用户名: 密码: 验证码:
多孔金属陶瓷微结构调控及双负机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介电常数和磁导率是描述材料性能的两个重要物理性能参数。在不同应用领域,对材料介电常数和磁导率有不同的要求:电容器领域的高介电材料、透波领域的低介电材料、微波吸收领域的低介电常数和高磁导率匹配调控等。所以,电磁参数的调控是材料研究的重要方向。材料的介电常数ε和磁导率μ通常均为正值,近几年ε和μ均为负值的双负材料受到国内外学术界关注。这类材料表现出负折射等许多新颖性能,在新型谐振腔及滤波器、微带天线、电磁波衰减、电磁屏蔽和隐身、无线输电等领域有重要应用前景。
     值得注意的是,目前的双负材料基本上都是基于周期性结构阵列的超构材料(metamaterials),其性质主要决定于阵列结构而非材料的组成和微观组织。因此,如果能从工程材料的角度,基于材料本征性质实现双负特性是一项非常有意义的工作。
     综合国内外研究现状认为,超构材料实际上是一类有序的导体-绝缘体复合结构,如果将导电的金属和绝缘的陶瓷复合并对其微观组织进行调控,无序的、随机复合的金属陶瓷也有可能具有双负性质。基于这种思路,本文提出了多孔化、网络状金属陶瓷,通过对其组分和微结构进行调控,在MHz频段实现了双负性质。这种金属陶瓷是利用液相浸渍工艺制备的,与传统的金属陶瓷制备工艺相比,可以比较方便的对材料微结构进行调控。
     我们首先利用造孔剂法制备了多孔陶瓷,然后利用浸渍-煅烧工艺在多孔陶瓷中负载金属相得到多孔金属陶瓷,通过改变工艺参数制备了不同物相组成和微观形貌的多孔金属陶瓷。利用X射线衍射(XRD)、穆斯堡尔谱、振动样品磁强计(VSM)和扫描电镜(SEM)等对金属陶瓷的物相组成及微观结构进行了表征。利用热重-差热仪(TG-DTA)和程序控温还原(TPR)对材料煅烧和还原过程中的物理及化学反应过程进行了分析。利用阻抗分析仪测试了多孔金属陶瓷的介电性能和磁性能,详细研究了金属陶瓷微观结构与其电磁性能的关系。最后,利用Drude模型、等效电路、HFSS高频电磁结构仿真、有效介质理论(EMT)等理论和模型对金属陶瓷双负机理进行了分析。本文主要研究内容如下。
     (1)以碳粉为造孔剂,制备不同气孔率的多孔氧化铝及多孔钇铁石榴石。研究了造孔剂含量、粒径及烧结温度对多孔陶瓷气孔率的影响。利用浸渍-煅烧工艺在多孔陶瓷中负载金属,研究了浸渍溶液组分和浓度、陶瓷类别及气孔率煅烧温度及时间等对金属陶瓷微观形貌的影响。这种多孔金属陶瓷及其浸渍-煅烧工艺,可以制备片状、絮状和网络状等金属相,低温制备使金属粒径更小
     (2)利用浸渍-还原工艺在多孔氧化铝内部负载磁性金属镍和铁,制备了不同金属含量的Fe/Al2O3和Ni/Al2O3金属陶瓷。结果表明,金属含量低于逾渗阂值时,电导机制为电子跳跃电导,电导率随频率增加而增加;金属含量超过但仍然接近逾渗阈值时,金属颗粒相互接触形成网络结构,电导率随频率增加而减小。高频电磁场作用下,金属导电网络中自由电子的等离体子振荡导致负介电常数,金属导电网络产生的附加感应磁场以及磁性金属的磁共振共同产生负磁导率。法诺(Fano)型介电共振和磁共振频率可调。
     (3)利用浸渍-煅烧工艺侄亚铁磁性的多孔钇铁石榴石中负载银和铜分别得到不同金属含量的Ag/YIG和Cu/YIG金属陶瓷。研究发现,其负介电机理与上述A1203基金属陶瓷类似,但是除了金属导电网络的抗磁性外,YIG基体的磁共振也可以产生负磁导率。
     (4)利用等效电路法分析了金属陶瓷的阻抗谱。分析认为,金属含量较低时,可以等效为电容和电阻的并联电路;当金属含量较高超过逾渗阈值时,可以等效为电容、电阻和电感组成的电路,并联电感的出现是产生负介电常数的原因。HFSS数值仿真和有效介质理论计算的结果也与实验结果符合。
     (5)计算了钇铁石榴石在0.1MHz-10GHz频段的磁谱,认为钇铁石榴石的畴壁共振和自然共振产生负磁导率,且可以通过外加磁场对其负磁导率进行调控。
     论文工作得到国防项目、国家自然科学基金、教育部新世纪优秀人才支持计划、山东省科技攻关计划、山东大学自主创新基金杰出青年培育项目、山东大学研究生自主创新基金等科研项目的资助。
Permittivity (ε) and permeability (μ) are the basic parameters to describe the response of a material to the external electromagnetic field. In different application fields, the permittivity and permeability should satisfy requirements of corresponding conditions. For example, high permittivity was needed for capacitors, low permittivity was needed for wave-transmitting materials, and permittivity should match well with permeability for microwave absorbing materials. Therefore, much attention has been paid to the investigations on the adjustment of the electromagnetic parameters of materials. Generally, the ε and μ of a conventional material are both positive. In recent years, much attention has been paid to double negative materials (DNMs) with simultaneously negative permittivity and permeability. DNMs have many unique electromagnetic properties, such as negative refraction effects. And, they have various novel potential applications, such as novel cavity resonators, microstrip antenna and microwave attenuation, etc.
     It is worth noting that, the double negative property of DNMs is usually provided by artificial structures (metamaterials) rather than directly from the materials' composition and micro structure. Therefore, it is also interesting to investigate the possibility of realizing double negative property from the point of "real" random materials rather than periodic artificial structures.
     In fact, metamaterial is a kind of ordered conductor-insulator composite structure. Therefore, cermets consisting of metal and ceramic could be a potential candidate for the realization of double negative property by tailoring the microstructure of the cermet. From this point of view, porous cermet is proposed to obtain double negative property in this work, and double negative property is realized in MHz frequency. In this work, cermets were prepared via a wet chemical process. The composition and microstructure of the cermets could be easily tuned.
     Porous ceramics are prepared using pore former method. Then, metallic phase is loaded into porous ceramics via impregnation-calcination technique, forming porous cermets. The composition and microstructure of the porous cermets can be tailored by changing experimental parameters. The composition and microstructure of the cermets are characterized using X-ray diffraction (XRD), Mossbauer spectra. Vibrating Sample Magnetometer (VSM) and Scanning Electron Microscope (SEM). The physical and chemical reactions during the calcinations and reduction processes are analyzed using Thermogravimetric and differential thermal analysis (TG-DTA) and Temperature Programmed Reduction (TPR). The dielectric and magnetic properties of the porous cermets are tested using impedance analyzer. The relationship between the microstructure of the cermets and its electromagnetic properties are investigated. Finally, the double negative mechanism of the cermets is analyzed using Drude model, equivalent circuits, HFSS simulation, and Effective Medium Theory (EMT), etc. The main contents are summarized as follows:
     (1) Carbon was selected as the pore former, and porous alumina and porous yttrium iron garnets with different porosities were prepared. The influences of pore former content, particles size and sintereing temperature on the porosity of the porous ceramic were investigared. Metals were loaded into porous ceramics using impregnation-calcination process. And the influences of impregnation solution, porous matrix composition and porosity, calcination temperature and time on the microsturctures of the supported metals were investigated.
     (2) Fe/Al2O3and Ni/Al2O3composites were prepared using impregnation-calcination process. For the composites with low metal content, the conductive mechanism is hopping conduction. For the composites exceeded the percolation threshold, metallic networks were formed, and the conductivity decreases with increasing frequency due to the skin effects. The plasma oscillation of delocalized electrons in the current loops leads to the negative permittivity. Meanwhile, the combined effects of the diamagnetic response of current loops and magnetic resonances of ferromagnetic metals lead to the negative permeability. Porous cermets can be prepared via low temperature reduction in the impregnation-calcination process, leading to small metal particls. The fano resonance frequency and magnetic resonance frequency can be tunable.
     (3) Silver and copper were hosted in prous YIG matrix using impregnation-calcination process, forming Ag/YIG and Cu/YIG composites. The negative mechanism of the YIG matrix cermet is the same as the alumina matrix ceremt. However, in addition to the diamagnetic response of metallic networks, negative permeability can also be obtained by the magnetic resonances of ferrimagnetic YIG matrix.
     (4) The impedance spectra of cermets were investigated using equivalent circuit analysis. The results indicated that, composites with low metal content can be simulated by an equivalent circuit model composed of a parallel combination of resistor R and capacitor C. For the composites with high metal content, current loops will be induced in the composites, and the composites can be simulated by an equivalent circuit model composed of inductor L, resistor R and capacitor C. The appearance of shunt inductances is the origin of negative permittivity. The HFSS simulation and Effectivbe Medium Theory (EMT) calculation results agrees well with the experimental results.
     (5) The permeability spectra of YIG in the frequency band of0.1MHz-10GHz were calculated. Negative permeability can be realized by the domain wall resonance and nature resonance of YIG, and the negative permeability is tunable with external bias magnetic field.
     This work was supported by National Natural Science Foundation of China (50772061,51172131), Program for New Century Excellent Talents in University (NCET-10-518), Independent Innovation Foundation of Shandong University (GIIFSDU-YZC12076, GIIFSDU-YYX10011), and Shandong S&T Plan (2007GG10003007),973Project of China (2012CB825702).
引文
[1]A A Houck, J B Brock, I L Chuang. Experimental observations of a left-handed material that obeys Snell's law [J]. Physical Review Letters,2003, 90(13):137401.
    [2]N Fang, H Lee, C Sun, X Zhang. Sub-diffraction-limited optical imaging with a silver superlens [J]. Science,2005,308(5721):534-537.
    [3]J B Pendry, D Schurig, D R Smith. Controlling electromagnetic fields [J]. Science,2006,312(5781):1780-1782.
    [4]D Schurig, J J Mock, B J Justice, S A Cummer, J B Pendry, A F Starr, D R Smith. Metamaterial electromagnetic cloak at microwave frequencies [J]. Science, 2006,314(5801):977-980.
    [5]V M Shalaev. Optical negative-index metamaterials[J]. Nature Photonics, 2007,1(1):41-48.
    [6]P Alitalo, S Tretyakov. Electromagnetic cloaking with metamaterials[J]. Materials Today,2009,12(3):22-29.
    [7]N Liu, H Giessen. Coupling Effects in Optical Metamaterials[J]. Angewandte Chemie International Edition,2010,49(51):9838-9852.
    [8]V G Veselago. The electrodrodynamics of substances with simultaneously negative values of s and μ [J]. Phys.Usp.1968,10 (4):509-514.
    [9]D R Smith, W J Padilla, D C Vier. A composite medium with simultaneously negative permeability and permittivity [J]. Physical Review Letters, 2000,84(18):4184-4187.
    [10]J F Zhou, L Zhang, G Tuttle, T Koschny, C M Soukoulis. Negative index materials using simple short wire pairs [R]. Physical Review B,2006,73(4): 041101R.
    [11]S M Xiao, V P Drachev, A V Kildishev, X J Ni, U K Chettiar, H K Yuan, V M Shalaev. Loss-free and active optical negative-index metamaterials [J]. Nature, 2010,466(7307):735-738.
    [12]G H He, R X Wu, Y Poo, P Chen. Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh [J]. Journal Applied Physics,2010,107(9):093522.
    [13]H Tao, J J Amsden, A C Strikwerda, K B Fan, D L Kaplan, X Zhang, R D Averitt, F G Omenetto. Metamaterial silk composites at terahertz frequencies[J]. Advanced Materials,2010,22(32):3527-3531.
    [14]W M Zhu, A Q Liu, X M Zhang, D P Tsai, T Bourouina, J H Teng, X H Zhang, H C Guo, H Tanoto, T Mei, G Q Lo, D L Kwong. Switchable magnetic metamaterials using micromachining processes [J]. Advanced Materials,2011, 23(15):1792-1796.
    [15]T Paul, C Menzel, C Rockstuhl, F Lederer. Advanced optical materials [J]. Advanced Materials,2010,22(21):2354-2357.
    [16]M Beresna, P G Kazansky, O Deparis, I C S Carvalho, S Takahashi, A V Zayats. Poling-assisted fabrication of plasmonic nanocomposite devices in glass[J]. Advanced Materials,2010,22(39):4368-4372.
    [17]Agilent basics of measuring the dielectric properties of materials (Agilent Technologies, USA,2006,5989-2589EN).
    [18]K H Cho, J B Lim, S Nahm, H T Kim, J H Paik, H J Lee. Low temperature sintering of BaO-Sm2O3-4TiO2 ceramics [J]. Journal of the European Ceramic Society,2006,27(2-3):1053-1058.
    [19]J B Lim, K H Cho, S Nahm, J H Paik, J H Kim. Effect of BaCu(B2O5) on the sintering temperature and microwave dielectric properties of BaO-Ln2O3-TiO2 (Ln=Sm,Nd) ceramics[J]. Material Research Bulletin,2006,41(10):1868-1874.
    [20]杨秋红,金应秀,徐军.固溶率因子对{(Pb, Ca, La)FeNb}O3陶瓷微波介电性能的影响.硅酸盐学报,2002,30(5):554-558.
    [21]田得雨,晁明举,张俊吉,李明玉,钱华丽.激光制备高介CaTiO3-CaTiSiO5高频介质陶瓷[J].激光杂志,2011,32(5):32-34.
    [22]M L Hsieh, L S Chen, S M Wang. C H Sun, M H Weng, M P Houng, S L Fu. Low-temperature sintering of microwave dielectrics (Zn,Mg)TiO3[J]. Japanese Journal of Applied Physics,2005,44 (7A):5045-5048.
    [23]C L Huang, J T Tsai, Y B Chen. Dielectric properties of (1-y)Ca1-xLa2.x/3TiO3-y(Li, Nd)1/2TiO3 ceramic system at microwave frequency [J]. Material Research Bulletin.2001,36 (3-4):547-556.
    [24]S S Rajput, S Keshri, V R Gupta. Microwave dielectric properties of (1-x)Mg0.95Zn0.05TiO3-(x)Ca0.6La0.8/3TiO3 ceramic composites [J]. Journal of Alloys and Compounds,2013,552 (5):219-226
    [25]Q Lai, B I Lee, G J Exarhos. High-Diclectric-Constant Silver-Epoxy Composites as Embedded Dielectrics [J]. Advanced Materials,2005,17(4): 1777-1781.
    [26]J Xu, C P Wong. Low-loss percolative dielectric composite [J]. Applied Physics Letters,2005,87(8):082907.
    [27]Z M Dang, Y Shen, C W Nan. Dielectric behavior of three-phase percolative Ni-BaTiO3/polyvinylidene fluoride composites [J]. Applied Physics Letters,2002,81(25):4814-4816.
    [28]C Yang, Y H Lin, C W Nan. Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density [J]. Carbon, 2009,47(4):1096-1101.
    [29]C Huang, Q M Zhang, J Su. High-dielectric-constant all-polymer percolative composites [J]. Applied Physics Letters,2003,82(20):3502-3506.
    [30]J X Lu, K S Moon, B K Kim, C P Wong. High dielectric constant polyaniline/epoxy composites via in situ polymerization for embedded capacitor applications [J]. Polymer,2007,48(6):1510-1516.
    [31]吕艳红,王洪升.低介电常数多孔氮化硅陶瓷材料的制备[J].现代技术陶瓷,2011,2:17-19.
    [32]邹晓蓉,张长瑞,王思青,曹峰,李斌,宋阳曦.空心石英纤维增强氮化物基低介电复合材料的制备及其性能[J].航空材料学报,2010,30(3):38-42.
    [33]Y J Lee, J M Huang, S W Kuo, F C Chang. Low-dielectric, nanoporous polyimide films prepared from PEO-POSS nanoparticles [J]. Polymer,2005,46(23): 10056-10065.
    [34]C J Chang, M H Tsai, G S Chen, M S Wu, T W Hung. Preparation and properties of porous polyimide films with TiO2/polymer double shell hollow spheres [J]. The Solid Films,2009,517(17),4966-4969.
    [35]G D Fu, Z H Shang, L Hong. Nanoporous, ultralow-dielectric-constant fluoropolymer films from agglomerated and crosslinked hollow nanospheres of poly(pentafluorostyrene)-block-poly(divinylbenzene)[J]. Advanced materials,2005, 17(21):2622-2626.
    [36]李翔,严彪,董刚,赵慎强,梁小伟.BST/YIG复合材料的相结构、介 电性能和磁性能的研究[J].无机材料学报,2009,24(2):383-386.
    [37]王宏,王京平,窦海之.CuO掺杂对高磁导率MnZn软磁铁氧体性能的影响[J].磁性材料与器件,2009,40(4):37-40.
    [38]袁军,周小艳.电磁吸波材料研究的现状与发展趋势[J].医疗卫生装备,2011,32(5):76-77.
    [39]邓联文,黄生祥,刘鑫,丁丽,杨丽,尹邦武,周克省.聚苯乙烯—磁性吸收剂复合材料微波吸收特性研究[J].功能材料,2012,43(6):764-770.
    [40]J C Aphesteguy, A Damiani, D D Giovanni, S E Jacobo. Microwave absorption behavior of a polyaniline magnetic composite in the X-band [J]. Physica B 2012,407(16):3168-3171.
    [41]H S Pan, X Q Cheng, C H Zhang, C HGong, L G Yu, J W Zhang, Z J Zhang. Preparation of Fe2Ni2N/Si02 nanocomposite via a two-step route and investigation of its electromagnetic properties [J]. Applied Physics Letters,2013, 102(1):012410.
    [42]C Wang, S Hu, X J Han, W Huang, L F Tian. Controlled synthesis and microwave absorption property of chain-Like Co flower [J]. Plos One,2013,8(2): e55928.
    [43]X L Shi, M S Cao, J Yuan, X Y Fang. Dual nonlinear dielectric resonance and nesting microwave absorption peaks of hollow cobalt nanochains composites with negative permeability [J]. Applied Physics Letters,2009,95(16):163108.
    [44]C J Li, B Wang, J N Wang. Magnetic and microwave absorbing properties of electrospun Ba(1-x)Lax-Fe12O19 nanofibers [J]. Journal of Magnetism and Magnetic Materials,2012,324(7):1305-1311.
    [45]D Y Zhang, P P Wang, R Murakami, X P Song. Effect of an interface charge density wave on surface plasmon resonance in ZnO/Ag/ZnO thin films [J]. Applied Physics Letters,2010,96(23):233114.
    [46]Q Wu, W H Park. Negative index materials based on metal nanoclusters [J]. Applied Physics Letters,2008,92(15):153114.
    [47]S Kohli, C D Rithner, P K Dorhout. Negative permittivity in (V2O5)100-xSex alloys [J]. Chemistry of Materials,2002,14(9):3786-3792.
    [48]J H Zhu, S Y Wei, L Zhang, Y B Mao, J Ryu, P Mavinakuli, A B Karki, D P Young, Z H Guo. Conductive polypyrrole/tungsten oxide metacomposites with negative permittivity [J]. Journal of Physical Chemistry C,2010,114(39): 16335-16342.
    [49]F Xu, Y Bai, L J Qiao, H J Zhao, J Zhou. Realization of negative permittivity of Co2Z hexagonal ferrite and left-handed property of ferrite composite material [J]. Journal of Physics D:Applied Physics,2009,42(2):025403.
    [50]A Romeo, M Terheggen, D Abou-Ras, D L Batzner, F J Haug, M Kalin, D Rudmann, A N Tiwari. Development of thin-film Cu (In, Ga) Se2 and CdTe solar cells [J]. Progress in Photovoltaics Research and Applications,2004,12(23):93-111.
    [51]I M Sero, J Bisquert, F Fabregat-Santiago, G G Belmonte. Implications of the negative capacitance observed at forward bias in nanocomposite and polycrystalline solar cells [J]. Nano Letters,2006,6(4):640-650.
    [52]A I Khan, D Bhowmik, P Yu, S J Kim, X Q Pan, R Ramesh, S Salahuddin. Experimental evidence of ferroelectric negative capacitance in nanoscale heterostructures [J]. Applied Physics Letters,2011,99(11):113501.
    [53]C C Wang, G Z Liu, M He, H B Lu. Low-frequency negative capacitance in La0.8Sr0.2MnO3/Nb-doped SrTiO3 heterojunction [J]. Applied Physics Letters, 2008,92(5):052905.
    [54]E Arslan, Y Safak, S Altlndal, O Kelekci, E Ozbay. Temperature dependent negative capacitance behavior in (Ni/Au)/AlGaN/AlN/GaN heterostructures [J]. Journal of Non-Crystalline Solids,2010,356(20-22):1006-1011.
    [55]A Pimenov, A Loidl, K Gehrke, V Moshnyaga, K Samwer. Negative refraction observed in a metallic ferromagnet in the gigahertz frequency range [J]. Physical Review Letters,2007,98(19):197401.
    [56]C E Ciomaga, I Dumitru, L Mitoseriu, C Galassi, A R Iordan, M Airimioaeic, M N Palamaru. Magnetoelectric ceramic composites with double-resonant permittivity and permeability in GHz range:A route towards isotropic metamaterials [J]. Scripta Materialia,2010,62(8):610-612.
    [57]T Tsutaoka, T Kasagi, K Hatakeyama. Permeability spectra of yttrium iron garnet and its granular composite materials under dc magnetic field [J]. Journal of Applied Physics,2011,110(5):053909.
    [58]N Koga, T Tsutaoka. Preparation of substituted barium ferrite BaFe12-x(Ti0.5Co0.5)xO19 by citrate precursor method and compositional dependence of their magnetic properties [J]. Journal of Magnetism and Magnetic Materials,2007, 313(1):168-175.
    [59]T Tsutaoka, T Nakamura. K Hatakeyama. Magnetic field effect on the complex permeability spectra in a Ni-Zn ferrite [J]. Journal of Applied Physics, 1997,82 (6):3068-3071.
    [60]Q Zhao, L Kang. B Du, H Zhao, Q Xie, X Huang, B Li, J Zhou, L Li. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite [J]. Physical Review Letters,2008,101(2): 027402.
    [61]Q Zhao, B Du, L Kang, H J Zhao, Q Xie, B Li, X Zhang, J Zhou, L T Li, Y G Meng. Tunable negative permeability in an isotropic dielectric composite [J]. Applied Physics Letters,2008,92(5):051106.
    [62]S Linden, C Enkrich, M Wegener, J F Zhou, T Koschny, C M Soukoulis. Magnetic response of metamaterials at 100 Terahertz [J]. Science,2004,306(5700): 1351-1353.
    [63]C Mitsumata, S Tomita. Negative permeability of magnetic nanocomposite films for designing left-handed metamaterials [J]. Applied Physics Letters,2007, 91(22):223104.
    [64]C M Soukoulis, T Koschny, J F Zhou, M Kafesaki, E N Economou. Magnetic response of split ring resonators at terahertz frequencies [J]. Physica Status Solidi (b).2007,244(4):1181-1187.
    [65]G H He, R X Wu, Y Poo, P Chen. Magnetically tunable double-negative material composed of ferrite-dielectric and metallic mesh [J]. Journal of Applied Physics,2010,107(9):093522.
    [66]R S Penciu, M Kafesaki, T Koschny, E N Economou, C M Soukoulis. Magnetic response of nanoscale left-handed metamaterials [J]. Physical Review B, 2010,81(23):235111.
    [67]X Y Ao, S He. Negative refraction of left-handed behavior in porous alumina with infiltrated silver at an optical wavelength [J]. Applied Physics Letters, 2005,87(10):101112.
    [68]X Han, H J Song, J D Lin, Z M Zhang. A novel structure for broadband left-handed metamaterial [J]. Chinese Physics B,2012,21(9):094101.
    [69]Q Wang, H X Zhang, J L Zhang, W Liu, S Li, S Men. Design and Analysis of a Kind of Mushroom-Like Left-Handed Material [J]. Chinese Journal of Physics, 2011,49(6):1255-1263.
    [70]B Ozbey, O Aktas. Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers [J]. Optics Express,2011,19 (7):5741-5752.
    [71]J F Wang, S B Qu, Z Xu, J Q Zhang, Y M Yang, H Maa, C Gu. A candidate three-dimensional GHz left-handed metamaterial composed of coplanar magnetic and electric resonators [J]. Photonics and Nanostructures-Fundamentals and Applications,2008,6(3-4):183-187.
    [72]曹云建,文光俊,吴凯敏,徐新河.一种新型负折射率微波媒质的设计与仿真模拟[J].科学通报,2006,51(22):2612-2617.
    [73]R X Wu. Effectve negative refraction index in periodic metal-ferrite-metal film composites [J]. Journal of Applied Physics,2005,97 (1-3):076105.
    [74]R X Wu, X K Zhang, Z F Lin. Possible existence of left-handed materials in metallic magnetic thin films [J]. Journal of Magnetism and Magnetic Materials, 2004,271(2-3):180-193.
    [75]胡珍叶.金属磁性纳米颗粒复合材料的左手特性[J].苏州大学学报.2007,23(2):60-64.
    [76]E Cortes, L Mocha'n, B S Mendoza, G P Ortiz. Optical properties of nanostructured metamaterials [J]. Physica Status Solidi (b),2010,247(8): 2102-2107.
    [77]Z F Sang, Z Y Li. Effective negative refractive index of graded granular composites with metallic magnetic particles [J]. Physics Letters A,2005,334(5-6): 422-428.
    [78]J B Pendry, A J Holden, D J Robbins, W J Stewart. Low frequency plasmons in thin-wire structures [J]. Journal of Physics:Condensed Matter,1998, 10(22):4785-4809.
    [79]T Koschny, M Kafesaki. Effective medium theory of left-handed materials [J]. Physical Review Letters,2004,93(10):107402.
    [80]L Kang, D Lippens. Mie resonance based left-handed metamaterial in the visible frequency range [J]. Physical Review B 2011,83(19):195125.
    [81]K B Alici, E Ozbay. Characterization and tilted response of a fishnet metamaterial operating at 100 GHz [J]. Journal of Physical D:Applied Physics,2008, 41(13):135011.
    [82]S Zhang, W J Fan, B K Minhas, A Frauenglass, K J Malloy, S R J Brueck. Midinfrared Resonant Magnetic Nanostructures Exhibiting a Negative Permeability [J]. Physical Review Letters,2005,94(3):037402.
    [83]G Dolling, C Enkrich, M Wegener. Low-loss negative-index metamaterial at telecommunication wavelengths [J]. Optics Letters,2006,31(12):1800-1802.
    [84]C Kurter, J Abrahams, S M Anlage. Miniaturized superconducting metamaterials for radio frequencies [J]. Applied Physics Letters,2010,96(25): 253504.
    [85]M H Li, H LYang, Y Tian, D Y Hou. Dual bands of negative refractive indexes in the planar left-handed metamaterials [J]. Journal of Magnetism and Magnetic Materials,2011,323(5):607-610.
    [86]R P Liu, A Degiron, J J Mock, D R Smith. Negative index material composed of electric and magnetic resonators [J]. Applied Physics Letters,2007, 90(26):263504.
    [87]Y Poo, R X Wu, G H He, P Chen, J Xu, R F Chen. Experimental verification of a tunable left-handed material by bias magnetic fields [J]. Applied Physics Letters,2010,96(16):161902.
    [88]D B Burckel, J R Wendt, G A T Eyck, A R Ellis, I Brener, M B Sinclair. Fabrication of 3D Metamaterial Resonators Using Self-Aligned Membrane Projection Lithography [J]. Advanced Materials,2010,22(29):3171-3175.
    [89]J Yao, Z W Liu, Y M Liu, Y Wang, C Sun, G Bartal, A M Stacy, X Zhang. Optical negative refraction in bulk metamaterials of nanowires [J]. Science,2008, 321(5891):930.
    [90]I E Khodasevych, C M Shah, S Sriram, M Bhaskaran, W Withayachumnankul, B S Y Ung, H Lin, W S T Rowe, D Abbott, A Mitchell. Elastomeric silicone substrates for terahertz fishnet metamaterials [J]. Applied Physics Letters,2012,100(6):061101.
    [91]H J Zhao, J Zhou, L Kang, Q Zhao. Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires [J]. Optics Express,2009, 17(16):13373-13380.
    [92]胡更开,周萧明,蔡小兵,阳茜.左手材料[J].科技导报,2005,23(8):67-70.
    [93]M S Wheeler, J. Stewart Aitchison, and Mohammad Mojahedi. Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies [J]. Physical Review B 2006,73(4):045105.
    [94]Q Zhao, J Zhou, F L Zhang, D Lippens. Mie resonance-based dielectric metamaterials [J]. Materials Today,2009,12(12):60-69.
    [95]C L Holloway, E F Kuester, J R Baker-Jarvis, P Kabos. A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix [J]. IEEE Transactions on Antennas and Propagations, 2003,51(10):2596-2603.
    [96]S O'Brien, J B Pendry. Photonic band-gap effects and magnetic activity in dielectric composites [J]. Journal of Physics:Condensed Matter,2002,14(15): 4035-4044.
    [97]K Shibuya, K Takano. Terahertz metamaterials composed of TiO2 cube arrays, Presented at 2nd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, Pamplona, Spain, September 21-26,2008.
    [98]J P Calame, J Battat. Narrowband microwave dielectric resonance and negative permittivity behavior in hydrogen-fired Al2O3-CUO composites [J]. Journal of the American Ceramic Society,2006,89(12):3865-3867.
    [99]B Li, G Sui, W H Zhong. Single negative metamaterials in unstructured polymer nanocomposites toward selectable and controllable negative permittivity [J]. Advanced Materials,2009,21(41):4176-4180.
    [100]H Liu, X P Zhao, Y Yang, Q W Li, J Lv. Fabrication of infrared left-handed metamaterials via double template-assisted electrochemical deposition[J]. Advanced Materials,2008,20(11):2050-2054.
    [101]Jiahua Zhu, Suying Wei, Jongeun Ryu, Zhanhu Guo. Strain-Sensing Elastomer/Carbon Nanofiber "Metacomposites" [J]. Journal of Physical Chemistry C, 2011,115(27):13215-13222.
    [102]J H Zhu, S Y Wei, L Zhang, Y B Mao, J Ryu, P Mavinakuli, A B Karki, D P Young, Z H Guo. Conductive polypyrrole/tungsten oxide metacomposites with negative permittivity. Journal of Physical Chemistry C,2010, 114(39):16335-16342.
    [103]J H Zhu, Z P Luo, S J Wu, N Haldolaarachchige, D P Young, S Y Wei, Z H Guo. Magnetic graphene nanocomposites:electron conduction, giant magnetoresistance and tunable negative permittivity [J]. Journal of Material Chemistry,2012,22(3):835-844.
    [104]H Chen, L Ran, D Wang, J Huangfu, Q Jiang, J A Kong. Metamaterial with randomized patterns for negative refraction of electromagnetic waves [J]. Applied Physics Letters,2006,88(3):031908.
    [105]N Limberopoulos, A Akyurtlu, K Higginson, A Kussow, C D Merritt. Negative refractive index metamaterials in the visible spectrum based on MgB2/SiC composites[J]. Applied Physics Letters,2009,95(2):023306.
    [106]N A Khan, M Mumtaz, A A Khurram. Frequency dependent dielectric properties of Cu0.5Ti0.5Ba2Ca2Cu3-yjZnyO10-δ(y=0,1.0,1.5,2.0,2.5) superconductors [J]. Journal of Applied Physics,2008,104(3):033916.
    [107]A Moreau, C Ciraci, J J Mock, R T Hill, Q Wang, B J Wiley, A Chilkoti, D R Smith. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas [J]. Nature,2012,492(7427):86-89.
    [108]S T Chui, L B Hu. Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites [J]. Physical Review B,2002,65(14):144407.
    [109]刘维良,李少峰,李友宝,于国强.Ti(C, N)基金属陶瓷的制备与性能研究[J].中国陶瓷工业,2011,18(3):1-4.
    [110]M Gao, Z C Shi, R H Fan, L Qian, Z D Zhang, J Y Guo. High-Frequency Negative Permittivity from Fe/Al2O3 Composites with High Metal Contents [J]. Journal of the American Ceramic Society,2012,95(1):67-70.
    [111]冯立超,于雪梅,张元良.Cu20基金属陶瓷热压制备及其致密化过程[J].材料热处理技术,2011,40(18):88-90.
    [112]T Suetsuna, S Suenaga, T Fukasawa, Monolithic Cu-Ni-based catalyst for reforming hydrocarbon fuel sources [J]. Journal of Applied Catalysis A:General, 2004,276 (1-2):275-279.
    [113]Z D Zhang, R H Fan, Z C Shi, S B Pan, K LYan, K N Sun, J D Zhang, X F Liu, X L Wang, S X Dou. Tunable negative permittivity behavior and conductor-insulator transition in dual composites prepared by selective reduction reaction [J]. Journal of Material Chemistry C,2013,1 (1):79-85.
    [114]M S Motta, P K Jena, E A Brocchi, I G Solorzano. Characterization of Cu-Al2O3 nano-scale composites synthesized by in situ reduction. Materials Science and Engineering C 2001,15(1-2):175-177.
    [115]S Jung, C Lu, H P He, K Ahn, R J Gorte, J M Vohs, Influence of composition and Cu impregnation method on the performance of Cu/CeO2/YSZ SOFC anodes [J]. Journal of Power Sources,2006,154(1):42-50.
    [116]M D Alcala, C Real, Synthesis based on the wet impregnation method and characterization of iron and iron oxide-silica nanocomposites [J]. Solid State Ionics,2006,177(9-10):955-960.
    [117]S P Jiang. A review of wet impregnation-an alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells. Materials Science and Engineering A 2006,418(1-2):199-210.
    [118]Agilent Impedance Measurement Handbook 5950-3000 (Agilent Technologies, USA,2009).
    [119]S J Oh, C J Choi, S J Kwon, S H Jin, B K Kim, J S Park, Mossbauer analysis on the magnetic properties of Fe-Co nanoparticles synthesized by chemical vaporcondensation process [J]. Journal of Magnetism and Magnetic Materials,2004, 280(2-3):147-157.
    [120]M Liu, H B Li, L Xiao, W X Yu, Y Lu, Z D Zhao, XRD and Mossbauer spectroscopy investigation of Fe2O3-Al2O3 nano-composite [J]. Journal of Magnetism and Magnetic Materials,2005,294(3):294-297.
    [121]M Tadic, V Kusigerski, D Markovic, I Milosevic, V Spasojevic. Anomalous behaviour of the magnetic hysteresis loop in the a-Fe2O3/SiO2 nanocomposite [J]. Materials Letters,2009,63(12):1054-1056.
    [122]Y D Yao, Y Y Chen, S F Lee, W C Chang, H L Hu, Magnetic and thermal studies of nano-size Co and Fe particles [J]. Journal of Magnetism and Magnetic Materials,2002,239 (1-3):249-251.
    [123]Z L Cui, L F Dong, C C Hao. Microstructure and magnetic property of nano-Fe particles prepared by hydrogen arc plasma [J]. Materials Science and Engineering A,2000,286(1):205-207.
    [124]L Daroczi, D L Beke, G Posgay, G F Zhou, H Bakker. Production and magnetic properties of nanocrystalline Fe and Ni [J]. Nanostructured Materials,1993, 2(5):515-525.
    [125]A Alarifi, N M Deraz, S Shaban. Structural, morphological and magnetic properties of NiFe2O4 nano-particles [J]. Journal of Alloys and Compounds,2009, 486(1-2):501-506.
    [126]J Q Pan, Y Z Sun, P Y Wan, Z H Wang, X G Liu. Synthesis, characterization and electrochemical performance of battery grade NiOOH [J]. Electrochemisry Communications,2005,7(8):857-862.
    [127]A Saberi, F Golestani-Fard, H Sarpoolaky, M Willert-Porada, T Gerdes, R Simon. Chemical synthesis of nanocrystalline magnesium aluminate spinel via nitrate-citrate combustion route [J]. Journal of Alloys and Compounds,2008, 462(1-2):142-146.
    [128]W G Brockner, C Ehrhardt, M Gjikaj. Thermal decomposition of nickel nitrate hexahydrate, Ni(NO3)2·6H2O, in comparison to Co(NO3)2·6H2O and Ca(NO3)2·4H2O [J]. Thermochimica Acta,2007,456(1):64-68.
    [129]K V R Chary, K K Seela, G V Sagar, B Sreedhar, Characterization and Reactivity of Niobia Supported Copper Oxide Catalysts [J]. Journal of Physical Chemistry B,2004,108(2):658-663.
    [130]Z W Huang, F Cui, H X Kang, J Chen, X Z Zhang, C G Xia. Highly Dispersed Silica-Supported Copper Nanoparticles Prepared by Precipitation-Gel Method:A Simple but Efficient and Stable Catalyst for Glycerol Hydrogenolysis [J]. Chemistry of Materials,2008,20(15):5090-5099.
    [131]H Mori, C J Wen, J Otomo, K Eguchi, H Takahashi. Investigation of the interaction between NiO and yttria-stabilized zirconia (YSZ) in the NiO/YSZ composite by temperature-programmed reduction technique [J]. Applied Catalysis A: General,2003,245(1):79-85.
    [132]J H Hwang, V P Dravid, M H Teng, J J Host, B R Elliott, D L Johnson, T O Mason. Magnetic Properties of Graphitically Encapsulated Nickel Nanocrystals [J]. Journal of Materials Research,1997,12(4):1076-1082.
    [133]W Suwanwatana, S Yarlagadda, J W Gillespie. Influence of particle size on hysteresis heating behavior of nickel particulate polymer films [J]. Composite Science and Technology,2006,66(15):2825-2836.
    [134]G Q Zhang, T Zhang, X L Lu, W Wang, J F Qu, X G Li. Controlled Synthesis of 3D and ID Nickel Nanostructures Using an External Magnetic Field Assisted Solution-Phase Approach[J]. Journal of Physical Chemistry C,2007, 111(34):12663-12668.
    [135]P Agrawal, K Conlon, K J Bowman, C T Sun, F R Cichocki, K P Trumble. Thermal residual stresses in co-continuous composites [J]. Acta Materialia, 2003,51(4):1143-1156.
    [136]C C H Lo, E Kinser, D C Jiles. Modeling the interrelating effects of plastic deformation and stress on magnetic properties of materials [J]. Journal of Applied Physics,2003,93(10):6626.
    [137]M R Sullivan, D A Boehm, D A Ateya, S Z Hua, H D Chopra. Ballistic magnetoresistance in nickel single-atom conductors without magnetostriction [J]. Physical Review B,2005,71(2):024412.
    [138]K Hur, Y Francescato, V Giannini, S A Maier, R G Hennig, U Wiesner. Three-Dimensionally isotropic negative refractive index materials from block copolymer self-Assembled chiral gyroid networks [J]. Angewandte Chemie International Edition,2011,123(50):11985-11989.
    [139]J C Dyre, T B Schr(?)der. Universality of ac conduction in disordered solids[R]. Reviews of Modern Physics,2000,72(3):873-892.
    [140]J B Pendry, A J Holden, W J Stewart, I Youngs. Extremely low frequency plasmons in metallic mesostructures [J]. Physical Review Letters,1996,76(25): 4773-4776.
    [141]W H P Pernice, F P Payne, D F G Gallagher. An FDTD method for the simulation of dispersive metallic structures [J]. Optical and Quantum Electronics, 2006,38(9-11):843-856.
    [142]G Sui, B Li, G Bratzel, L Baker, W H Zhong, X P Yang. Carbon nanofiber/polyetherimide composite membranes with special dielectric properties [J]. Soft Matter,2009,5(19):3592-3598.
    [143]C H Hsieh, A H Lee, C D Liu, J L Han, K H Hsieh, S N Lee. Polyaniline nano-composites with large negative dielectric permittivity [J]. AIP Advances,2012, 2(1):012127.
    [144]S Basu, D Chakravorty. Optical properties of nanocomposites with iron core-iron oxide shell structure [J]. Journal of Non-Crystalline Solids,2006,352(5): 380-385.
    [145]E N Economou, T Koschny, C M Soukoulis. Strong diamagnetic response in split-ring-resonator metamaterials:Numerical study and two-loop model [J]. Physical Review B,2008,77(9):092401.
    [146]T Kasagi, T Tsutaoka, K Hatakeyama. Negative permeability spectra in Permalloy granular composite materials [J]. Applied Physics Letters,2006,88(17): 172502.
    [147]Y Poo, R X Wu, G H He, P Chen, J Xu, R F Chen. Experimental verification of a tunable left-handed material by bias magnetic fields [J]. Applied Physics Letters,2010,96(16):161902.
    [148]X Ni, J Ma, J G Li, D M Jiao, J J Huang, X D Zhang. Microwave characteristics of Co/TiO2 nanocomposites prepared by mechanochemical synthesis [J]. Journal of Alloys and Compounds,2009,468(1-2):386-391.
    [149]L O V Uitert, F W Swanekamp, S Preziosi. Ferrimagnetic resonance line widths and phase distributions in sintered yttrium iron garnets [J]. Journal of the American Ceramic Society,1959,42(10):471-473.
    [150]Costas M. Soukoulis, Maria Kafesaki, Eleftherios N. Economou. Negative-Index Materials:New Frontiers in Optics [R]. Advanced Materials.2006, 18,1941-1952.
    [151]V G Harris, A Geiler, Y Chen, S D Yoon, M Wu, A Yang, Z Chen, P He, P V Parimi, X Zuo, C E Patton, M Abe, O Acher, C Vittoria. Recent advances in processing and applications of microwave ferrites [J]. Journal of Magnetism and Magnetic Materials,2009,321(14):2035-2047.
    [152]Y P Fu, C H Lin, K W Tay, Y D Yao. Yttrium iron garnet ceramic prepared from microwave-induced combustion [J]. Journal of Electroceramics,2008, 21(1-4):677-680.
    [153]T Tsutaoka, T Kasagi, K Hatakeyama. Permeability spectra of yttrium iron garnet and its granular composite materials under dc magnetic field [J]. Journal of Applied Physics,2011,110(5):053909.
    [154]H F Zhao, J Zhou. Q Zhao, B. Li, L. Kang. Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires [J]. Applied Physics Letters,2007,91(13),131107.
    [155]Y X He, P He, S D Yoon, P V Parimi, F J Rachfordd, V G Harris, C Vittoria. Tunable negative index metamaterial using yttrium iron garnet [J]. Journal of Magnetism and Magnetic Materials,2007,313(1):187-191.
    [156]Z M Dang, L Wang, Y Yin, Q Zhang, Q Q Lei. Giant Dielectric Permittivities in Functionalized Carbon-Nanotube/Electroactive-Polymer Nanocomposites [J]. Advanced Materials,2007,19(6):852-857.
    [157]C Pecharroman, J Moya. Experimental Evidence of a Giant Capacitance in Insulator-Conductor Composites at the Percolation Threshold [J]. Advanced Materials,2000,12(4):294-297.
    [158]P Ding, E J Liang, W Q Hu, L Zhang, Q Zhou, Q Z Xue. Numerical simulations of terahertz double-negative metamaterial with isotropic-like fishnet structure [J]. Photonics and Nanostructures-Fundamentals and Applications,2009, 7(2):92-100.
    [159]I Awai, I Matsuda, M Hotta, A Sanada, H Kubo. Microwave applications of single negative materials [J]. Journal of the European Ceramic Society,2006, 26(10-11):1811-1815.
    [160]C D Liu, S N Lee, C H Ho, J L Han, K H Hsieh. Electrical Properties of Well-Dispersed Nanopolyaniline/Epoxy Hybrids Prepared Using an Absorption-Transferring Process [J]. Journal of Physical Chemistry C,2008,112(41): 15956-15960.
    [161]P S Anantha, K Hariharan. AC Conductivity analysis and dielectric relaxation behaviour of NaNO3-Al2O3 composites [J]. Materials Science and Engineering B 2005,121(1-2):12-19.
    [162]O Bierwagen, T Nagata, T Ive, C G VandeWalle, J S Speck. Dissipation-factor-based criterion for the validity of carrier-type identification by capacitance-voltage measurements [J]. Applied Physics Letters,2009,94(15): 152110.
    [163]N J Donnelly, C A. Randall. Mixed conduction and chemical diffusion in a Pb(Zr0.53,Ti0.47)O3 buried capacitor structure[J]. Applied Physics Letters,2010, 96(5):052906.
    [164]T Crepin, J F Lampin, T Decoopman, X Melique, L Desplanque, D Lippens. Experimental evidence of backward waves on terahertz left-handed transmission lines [J]. Applied Physics Letters,2005,87(10):104105.
    [165]F Bongard, H Lissek, J R Mosig. Acoustic transmission line metamaterial with negative/zero/positive refractive index [J]. Physical Review B,2010,82(9): 094306.
    [166]S X Wang, F Garet, K Blary, C Croenne, E Lheurette, J Coutaz, D Lippens. Composite left/right-handed stacked hole arrays at submillimeter wavelengths [J]. Journal of Applied Physics 2010,107(7):074510.
    [167]M G Silveirinha. Artificial plasma formed by connected metallic wires at infrared frequencies [J]. Physical Review B 2009,79(3):035118.
    [168]C Caloz, C C Chang, T Itoh. Full-wave verification of the fundamental properties of left-handed materials in waveguide configurations [J]. Journal Applied Physics,2001,90(11):5483.
    [169]D R Smith, S Schultz, P Markos, C M Soukoulis. Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients [J]. Physical Review B,2002,65(19):195104.
    [170]R W Ziolkowski. Design, fabrication, and testing of double negative metamaterials [J]. IEEE Trans. Antennas Propag.2003,51(7):1516-1529.
    [171]N T Tung, T X Hoai, V D Lam, Y P Lee. Comprehensive effective-medium analysis for the transmission properties of combined metamaterials [J]. Computational Materials Science,2010,49(4):S284-S286.
    [172]C G Granqvist, O Hunderi. Optical properties of Ag-SiO2 cermet films:a comparison of effective-medium theories [J]. Physical Review B,1978,18(6): 2897-2906.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700