10. An R, Chen QJ, Chai MF, Lu PL, Su Z, Qin ZX, Chen J, Wang XC. AtNHX8, a member of the monovalent cation:proton antiporter-1 family in Arabidopsis thaliana, encodes a putative Li+/H+ antiporter. Plant J,2007,9:718-728
    11. Apel K, Hirt H. Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol,2004,55:373-399
    12. Apse MP, Blumwald E. Na+transport in plants. FEBS Letts,2007,581: 2247-2254
    13. Apse MP, Aharon GS, Snedden WA, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na+/H+antiport in Arabidopsis. Science,1999,285: 1256-1258
    14. Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol,2006,141:391-396
    15.Bachrach U. The early history of polyamine research. Plant Physiol Biochem, 2010,48:490-495
    16. Bais HP, Ravishankar GA. Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tiss Organ Cult,2002,69:1-34
    17. Bari R, Jones JD. Role of plant hormones in plant defence responses. Plant Mol Biol,2009,69:473-488
    18.Barragan V, Leidi EO, Andres Z, Rubio L, De Luca A, Fernandez JA, Cubero B, Pardo JM. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell,2012,243:1127-1142
    19. Bassil E, Ohto MA, Esumi T, Tajima H, Zhu Z, Cagnac O, Belmonte M, Peleg Z, Yamaguchi T, Blumwald E. The Arabidopsis intracellular Na+/H+antiporters NHX5 and NHX6 are endosome associated and necessary for plant growth and development. Plant Cell,201 la,23:224-239
    20. Bassil E, Tajima H, Liang YC, Ohto MA, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte M, Blumwald E. The Arabidopsis Na+/H+antiporters NHX1 and NHX2 control vacuolar pH and K+homeostasis to regulate growth, flower development, and reproduction. Plant Cell,201 lb,23:3482-3497
    21. Bassil E, Coku A, Blumwald E. Cellular ion homeostasis:emerging roles of intracellular NHX Na+/H+antiporters in plant growth and development. J Exp Bot, 2012,63:5727-5740
    22. Basu S, Roychoudhury A, Sengupta DN. Deciphering the role of various cis-acting regulatory elements in controlling SamDC gene expression in rice. Plant Signal Behav,2014a,9:e28391
    23. Basu S, Roychoudhury A, Sengupta DN. Identification of trans-acting factors regulating SamDC expression in Oryza sativa. Biochem Biophys Res Commun, 2014b,445:398-403
    24. Bhaskaran S, Savithramma DL. Co-expression of Pennisetum glaucum vacuolar Na+/H+antiporter and Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic tomato. JExp Bot,2011,62:5561-5570
    25. Blumwald E. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol, 2000,12:431-434
    26. Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M, Inze D. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO J,1991,10: 1723-1732
    27. Capell T, Bassie L, Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. P Natl Acad Sci USA,2004, 101:9909-9914
    28. Cervelli M, Polticelli F, Federico R, Mariottini P. Heterologous expression and characterization of mouse spermine oxidase. JBiol Chem,2003,278:5271-5276
    29. Chen THH, Murata N. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ,2011,34: 1-20
    30. Cheng FY, Zamski E, Guo WW, Pharr DM, Williamson JD. Salicylic acid stimulates secretion of the normally symplastic enzyme mannitol dehydrogenase: a possible defense against mannitol-secreting fungal pathogens. Planta,2009,230: 1093-1103
    31. Childs AC, Mehta DJ, Gerner EW. Polyamine-dependent gene expression. Cell Mol Life Sci,2003,60:1394-1406
    32. Chinnusamy V, Jagendorf A, Zhu JK. Understanding and improving salt tolerance in plants. Crop Sci,2005,45:437-448
    33. Cohen S. A Guide to the Polyamines. NewYork:Oxford University Press,1998.
    34. Csiszar J, Galle A, Horvath E, Dancso P, Gombos M, Vary Z, Erdei L, Gyorgyey J, Tari I. Different peroxidase activities and expression of abiotic stress-related peroxidases in apical root segments of wheat genotypes with different drought stress tolerance under osmotic stress. Plant Physiol Biochem,2012, 52:119-129
    35. Cui F, Liu LJ, Zhao QZ, Zhang ZH, Li QL, Lin BY, Wu YR, Tang SY, Xie Q. Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. Plant Cell,2012,24:233-244
    36. Dang FF, Wang YN, Lu Y, Eulgem T, Lai Y, Liu ZQ, Wang X, Qiu AL, Zhang TX, Lin J, Chen YS, Guan DY, Cai HY, Mou SL, He SL. CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant Cell Environ, 2013,36:757-774
    37. Daniell JW, Chappell WE, Couch HB. Effect of sublethal and lethal temperatures on plant cells. Plant Physiol,1969,44:1684-1689
    38. Dellapenna D, Pogson BJ. Vitamin synthesis in plants:tocopherols and carotenoids. Annu Rev Plant Biol,2006,57:711-738
    39. Du H,Wu N, Cui F,You L, Li X, Xiong L. A homolog of ETHYLENE OVERPRODUCER, OsETOLl, differentially modulates drought and submergence tolerance in rice. Plant J,2014, doi:10.1111/tpj.12508
    40. Enrique R, Siciliano F, Favaro MA, Gerhardt N, Roeschlin R, Rigano L, Sendin L, Castagnaro A, Vojnov A, Marano MR. Novel demonstration of RNAi in citrus reveals importance of citrus callose synthase in defence against Xanthomonas citri subsp. citri. Plant BiotechnolJ,2011,9:394-407
    41. Espasandin FD, Maiale SJ, Calzadilla P, Ruiz OA, Sansberro PA. Transcriptional regulation of 9-cis-epoxycarotenoid dioxygenase (NCED) gene by putrescine accumulation positively modulates ABA synthesis and drought tolerance in Lotus tenuis plants. Plant Physiol Biochem,2014,76:29-35
    42. Eulgem T, Rushton PJ, Robatzek S, Somssich IE. The WRKY superfamily of plant transcription factors. Trends Plant Sci,2000,5:199-206
    43. Eulgem T, Somssich IE. Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol,2007,10:366-371
    44. Eulgem T, Rushton PJ, Schmelzer E, Hahlbrock K, Somssich IE. Early nuclear events in plant defence signalling:rapid gene activation by WRKY transcription factors. EMBO J,1999,18:4689-4699
    45. Feki K, Quintero FJ, Khoudi H, Leidi EO, Masmoudi K, Pardo JM, Brini F. A constitutively active form of a durum wheat Na+/H+ antiporter SOS1 confers high salt tolerance to transgenic Arabidopsis. Plant Cell Rep,2014,33:277-288
    46. Ford BA, Ernest JR, Gendall AR. Identification and characterization of orthologs of AtNHX5 and AtNHX6 in Brassica napus. Front Plant Sci,2012,11:208
    47. Foyer CH, Shigeoka S. Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol,2011,155:93-100
    48. Fraga MF, Berdasco M, Diego LB, Rodriguez R, Canal MJ. Changes in polyamine concentration associated with aging in Pinus radiata and Prunus persica. Tree Physiol,2004,24:1221-1226
    49. Frey A, Effroy D, Lefebvre V, Seo M, Perreau F, Berger A, Sechet J, To A, North HM, Marion-Poll A. Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. Plant J,2012,70:501-512
    50. Fu XZ, Chen CW, Wang Y, Liu JH, Moriguchi T. Ectopic expression of MdSPDS1 in sweet orange (Citrus sinensis Osbeck) reduces canker susceptibility: involvement of H2O2 production and transcriptional alteration. BMC Plant Biol, 2011b,11:55
    51. Fu XZ, Khan EU, Hu SS, Fan QJ, Liu JH. Overexpression of the betaine aldehyde dehydrogenase gene from Atriplex hortensis enhances salt tolerance in the transgenic trifoliate orange (Poncirus trifoliata L. Raf). Environ Exp Bot,2011a, 74:106-113 functional analysis of two genes encoding transcription factors,
    52. Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J. Requirement of salicylic acid for the induction of systemic acquired resistance. Science,1993,261:754-756
    53. Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR. The Arabidopsis thaliana proton transporters, AtNhxl and Avpl, can function in cation detoxification in yeast. P Natl Acad Sci USA,1999,96:1480-1485
    54. Gechev TS, Breusegem FV, Stone JM, Denev I, Laloi C. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays,2006,28:1091-1101
    55. Gill SS, Tuteja N. Polyamines and abiotic stress tolerance in plants. Plant Signal Behav,2010,5:26-33
    56. Giri MK, Swain S, Gautam JK, Singh S, Singh N, Bhattacharjee L, Nandi AK. The Arabidopsis thaliana At4g13040 gene, a unique member of the AP2/EREBP family, is a positive regulator for salicylic acid accumulation and basal defense against bacterial pathogens. J Plant Physiol,2014, doi: 10.1016/j.jplph.2013.12.015
    57. Gong XQ, Liu JH. Genetic transformation and genes for resistance to abiotic and biotic stresses in Citrus and its related genera. Plant Cell Tiss Org Clut,2013,113: 137-147
    58. Gouiaa S, Khoudi H, Leidi EO, Pardo JM, Masmoudi K. Expression of wheat Na+/H+antiporter TNHXS1 and H+-pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Mol Biol,2012,79: 137-155
    59. Groppa MD, Benavides MR Polyamines and abiotic stress:recent advances. Amino Acids,2008,34:35-45
    60. Guillaumie S, Mzid R, Mechin V, Leon C, Hichri I, Destrac-Irvine A, Trossat-Magnin C, Delrot S, Lauvergeat V. The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco. Plant Mol Biol,2010,72:215-234
    61. Gupta K, Dey A, Gupta B. Plant polyamines in abiotic stress responses. Acta Physiol Plant,2013,35:2015-2036
    62. Ha CV, Leyva-Gonzalez MA, Osakabe Y, Tran UT, Nishiyama R, Watanabe Y, Tanaka M, Seki M, Yamaguchi S, Dong NV, Shinozaki K, Herrera-Estrella L, Tran LP. Positive regulatory role of strigolactone in plant responses to drought and salt stress. P Natl Acad Sci USA,2014,111:851-856
    63. Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F, Zou HF, Lei G, Tian AG, Zhang WK, Ma B, Zhang JS, Chen SY. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant J,2011,68:302-313
    64. Hauser MT, Aufsatz W, Jonak C, Luschnig C. Transgenerational epigenetic inheritance in plants. BBA-Gene Regul Mech,2011,1809:459-468
    65. Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A. Role of proline under changing environments:a review. Plant Signal Behav,2012,7:1456-1466
    66. He Y, Li W, Lv J, Jia YB, Wang MC, Xia GM. Ectopic expression of a wheat MYB transcription factor gene, TaMYB73, improves salinity stress tolerance in Arabidopsis thaliana. J Exp Bot,2012,63:15.11-1522
    67. Hiraga S, Sasaki K, Ito H, Ohashi Y, Matsui H. A large family of class III plant peroxidases. Plant Cell Physiol,2001,42:462-468
    68. Hirayama T, Shinozaki K. Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J,2010,61:1041-1052
    69. Horsh RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SC, Fraley RT. A simple and general method for transferring genes into plants. Science,1985,227: 1229-1231
    70. Hu YR, Chen LG, Wang HP, Zhang LP, Wang F, Yu DQ. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. Plant J,2013,74:730-745
    71. Huang XS, Tao L, Fu XZ, Fan QJ, Liu JH. Cloning and molecular characterization of a mitogen-activated protein kinase gene from Poncirus trifoliata whose ectopic expression confers dehydration/drought tolerance in transgenic tobacco. J Exp Bot, 2011,62:5191-5206
    72. Huang XS, Wang W, Zhang Q, Liu JH. A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiol,2013,162: 1178-1194
    73.Huertas R, Olias R, Eljakaoui Z, Galvez FJ, Li J, De Morales PA, Belver A, Rodriguez-Rosales MP. Overexpression of SISOS2 (SICIPK24) confers salt tolerance to transgenic tomato. Plant Cell Environ,2012,35:1467-1482
    74. Igarashi K, Kashiwagi K. Characterization of genes for polyamine modulon. Methods Mol Biol,2011,720:51-65
    75. Igarashi K, Kashiwagi K. Modulation of cellular function by polyamines. Int J Biochem Cell Biol,2010,42:39-51
    76. Ishiguro S, Nakamura K. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5'upstream regions of genes coding for sporamin and p-amylase from sweet potato. Mol Gen Genet,1994,244:563-571
    77. Ishihama N, Yamada R, Yoshioka M, Katou S, Yoshioka H. Phosphorylation of the Nicotiana benthamiana WRKY8 transcription factor by MAPK functions in the defense response. Plant Cell,2011,23:1153-1170
    78. Jiang XY, Leidi EO, Pardo JM. How do vacuolar NHX exchangers function in plant salt tolerance? Plant Signal Behav,2010,5:792-795
    79. Jiang Y, Liang G, Yu DQ. Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant,2012,5:1375-1388
    80. Jimenez-Bremont JF, Marina M, Guerrero-Gonzalez ML, Rossi FR, Sanchez-Rangel D, Rodriguez-Kessler M, Ruiz OA, Garriz A. Physiological and molecular implications of plant polyamine metabolism during biotic interactions. Front Plant Sci,2014, doi:10.3389/fpls.2014.00095
    81. Khraiwesh B, Zhu JK, Zhu J. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. BBA-Gene Regul Mech,2012,1819:137-148
    82. Kim BH, Kim SY, Nam KH. Genes encoding plant-specific class III peroxidases are responsible for increased cold tolerance of the brassinosteroid-insensitive 1 mutant. Mol Cells,2012,34:539-548
    83. Knoth C, Ringler J, Dang JL, Eulgem T. Arabidopsis WRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Mol Plant Microbe In,2007,20:120-128
    84. Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. JExp Bot,2012,63:1593-1608
    85. Kratsch HA, Wise RR. The ultrastructure of chilling stress. Plant Cell Environ, 2000,23:337-350
    86. Kronzucker HJ, Britto DT. Sodium transport in plants:a critical review. New Phytol,20ll,189:54-81
    87. Kumar KRR, Kirti PB. A mitogen-activated protein kinase, AhMPK.6 from peanut localizes to the nucleus and also induces defense responses upon transient expression in tobacco. Plant Physiol Bioch,2010,48:481-486
    88. Kusano T, Berberich T, Tateda C, Takahashi Y. Polyamines:essential factors for growth and survival. Planta,2008,228:367-381
    89. Kwak JM, Nguyen V, Schroeder JI. The role of reactive oxygen species in hormonal responses. Plant Physiol,2006,141:323-329
    90. Larcher W. Physiological plant ecology.4th edn. Springer,2003
    91. Li C, Wei Z, Liang D, Zhou S, Li Y, Liu C, Ma F. Enhanced salt resistance in apple plants overexpressing a Malus vacuolar Na+/H+antiporter gene is associated with differences in stomatal behavior and photosynthesis. Plant Physiol Bioch, 2013,70:164-173
    92. Li H, Xu Y, Xiao Y, Zhu Z, Xie X, Zhao H, Wang Y. Expression and functional analysis of two genes encoding transcription factors, VpWRKYl and VpWRKY2, isolated from Chinese wild Vitis pseudoreticulata. Planta,2010,232:1325-1337
    93. Li HT,Liu H,Gao XS, Zhang H. Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress. Biochem Biophys Res Commun,2009,382: 637-641
    94. Li J, Besseau S, Toronen P, Sipari N, Kollist H, Holm L, Palva ET. Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis. New Phytol,2013, 200:457-472
    95. Li J, Brader G, Kariola T, Palva ET. WRKY70 modulates the selection of signaling pathways in plant defense. Plant J,2006,46:477-491
    96. Li J, Brader G, Palva ET. TheWRKY70 transcription factor:a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell,2004,16:319-331
    97. Li ML, Li Y, Li HQ, Wu GJ, Nasholm T. Overexpression of AtNHX5 improves tolerance to both salt and drought stress in Broussonetia papyri/era (L.) Vent. Tree Physiol,2011,31:349-357
    98. Li SJ, Fu Q, Huang WD, Yu DQ. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Rep,2009,28:683-693
    99. Li SJ, Zhou X, Chen LG, Huang WD, Yu DQ. Functional characterization of Arabidopsis thaliana WRKY39 in heat stress. Mol Cells,2010,29:475-483
    100. Li XL, Yang X, Hu YX, Yu XD, Li QL. A novel NAC transcription factor from Suaeda liaotungensis K. enhanced transgenic Arabidopsis drought, salt, and cold stress tolerance. Plant Cell Rep,2014, doi:0.1007/s00299-014-1602-y
    101. Lin HX, Du WM,Yang YQ, Schumaker KS, Guo Y. A calcium-independent activation of the arabidopsis SOS2-like protein kinase 24 by its interacting SOS3-like calcium binding protein I. Plant Physiol,2014,164:2197-2206
    102. Liu H, Tang R, Zhang Y, Wang C, Lv Q, Gao X, Li W, Zhang H. AtNHX3 is a vacuolar K+/H+antiporter required for low-potassium tolerance in Arabidopsis thaliana. Plant Cell Environ,2010,33:1989-1999
    103. Liu HY, Yang WL, Liu DC, Han YP, Zhang AM, Li SH. Ectopic expression of a grapevine transcription factor VvWRKY11 contributes to osmotic stress tolerance in Arabidopsis. Mol Biol Rep,2011,38:417-427
    104. Liu JH, Moriguchi T. Changes in free polyamine titers and expression of polyamine biosynthetic genes during growth of peach in vitro callus. Plant Cell Rep,2007,26:125-131
    105. Liu JH, Peng T, Dai WS. Critical cis-acting elements and interacting transcription factors:key players associated with abiotic stress responses in plants. Plant Mol Biol Rep,2014,32:303-317
    106. Liu JP, Ishitani M, Halfter U, Kim CS, Zhu JK. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. P Natl Acad Sci USA,2000,97:3730-3734
    107. Liu JP, Zhu JK. A calcium sensor homolog required for plant salt tolerance. Science,1998,280:1943-1945
    108. Liu P, Yang GD, Li H, Zheng CC, Wu CA. Overexpression of NHXls in transgenic Arabidopsis enhances photoprotection capacity in high salinity and drought conditions. Acta Physiol Plant,2010,32:81-90
    109. Liu QL, Xu KD, Pan YZ, Jiang BB, Liu GL, Jia Y, Zhang HQ. Functional analysis of a novel chrysanthemum WRKY transcription factor gene involved in salt tolerance. Plant Mol Biol Rep,2014,32:282-289
    110. Liu QL, Zhong M, Li S, Pan YZ, Jiang BB, Jia Y, Zhang HQ. Overexpression of a chrysanthemum transcription factor gene, DgWRKY3, in tobacco enhances tolerance to salt stress. Plant Physiol Bioch,2013,69:27-33
    111. Liu R, Xu YH, Jiang SC, Lu K, Lu YF, Feng XJ, Wu Z, Liang S, Yu YT, Wang XF, Zhang DP. Light-harvesting chlorophyll a/b-binding proteins, positively involved in abscisic acid signalling, require a transcription repressor, WRKY40, to balance their function. J Exp Bot,2013,64:5443-5456
    112. Livingston III DP, Hincha DK, Heyer AG Fructan and its relationship to abiotic stress tolerance in plants. Cell Mol Life Sci,2009,66:2007-2023
    113. Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell,2010,22:2219-2236
    114. Luo X, Bai X, Sun XL, Zhu D, Liu BH, Ji W, Cai H, Cao L, Wu J, Hu MR, Liu X, Tang LL, Zhu YM. Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signaling. J Exp Bot,2013,64: 2155-2169
    115. Lv FL, Zhang HC, Xia XL, Yin WL. Expression profiling and functional characterization of a CBL-interacting protein kinase gene from Populus euphratica. Plant Cell Rep,2014,33:807-818
    116. Mahajan S, Tuteja N. Cold, salinity and drought stresses:an overview. Arch Biochem Biophys,2005,444:139-158
    117. Mao GH, Meng XZ, Liu YD, Zheng ZY, Chen ZX, Zhang SQ. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell,2011,23:1639-1653
    118. Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell Environ, 2010,33:453-467
    119. Mittler R, Vanderauwera S, Gollery M, Breusegem FV. Reactive oxygen gene network of plants. Trends Plant Sci,2004,9:490-498
    120. Mittler R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci, 2002,7:405-410
    121. Moschou P N, Wu J, Cona A, Tavladoraki P, Angelini R, Roubelakis-Angelakis KA. The polyamines and their catabolic products are significant players in the turnover of nitrogenous molecules in plants. J Exp Bot,2012,63:5003-5015
    122. Moschou PN, Paschalidis KA, Roubelakis-Angelakis KA. Plant polyamine catabolism. Plant Signal Behav,2008a,3:1061-1066
    123. Moschou PN, Sanmartin M, Andriopoulou AH, Rojo E, Sanchez-Serrano JJ, Roubelakis-Angelakis KA. Bridging the gap between plant and mammalian polyamine catabolism:a novel peroxisomal polyamine oxidase responsible for a full back-conversion pathway in Arabidopsis. Plant Physiol,2008b,147: 1845-1857
    124. Munns R, Tester M. Mechanisms of salinity tolerance. Annu Rev Plant Biol, 2008,59:651-681
    125. Naliwajski MR, Sklodowska M. Proline and its metabolism enzymes in cucumber cell cultures during acclimation to salinity. Protoplasma,2013,251: 201-209
    126. Nishizawa A, Yabuta Y, Shigeoka S. Galactinol and raffinose constitute a novel function to protect plants from oxidative damage. Plant Physiol,2008,147: 1251-1263
    127. Osakabe Y, Osakabe K, ShinozaKi K, Tran LP. Response of plants to water stress. Front Plant Sci,2014,5:86
    128. Pandey SP, Roccaro M, Schon M, Logemann E, Somssich IE. Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J,2010,64:912-923
    129. Pandey SP, Somssich IE. The role of WRKY transcription factors in plant immunity. Plant Physiol,2009,150:1648-1655
    130. Parida A K, Das A B. Salt tolerance and salinity effects on plants:a review Ecotoxicol Environ Saf,2005,60:324-329
    131. Park CY,Lee JH, Yoo JH, Moon BC, Choi MS, Kang YH,Lee SM, Kim HS, Kang KY, Chung WS,Lim CO, Cho MJ. WRKY group IId transcription factors interact with calmodulin. FEBSLett,2005,579:1545-1550
    132. Pegg AE. The function of spermine. IUBMB Life,2014, doi:10.1002/iub.1237.
    133. Peng Y, Bartley LE, Chen XW, Dardick C, Chern M, Ruan R, Canlas PE, Ronald PC. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol Plant,2008,1:446-458
    134. Pittman JK. Multiple transport pathways for mediating intracellular ph homeostasis:the contribution of H+/ion exchangers. Front Plant Sci,2012,26:11
    135.Pottosin I, Velarde-Buendia AM, Bose J, Fuglsang AT, Shabala S. Polyamines cause plasma membrane depolarization, activate Ca2+-and modulate H+-ATPase pump activity in pea roots. J Exp Bot,2014, doi:10.1093/jxb/eru133
    136. Qiu QS, Guo Y, Dietrich MA, Schumaker KS. Regulation of SOS1, a plasma membrane Na+/H+exchanger in Arabidopsis thaliana, by SOS2 and SOS3. P Natl AcadSci USA,2002,99:8436-8441
    137. Qiu QS. Plant and yeast NHX antiporters:roles in membrane trafficking. J Integr Plant Biol,2012,54:66-72
    138. Quan RD, Hu SJ, Zhang ZL, Zhang HW, Zhang ZJ, Huang RF. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnol J,2010,8:476-488
    139. Quintero FJ, Martinez-Atienza J, Villalta I, Jiang XY,Kim WY,Ali Z, Fujii H, Mendoza I, Yun DJ, Zhu JK, Pardo JM. Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. P Natl AcadSci USA,2011,108:2611-2616
    140. Radhakrishnan R, Lee IJ. Ameliorative effects of spermine against osmotic stress through antioxidants and abscisic acid changes in soybean pods and seeds. Acta Physiol Plant,2013,35:263-269
    141. Reguera M, Bassil E, Blumwald E. Intracellular NHX-type cation/H+antiporters in plants. Mol Plant,2014,7:261-263
    142. Ren CM, Zhu Q, Gao BD, Ke SY, Yu WC, Xie DX, Peng W. Transcription factor WRKY70 displays important but no indispensable roles in jasmonate and salicylic acid signaling. J Integr Plant Biol,2008,50:630-637
    143. Ren XZ, Chen ZZ, Liu Y, Zhang HR, Zhang M, Liu Q, Hong XH, Zhu JK, Gong ZZ. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J,2010,63:417-429
    144. Riechmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu GL. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science,2000,290: 2105-2110
    145. Ross CA, Liu Y, Shen QJ. The WRKY gene family in rice(Oryza sativa). J Integr Plant Biol,2007,49:827-842
    146. Rushton PJ, Somssich IE, Ringler P, Shen QJ. WRKY transcription factors. Trends Plant Sci,2010,15:247-258
    147. Rushton PJ, Somssich IE. Transcriptional control of plant genes responsive to pathogens.Curr Opin Plant Biol,1998,1:311-315
    148. Rushton PJ, Torres JT, Parniske M, Wernert P, Hahlbrock K, Somssich IE. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBOJ,1996,15:5690-5700
    149. Sanders D. Plant Biology:The salty tale of Arabidopsis. Curr Biol,2000,10: R486-R488
    150. Seiler N, Raul F. Polyamines and apoptosis. J Cell Mol Med,2005,9:623-642
    151. Seki M, Kamei A, Yamaguchi-Shinozaki K, Shinozaki K. Molecular responses to drought, salinity and frost:common and different paths for plant protection. Curr Opin Biotech,2003,14:194-199
    152. Seo DH, Ryu MY, Jammes F, Hwang JH, Turek M, Kang BG, Kwak JM, Kim WT. Roles of four Arabidopsis U-Box E3 ubiquitin ligases in negative regulation of abscisic acid-mediated drought stress responses. Plant Physiol,2012,160: 556-568
    153. Seo JS, Joo JS, Kim MJ, Kim YK, Nahm BH, Song SI, Cheong JJ, Lee JS, Kim JK, Choi YD. OsbHLH148, a basic helix-loop-helix protein, interacts with OsJAZ proteins in a jasmonate signaling pathway leading to drought tolerance in rice. Plant J,2011,65:907-921
    154. Serrano R, Rodriguez-Navarro A. Ion homeostasis during salt stress in plants. Curr Opin Cell Biol,2001,13:399-^04
    155. Shao HB, Chu LY, Jaleel CA, Zhao CX. Water-deficit stressinduced anatomical changes in higher plants. C R Biol,2008,331:215-225
    156. Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P. Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science,2007, 315:1098-1103
    157. Shi H, Chan Z. Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. J Integr Plant Biol,2014,56:114-121
    158. Shi HZ, Ishitani M, Kim C, Zhu JK. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+antiporter. P Natl Acad Sci USA,2000,97: 6896-6901
    159. Shi HZ, Quintero FJ, Pardo JM, Zhu JK. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+transport in plants. Plant Cell,2002, 14:465-477
    160. Shi HZ, Zhu JK. Regulation of expression of the vacuolar Na+/H+ antiporter gene AtNHXl by salt stress and abscisic acid. Plant Mol Biol,2002,50:543-550
    161. Shi J, Fu XZ, Peng T, Huang XS, Fan QJ, Liu JH. Spermine pretreatment confers dehydration tolerance of citrus in vitro plants via modulation of antioxidative capacity and stomatal response. Tree Physiol,2010,30:914-922
    162. Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance. JExp Bot,2007,58:221-227
    163. Singh KB, Foley RC, Onate-Sanchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol,2002,5:430-436
    164. Stewart GR, Lee JA. Role of proline accumulation in halophytes. Planta,1974, 120:279-289
    165. Su CF, Wang YC, Hsieh TH, Lu CA, Tseng TH, Yu SM. A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol,2010, 153:145-158
    166. Sun C, Palmqvist S, Olsson H, Bore'nM, Ahlandsberg S, Jansson C. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the isol promoter. Plant Cell,2003, 15:2076-2092
    167. Sun PP, Zhu XF, Huang XS, Liu JH. Overexpression of a stress-responsive MYB transcription factor of Poncirus trifoliata confers enhanced dehydration tolerance and increases polyamine biosynthesis. Plant Physiol Biochem,2014,78:71-79
    168. Szabados L, Savoure A. Proline:a multifunctional amino acid. Trends Plant Sci, 2001,15:89-97
    169. Szekely G, Abraham E, Cseplo A, Rigo G, Zsigmond L, Csiszar J, Ayaydin F, Strizhov N, Jasik J, Schmelzer E, Koncz C, Szabados L. Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J,2008,53:11-28
    170. Tang J, Wang F, Wang Z, Huang ZN, Xiong AS, Hou XL. Characterization and co-expression analysis of WRKY orthologs involved in responses to multiple abiotic stresses in Pak-choi (Brassica campestris ssp. chinensis). BMC Plant Biol, 2013,13:188
    171.Tanou G,Ziogas V, Belghazi M, Christou A, Filippou P, Job D, Fotopoulos V, Molassiotis A. Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Plant Cell Environ,2014,37: 864-885
    172. Tao Z, Kou YJ, Liu HB, Li XH, Xiao JH, Wang SP. OsWRKY45 alleles play different roles in abscisic acid signaling and salt stress tolerance but similar roles in drought and cold tolerance in rice. JExp Bot,2011,62:4863-4874
    173. Tao Z, Liu HB, Qiu DY, Zhou Y, Li XH, Xu CG, Wang SP. A pair of allelic WRKY genes play opposite roles in rice-bacteria interactions. Plant Physiol,2009, 151:936-948
    174. Tavladoraki P, Rossi MN, Saccuti G, Perez-Amador MA, Polticelli F, Angelini R, Ferderico R. Heterologous expression and biochemical characterization of a polyamine oxidase from Arabidopsis involved in polyamine back conversion. Plant Physiol,2006,141:1519-1532
    175. Tiburcio AF, Altabella T, Bitrian M, Alcazar R. The roles of polyamines during the lifespan of plants:from development to stress. Planta,2014, doi: 10.1007/s00425-014-2055-9
    176. Tognolli M, Penel C, Grppin H, Simon P. Analysis and expression of the class III peroxidase large gene family in Arabidopsis thaliana. Gene,2002,288:129-138
    177. Tomar PC, Lakra N, Mishra S. Cadaverine:a lysine catabolite involved in plant growth and development. Plant Signal Behav,2013, doi:10.4161/psb.25850
    178. Tripathi P, Rabara RC, Rushton PJ. A systems biology perspective on the role of WRKY transcription factors in drought responses in plants. Planta,2014,239: 255-266
    179. Tsugama D, Liu SK, Takano T. A bZIP Protein, VIP1, is a regulator of osmosensory signaling in Arabidopsis. Plant Physiol,2012,159:144-155
    180. Turck F, Zhou A, Somssich IE. Stimulus-dependent, promoter-specific binding of transcription factor WRKY1 to its native promoter and the defenserelated gene PcPRl-1 in parsley. Plant Cell,2004,16:2573-2585
    181. Turkan I, Demiral T. Recent developments in understanding salinity tolerance. Environ Exp Bot,2009,67:2-9
    182. Tuteja N. Mechanisms of high salinity tolerance in plants. Methods Enzymol, 2007,428:419-438
    183. Urano K, Maruyama K, Ogata Y, Morishita Y, Takeda M, Sakurai N, Suzuki H, Saito K, Shibata D, Kobayashi M, Yamaguchi-Shinozaki K, Shinozaki K. Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics. Plant J,2009,57:1065-1078
    184. Van Aken O, Zhang B, Law S, Narsai R, Whelan J. AtWRKY40 and AtWRKY63 modulate the expression of stress-responsive nuclear genes encoding mitochondrial and chloroplast proteins. Plant Physiol,2013,162:254-271
    185. van Verk MC, Bol JF, Linthorst HJM. WRKY Transcription factors involved in activation of SA biosynthesis genes. BMC Plant Biol,2011,11:89
    186. van Verk MC, Pappaioannou D, Neeleman L, Bol JF, Linthorst HJM. A novel WRKY transcription factor is required for induction of PR-la gene expression by salicylic acid and bacterial elicitors. Plant Physiol,2008,146:1983-1995
    187. VerbruggenN, Hermans C. Proline accumulation in plants:a review. Amino Acids,2008,35:753-759
    188. Vlot AC, Dempsey DA, Klessig DF. Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol,2009,47:177-206
    189. Wang BQ, Zhang QF, Liu JH, Li GH. Overexpression of PtADC confers enhanced dehydration and drought tolerance in transgenic tobacco and tomato: Effect on ROS elimination. Biochem Biophys Res Commun,2011,413:10-16
    190. Wang J, Sun PP, Chen CL, Wang Y, Fu XZ, Liu JH. An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. J Exp Bot,2011,62:2899-2914
    191. Wang JB, Ding B, Guo YL, Li M, Chen SJ, Huang GZ, Xie XD. Overexpression of a wheat phospholipase D gene, TaPLDa, enhances tolerance to drought and osmotic stress in Arabidopsis thaliana. Planta,2014, doi: 10.1007/s00425-014-2066-6
    192. Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta,2003,218: 1-14
    193. Wang Z, Zhu Y, Wang LL, Liu X, Liu YX, Phillips J, Deng X. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolSl) promoter. Planta,2009,230:1155-1166
    194. Wi SJ, Kim SJ, Kim WT, Park KY. Constitutive S-adenosylmethionine decarboxylase gene expression increases drought tolerance through inhibition of reactive oxygen species accumulation in Arabidopsis. Planta,2014, doi: 10.1007/s00425-014-2027-0
    195. Willekens H, Chamnongpo S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inze D, Van Camp W. Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBOJ,1997,16:4806-4816
    196. Wu Y, Lei D, Zhu JK. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell,1996,8:617-627
    197. Xian LH, Sun PP, Hu SS, Wu J, Liu JH. Molecular cloning and characterization of CrNCEDl, a gene encoding 9-cis-epoxycarotenoid dioxygenase in Citrus reshni, with functions intolerance to multiple abiotic stresse. Planta,2014,239: 61-77
    198. Xie ZD, Li DM, Wang LJ, Sack FD, Grotewold E. Role of the stomatal development regulators FLP/MYB88 in abiotic stress responses. Plant J,2010,64: 731-739
    199. Xiong HY, Li JJ, Liu PG, Duan JZ, Zhao Y, Guo X, Li Y, Zhang HL, Ali J, Li ZC. Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS ONE,2014, doi: 10.1371/journal.pone.0092913
    200. Xiong L, Zhu JK. Molecular and genetic aspects of plant responses to osmotic stress. Plant Cell Environ,2002,25:131-139
    201. Xiong YQ, Liu TY, Tian CG, Sun SH, Li JY, Chen MS. Transcription factors in rice:a genome-wide comparative analysis between monocots and eudicots. Plant Mol Biol,2005,59:191-203
    202. Xu XP, Chen CH, Fan BF, Chen ZX. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell,2006,18:1310-1326
    203. Yamaguchi T, Hamamoto S, Uozumi N. Sodium transport system in plant cells. Front Plant Sci,2013,4:410
    204. Yang A, Dai XY, Zhang WH. A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot,2012,63:2541-2556
    205. Yokotani N, Sato Y, Tanabe S, Chujo T, Shimizu T, Okada K, Yamane H, Shimono M, Sugano S, Takatsuji H, Kaku H, Minami E, Nishizawa Y. WRKY76 is a rice transcriptional repressor playing opposite roles in blast disease resistance and cold stress tolerance. J Exp Bot,2013,64:5085-5097
    206. Yoo SD, Cho YH, Sheen J. Arabidopsis mesophyll protoplasts:a versatile cell system for transient gene expression analysis. Nat Protoc,2007,2:1565-1572
    207. Yu FF, Huaxia YF, Lu WJ, Wu CG, Cao XC, Guo XQ. GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L.), is involved in disease resistance and plant development. BMC Plant Biol,2012,12:144
    208. Yu YC, Hu RB, Wang HM, Cao YP, He G, Fu CX, Zhou GK. M1WRKY12, a novel Miscanthus transcription factor, participates in pith secondary cell wall formation and promotes flowering. Plant Sci,2013,212:1-9
    209. Zhang Z, Wei L, Zou X, Tao Y, Liu Z, Zheng Y. Submergence responsive microRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Ann Bot,2008,102:509-519
    210.Zhong NQ,Han LB, Wu XM, Wang LL, Wang F, Ma YH, Xia GX. Ectopic expression of a bacterium NhaD-type Na+/H+antiporter leads to increased tolerance to combined salt/alkali stresses. J Integr Plant Biol,2012,54:412-421
    211. Zhou HP, Lin HX, Chen S, Becker K, Yang YQ, Zhao JF, Kudla J, Schumaker KS, Guo Y. Inhibition of the Arabidopsis salt overly sensitive pathway by 14-3-3 proteins. Plant Cell,2014, doi:10.1105/tpc.113.117069
    212. Zhou J, Wang JJ, Bi YF, Wang LK, Tang LZ, Yu X, Ohtani M, Demura T, Zhuge Q. Overexpression of PtSOS2 Enhances Salt Tolerance in Transgenic Poplars. Plant Mol BiolRep,2014,32:185-197
    213. Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY. Soybean WRKY-type transcription factor genes, Gm WRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J,2008,6:486-503
    214. Zhu JH, Verslues PE, Zheng XW, Lee BH, Zhan XQ, Manabe Y, Sokolchik I, Zhu YM, Dong CH, Zhu JK, Hasegawa PM, Bressan RA. HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. P NatlAcad Sci USA,2005,102:9966-9971
    215. Zhu JK. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol, 2000,124:941-948
    216. Zhu JK. Plant salt tolerance. Trends in Plant Science,2001,6:66-71
    217. Zhu JK. Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol, 2003,6:441-445
    218. Zhu SQ, Chen MW, Ji BH, Jiao DM, Liang JS. Roles of xanthophylls and exogenous ABA in protection against NaCl-induced photodamage in rice (Oryza sativa L) and cabbage (Brassica campestris). JExp Bot,2011,62:4617-4625

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700