用户名: 密码: 验证码:
阿姆河盆地A区块卡洛夫—牛津阶储层特征及典型气藏地质建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究区位于土库曼斯坦的东北部与乌兹别克斯坦交界处的阿姆河台向斜查尔朱台阶坚基兹库尔隆起,以中生代上侏罗统卡洛夫-牛津阶致密灰岩段(XVI)至硬石膏灰岩互层(XVac)为目的层。结合国内外碳酸盐岩层序地层、沉积相、储层特征研究及地质建模研究现状,以Vail经典层序地层学、碳酸盐岩层序地层学及沉积学等理论为指导,充分利用钻井、测井、岩心观察、薄片鉴定和地震等资料,划分单井三级层序及体系域和沉积相,进行对比,建立研究区层序地层等时格架,并以三级层序体系域为等时单元,分析沉积相纵横向展布规律及平面分布特征,建立沉积模式。在此基础上,以石油地质学、碳酸盐岩储层地质学等理论为指导,综合分析各类分析化验成果、岩矿分析成果和地震储层反演成果等,系统研究储层岩石特征、储集空间类型、成岩作用及孔隙演化、孔隙结构、储层物性、储层类型、隔夹层特征和储层空间展布特征,分析储层发育控制因素,最终对储层进行综合评价,预测有利及较有利储集相带。最后在上述研究的基础上,以开发地质学、气藏工程等理论为指导,分析研究区气藏特征并建立典型气藏的储层属性模型。
     阿姆河盆地是在海西期地向斜背景上形成和发育起来的中生代盆地。其形成和发育经历了基底形成期、稳定沉降期和碰撞改造期等三个阶段。中侏罗世沉积了一套厚度高达上千米的海相和陆相相互交错沉积夹泻湖沉积,主要为含煤碎屑岩建造,是主要烃源岩;晚侏罗世卡洛夫-牛津期,沉积了大套碳酸盐岩,是主要储层;晚侏罗世基末利-提塘期图兰台地开始回返,处于封闭的海相沉积环境,在强烈干旱气候条件下堆积了一套巨厚蒸发岩,是主要盖层。
     综合年代地层、岩石地层、生物地层及地震地层等研究成果,结合沉积相及构造地质背景分析,在研究区卡洛夫-牛津阶共识别出4个三级层序界面(均属于Vail的Ⅱ类层序界面)和3个最大海泛面,从而划分为3个三级层序,且每个三级层序内部仅识别出海侵体系域和高位体系域,不发育低位体系域。
     对研究区钻井分析,特别是岩心观察和薄片鉴定的基础上,认为研究区主要的岩石类型为灰岩类、白云岩类及石膏类,同时在研究区识别出蒸发台地、局限台地、开阔台地、台地边缘及台地前缘斜坡等沉积相。并根据资料情况,详细划分沉积亚相及微相,分析层序格架内沉积相空间展布特征,建立沉积模式,分析沉积相发育主控因素,认为研究区卡洛夫-牛津阶沉积相发育主要受构造因素、海平面变化、气候以及古地貌的影响,其中以海平面变化影响最大。
     根据沉积环境将储层岩石类型划分生物礁灰岩和生物滩灰岩两大类。研究区储集空间类型相对简单,包括孔隙、溶洞和裂缝,经历的成岩作用主要有压实压溶作用、胶结作用、溶蚀作用、充填作用、重结晶作用、破裂作用和白云石化作用等,其中以溶蚀作用意义最大,其孔隙演化经历了同生期-早成岩阶段、中成岩阶段早期和中成岩阶段晚期三个阶段。孔喉关系以大、中孔—粗、中喉组合为主,中孔—中喉组合和小孔—小喉组合次之,小孔—微喉和微孔—微喉组合少量。储层类型以孔洞型储层为主,孔隙型和裂缝—孔隙型储层次之。硬石膏灰岩互层(XVac)以薄储层为主,多呈透镜状分布,连续性差;层状灰岩(XVp)上部以中-厚层状储层为主,连续性较好,但下部以薄储层为主,连续性较差;块状灰岩(XVm)则以厚层状储层为主,连续性好,但从上到下具有由好变差的趋势。优质储层发育主控因素有高位体系域、生物礁灰岩和颗粒灰岩、生物礁和生物滩及溶蚀作用,最终对储层进行综合评价,结合层序地层及沉积相研究成果,认为研究区有利储集区带主要位于S地区构造高部位,较有利储集区带位于N地区N5井西南部、M地区的M22和M23井区及Y地区构造高部位。
     研究区已发现的气田均属于岩性-构造复合圈闭气藏;除Y气田属于凝析气藏,其余气田均属于湿气气藏;除Y气田属于异常低压外,其余气藏均属于正常压力系统;气水关系复杂,不同构造之间具有不同的水动力系统,同一构造不同井区也处于不同的水动力系统,当然也就没有统一的气水界面及相同的界面高度,但在总体上具有西高东低、北高南低的特征。结合典型气田S气田的地质情况及资料情况,直接以储层地震预测成果作为约束条件,在边部井点较少的地区合理构建“虚拟井”作为插值控制,在忠实井点测井数据的基础上,采用随机建模方法,建立合理的地质模型表征储层属性参数空间的变化规律,为后期数值模拟提供可靠依据。
In this paper, the study area is located in the junction of Uzbekistan and thenortheast of Turkmenistan. The target layer is that from compact limestone (XVI) tothe interbred of anhydrite and limestone (XVac) of Callovian-Oxfordian in the upperJurassic of Mesozoic. According to the assignments and purposes of the paper, theauthor combines with the status of carbonate sequence stratigraphy and sedimentaryfacies in and abroad, utilizes the theory of Vail’s classic sequence stratigraphy,carbonate sequence stratigraphy and sedimentology as the direction, integratesdrilling, logging, core observation thin section analysis and seismic data, and thenclassifies the3rd order sequence,systems tract and sedimentary facies in the studyarea,which are launched and compared. After that the whole area sequencestratigraphy framework is built. Sedimentary facies characteristics of the spread ofVertical and horizontal distribution and plane distribution are analyzed under theisochronous unit of systems tract, then the depositional model is established. Basedon this, taking the theory of petroleum geology and carbonate reservoir geology asthe guidance, integrating analysis and test results, rock and mineral analysis resultsand seismic reservoir inversion results, the author systematically studies thereservoir rock characteristics, reservoir space types, diagenesis and porosityevolution, pore structure, physical property, reservoir type, interbed characteristicsand distribution of reservoir space, and analyzes controlling factor of reservoirdevelopment. Finally, the author comprehensively evaluates the reservoir andpredicts favorable and more favorable reservoir belts. On the basis of the abovestudy, guiding by the theory of development geology and gas reservoir engineering,gas reservoir characteristics in the study area is analyzed; reservoir property model of the typical gas reservoir is established.
     Amu Darya basin is a Mesozoic basin which develops in the background ofHercynian syncline, which formation and development through three stages that arebase formation, stable subsidence and collision transformation. Thousands meters ofmarine and continental intertwined deposition, which is coal-bearing clastic rockconstruction and main source rock, is deposited in the middle Jurassic. A large set ofcarbonate rock which is the main reservoir is deposited in Callovian–Oxfordian oflate Jurassic. The study area is in a closed marine depositional environment becauseTulan platform started to return to in Kimmeridgian–Tithonian of late Jurassic,anda large set of evaporite rock which is the main cap-rock is built up in the strong-aridclimatic condition.
     Integrated findings of chrono-stratigraphy, lithostratigraphy, biostratigraphy,seismic stratigraphy, combined with sedimentary facies and tectonicbackground,four sequence boundaries (both in Vail Class Ⅱ sequence boundary)and three maximum flooding surface can be identified in Callovian-Oxfordian inthe study area, which is divided into three third order sequence. Within each of them,transgressive systems tract and high-stand systems tract can be identified, withoutlow-stand systems tract.
     Through the analysis of drilling wells in study area, especially on the basis ofcore observation and thin section authentication, the author believes that limestones,dolomites and gypsums are the main types of rocks, and recognizes a sort ofsedimentary facies such as evaporative platform facies, restricted platform facies,open platform facies, platform edge facies and platform foreslope facies in studyarea. What’s more, through dividing sedimentary subfacies and microfacies,analyzing horizontal distributing character of sedimentary facies within sequenceframework, establishing sedimentation model, and analyzing main controlling factorof sedimentary facies, the author makes such a conclusion that the development ofCallovian-Oxfordian sedimentary facies in study area is mainly influenced bytectonic movements, sea level changing, climate and ancient landform, amongwhich sea level changing performs is the most influential factor.
     According to the sedimentary environment, the type of reservoir rocks can bedivided into two types, which are biohermal limestone and organic bank limestone.The type of pore spaces, which includes pores, limestone caves and fractures, isrelatively simple. They have mainly undergone compaction, pressolution,cementation, dissolution, packing action, rejuvenation of crystals, cataclasis and dolomitization, among which dissolution has the most significance. The porosityevolution has undergone synchronous period-early diagenesis stage, early period ofmesozone rock stage and late period of mesozone rock stage. Big, mediumporosity-coarse, medium throat is the main combination in study area, mediumporosity-medium throat and small porosity-thin throat combination are second, andthere are a less of small porosity-micro throat and micro porosity-micro throatcombination. Pore-cavity limestone reservoirs are the main type of reservoirs,porosity limestone reservoirs and fracture-porosity limestone reservoirs are second.Thin reservoirs are the main type of reservoirs in the interbred of anhydrite andlimestone (XVac), which have bad continuity and often distribute as lens. Medium-thick reservoirs, which have good continuity, are the main type of reservoirs in theupper of layered limestone (XVp), but thin reservoirs, which have bad continuity,are the main type of reservoirs in the lower of layered limestone (XVp). Thickreservoirs, which have good continuity and the trend which transforming from goodto bad when tracking from upper to lower, are the main type of reservoirs in Massivelimestone (XVm). The controlling factors of reservoir development are highstandsystem tract, rock types, sedimentary facies and diagenesis. Finally, through overallevaluation of reservoir and regional geological characteristics, the author believesthat the higher sections of region S are the most favorable reservoir areas, thesouthwest of well N5in region N, the higher sections of well M22, M23of region Mand Y are the less favorable reservoir areas.
     Gas fields discovered in the study area are all lithologic-structural combinedgas reservoir with normal pressure system except for the Y gas pool, a condensategas reservoir with abnormal low pressure system. Within these gas fields, thegas-water relationship is quietly complex, with different hydrodynamic system indifferent structure and even different in the same structure, resulting in no unifiedgas-water interface and gas column height. However, in general, the gas-waterinterfaces are high in the west and north but lower in the east and south. Based onthe geological condition and data set in the S gas field, with seismic prediction resultof reservoir development as constraints, virtual wells were implanted in region withrare wells as an interpolation control, then on the basis of logging data, stochasticmodeling method was adopted here to establish a reasonable geological modelcharacterizing the spatial and temporal variation rule of their reservoir propertyparameters.
引文
[1]张微微.“十二五”我国天然气在能源消费中由4%提高到8%[EB/OL].[2011-11-17]http://www.cusdn.org.cn/xcpxjs/html/165786.html.
    [2] Eberli G. P.,&Ginsburg R. N.1989. Cenozoic progradation of northwestern GreatBahama Bank, a record of lateral platform growth and sea level fluctuations. In Crevello,P. D., Wilson, J. L., Sarg J. F.,&Read, J. F.(Eds.), Controls on Carbonate Platform andBasin Development. SEPM Spec. Pub.44:339-351.
    [3] Handford, C. R.&Loucks, R. G.1990. Dynamic response of carbonate systems tracts torelative sea level changes and the development of carbonate sequences in platforms andramps. AAPG.74:1-669.
    [4] Handford, C. R.&Loucks, R. G.1991.Unique signature of carbonate strata and thedevelopment of depositional sequence and system tract models for ramps, rimmedshelves, and detached platforms. AAPG.75:1-558.
    [5] Hardie, L. A, E Newton Wilson,&Goldhammer R. K.1991. Cyclostratigraphy anddolomitization of the Middle Triassic latemar buildup, the Dolomies, northtern Italy:Guidebook ExcursionF. Dolomies Conference on Carbonate Platforms andDolomitization, Ortisei, Italy.56.
    [6] Hunt, D.,&Tucker, M. E.1991. Sequence stratigraphic models for carbonate platforms:Dolomies Conference on Carbonate Platforms and Dolomitization, Ortisei, Italy.113.
    [7] Jacquin, T. A., Arnaud-Vanneau, H. Arnaud, C. Ravenne,&P. R.Vail.1991. Systemstracts and depositional sequences in a carbonate setting: a study of continuous outcropsfrom platform to basin at the scale of seismic lines. Marine and Petroleum Geology.8(2):122-139.
    [8] Vail, P. R., Mitchum, Jr. R. M., Todd, G. G., Widmier, J. M., Thompson, S., etc.1977.Seismic stratigraphy and global changes of sea level. In: C. E. Payton (Eds), Seismicstratigraphy-applications to hydrocarbon exploration, AAPG Mem.26:49-212.
    [9] Robert G. Loucks&J. Frederick Sarg.1993. Carbonate Sequence Stratigraphy-RecentDevelopments and Applications [M].Published by The American Association ofPetroleum Geologists.
    [10]王亚琳.碳酸盐岩储层半定量评价技术[J].海洋石油.2002:42-47.
    [11] Folk, R. L.,1959. Practical petrographic classification of limestone. Am. Assoc. petrol.Geol. Bull.,43:1-38
    [12] Dunham, R. J.1962. Classification of carbonate rocks according to depositional texture.In: w. E. Ham (Ed.), Classification of Carbonate Rocks.AAPG Mem.1,pp.108-121.
    [13]曾允孚,夏文杰.沉积岩石学.[M].地质出版社.1986.
    [14] Surdam, R. C., Boese, S. W. and Crossey, L. J,1984.The chemistry of secondaryporosity, In: D. A. Mecdonald and R.C.Surdam (Eds), Clastic Diagenesis, AAPGMem.37:127-149.
    [15] Lundegard, P. D. and Land, L. S.1986. Carbon dioxide acids: their role in porosityenhancement and cementation, Paleogene of the Texas Gulf Coast. In D. L. Gautier. ed.,Roles of organic matter in sediment diagenesis, SEPM Special Publication.No38:129-146.
    [16] Moor, C. H.,1989, Carbonate diagenesis and porosity, Elsevier AmsterdamDevelopment in Sedimentology. V46:338.
    [17] Surdam, R. C.,1989. Organic-inorganic interaction and sandstone diagenesis, AAPGBulletin.V73.No1.
    [18] Mazzullo, S. J. and Harris, P. M.,1992. Mesogenetic dissolution: Its role in porositydevelopment in carbonate reservoir, AAPG Bulletin.V76.No5:607-620.
    [19] Machel, G. H., Krouse, H. R. and Sasser, R.1995. Products and distinguishing criteria ofbacterial and thermo-chemical sulfate reduction, Aplied Geochemistry.V10:373-389.
    [20]国家经济贸易委员会.SY/T5478-2003碳酸盐岩成岩阶段[S].北京:石油工业出版社,2003.
    [21]赵中平,牟小清,陈丽.滨里海盆地东缘石炭系碳酸盐岩储层主要成岩作用及控制因素分析[J].现代地质.2009,23(5):828-834.
    [22]陈洪德,黄福喜,徐胜林等.中上扬子地区碳酸盐岩储层发育分布规律及主控因素[J]矿物岩石.2009,29(4):7-15.
    [23]张涛,闫相宾.塔里木盆地深层碳酸盐岩储层主控因素探讨[J]石油与天然气地质.2007,28(6):745-754.
    [24]盛贤才,郭战峰,陈学辉等.江汉平原及邻区海相碳酸盐岩的古岩溶特征及控制因素[J].海相油气地质.2007,12(2):17-22.
    [25]旷理雄,郭建华,黄太柱等.塔里木盆地于奇地区碳酸盐岩储集层特征及其控制因素[J].新疆石油地质.2008,29(1):15-18.
    [26]穆龙新.油藏描述的阶段性及特点[J].石油学报.2000,21(5):103-108.
    [27]裘怿楠,陈子琪.油藏描述[M].北京:石油工业出版社.1996.
    [28]吴胜和,金振奎,黄苍钿等.储层建模[M].北京:石油工业出版社.1999.
    [29] Haldorsen H, Damsleth E. Stochastic modeling [J].Joumal of Petroleum Technology,1990,42(4):404-412.
    [30]吴胜和,李宇鹏.储层地质建模的现状与展望[J].海相油气地质.2007,12(3):53-60.
    [31]穆龙新.裂缝储层地质模型的建立[J].石油勘探与开发.1995,22(6):78-82.
    [32]张淑品,陈福利,金勇.塔河油田奥陶系缝洞型碳酸盐岩储集层三维地质建模[J].石油勘探与开发.2007,34(2):175-180.
    [33]姜贻伟,刘红磊,杨福涛等.震控储层建模方法及其在普光气田的应用[J].天然气工业.2011,31(3):14-17.
    [34]徐维胜,龚彬,何川等.基于离散裂缝网格模型的储层裂缝建模[J].大庆石油学院学报.2011,35(3):13-16.
    [35]刘洛夫,朱毅秀.滨里海盆地及中亚地区油气地质特征[M].北京:中国石化出版社.2007.
    [36]安作相.卡拉库姆盆地大气田形成条件及经济浅析[J].中国海上油气地质.1990,4(5):59~66.
    [37]车自成,刘良,罗金海.中国及其邻区区域大地构造学[M].科学出版社.2002.
    [38]李春昱.亚洲大地构造图及说明书[M].北京:地质出版社.1982.
    [39]施央申,卢华夏,贾东等.中亚大陆古生代构造形成及演化[J].高效地质学报.1996,2(2):134~145.
    [40]李春昱.亚洲古板块划分及有关问题[J].地质学报.1992,57(1):1-8.
    [41]雷振宇,杜社宽,张朝军等.中亚地区与中国西部盆地类比及其油气勘探潜力[J].地球学报.2004,25(1):67-71.
    [42]郭永强,刘洛夫,朱胜利等.阿姆达林盆地油气地质特征与有利区带预测[J].新疆石油地质.2006,27(2):260-264.
    [43]徐文世,刘秀联,余志清等.中亚阿姆河含油气盆地构造特征[J].天然气地球科学.2009,20(5):744-748.
    [44]张志伟,何永垚,王春生等.中亚地区阿姆河盆地查尔朱、布哈拉阶地构造特征及演化[J].海相油气地质.2010,15(4):48-56.
    [45]李霞,范宜仁,杨立伟等.测井曲线小波变换特征在层序地层划分中的应用[J].大庆石油地质与开发.2006,25(4):112~115.
    [46]杨磊,刘池洋,张小莉等.利用测井曲线自动划分层序地层的方法研究[J].西北大学学报(自然科学版).2007,37(1):111~114.
    [47]朱红涛,黄众,刘浩冉等.利用测井资料识别层序地层单元技术与方法进展及趋势[J].地质科技情报.2011,30(4):29~36.
    [48]闫建平,蔡进功,赵铭海等.测井信息用于层序地层单元划分及其对比研究综述[J].地层学杂志.2009,33(4):441~450.
    [49]遇运良.层序地层自动划分与对比方法研究及其应用[D].吉林:吉林大学,2009.
    [50] Nio S D,Brouwer J H,Smith D G,et al. Spectral trend at-tribute analysis: Applicationsin the stratigraphic analysis of wirelogs [J]. Frist Break.2005,23(4):71-75.
    [51] De Jong M, Nio S D, Smith D G,et al.Subsurface correlation in the UpperCarboniferous (Westphalian) of the Anglo-Dutch Basin using the climate-Stratigraphicapproach [J].Frist Break.2007,25(12):49-59.
    [52]路顺行,张红贞,孟恩等.运用INPEFA技术开展层序地层研究[J].石油地球物理勘探.2007,42(6):703~708.
    [53]贾振远,李之琪.碳酸盐岩沉积相和沉积环境[M].武汉:中国地质大学出版社.1989.
    [54]费怀义,徐刚,王强等.阿姆河右岸区块气藏特征[J].天然气工业.2010,30(5):13-17.
    [55]张文起,刘学清,张铭等.土库曼斯坦阿姆河地区点礁储层地震正演模拟及响应[J].石油天然气学报.2011,38(1):72-75.
    [56]马永生.碳酸盐岩微相—分析、解释及应用[M].北京:地质出版社.2006.
    [57]马永生.碳酸盐岩储层沉积学[M].北京:地质出版社.1999.
    [58] Shaw, A. B., Time in stratigraphy: New York, McGraw-Hill,1964, P.353.
    [59] Irwin, M. L., General theory of epeiric clear water sedimentation: AAPG Bulletin,1965,V.49,P.445-459
    [60] Ahr, W. M., The carbonate ramp.Gulf Coast Association of Geological SocietiesTransactions,1973, V.23, P.221-225.
    [61] Ginsburg, R. N. and James, N. P., Holocene carbonate sediments of continental shelf.Inthe geology of continental margins.New York Spring-Verlag.1974, P.137-155.
    [62] Wison, J. L., Carbonate facies in geologic history: New York, Springer-Verlag,1975,p.47.
    [63]关士聪,演怀玉,丘东洲等.中国晚元古代至三迭纪海域沉积环境模式探讨[J].石油与天然气地质.1980,1(1):2-17.
    [64] Turker, M.E., Sedimentary petrology-An Introduction,1981.
    [65] Read, J. F., Carbonate platform facies models: AAPG Bulletin,1985, v.69, p.1-21.
    [66] Carozzi, A. V., Carbonate depositional models. Prentice-Hall Inc,1989.
    [67]王长胜.阿姆河盆地生物礁气藏精细描述[D].长安大学.2009.
    [68]孙林.土库曼斯坦阿姆河右岸三维勘探区侏罗系盐下礁体识别及目标选择[D].北京:中国地质大学.2010.
    [69]马季.AVO反演在阿姆河右岸碳酸盐岩中应用[D].北京:中国地质大学.2010.
    [70]徐明华,李瑞,张世荣等.阿姆河右岸区块碳酸盐岩岩性气藏勘探实践—以麦捷让构造区为例[J].天然气工业.2011,31(4):24-27.
    [71]蒋正中.储层精细描述技术在土库曼斯坦碳酸盐岩中的应用[D].北京:中国地质大学.2010.
    [72]郭振华,李光辉,吴蕾等.碳酸盐岩储层孔隙结构评价方法—以土库曼斯坦阿姆河右岸气田为例[J].石油学报.2011,32(3):459-465.
    [73]包强,陈虹,张晓东等.萨曼杰佩气田老测井资料处理解释与储层评价[J].天然气工业.2009,29(11):38-40.
    [74]张兵,郑荣才,刘合年.土库曼斯坦萨曼杰佩气田卡洛夫-牛津阶碳酸盐岩储层特征[J].地质学报.2010,84(1):117-126.
    [75]郑荣才,赵灿,刘合年等.阿姆河盆地卡洛夫-牛津阶碳酸盐岩阴极发光性及其研究意义[J].成都理工大学学报.2010,37(4):377-385.
    [76]董霞,郑荣才,吴蕾等.土库曼斯坦萨曼杰佩气田储层成岩作用于孔隙演化[J].岩性油气藏.2010,22(2):54-61.
    [77]强子同.碳酸盐岩储层地质学京[M].中国石油大学出版社.2007.
    [78]陆正元.油气田开发地质学[M].成都理工大学.2004.
    [79]张厚福.石油地质学[M].北京:石油工业出版社.2005.
    [80]刘宝珺.沉积成岩作用研究的若干问题[J].沉积学报.2009,27(5):787-791.
    [81]樊爱萍,杨仁超,李义军.成岩作用研究进展与发展方向[J].特种油气藏.2009,16(2):1-8.
    [82]李忠,陈景山,关平.含油气盆地成岩作用的科学问题及研究前沿[J].岩石学报.2006,22(8):2113-2122.
    [83]杨威,魏国齐,李跃纲,段勇等.川西地区须家河组二段成岩作用及其对储层发育的影响[J].天然气地球科学.2008,19(2):188-192.
    [84]刘宝珺,张锦泉.沉积成岩作用[M].北京:科学出版社.1992.
    [85]唐泽尧.碳酸盐岩储集层的动变化与气藏的开发[J].石油勘探与开发.1987.
    [86]雍世和,张超谟等.测井数据处理与综合解释[M].北京:中国石油大学出版社.2007.
    [87]刘春晓.塔中隆起西部围斜区奥陶系沉积与储层特征研究[D].中国科学院研究生院.2010.
    [88]吴晓智,蒋宜勤,李佰华等.准噶尔盆地西北缘中拐-五八区佳木河组储层主控因素及发育区预测[J].新疆地质.2010,28(2):174-179.
    [89]赵宗举,周新源,王招明等.塔里木盆地奥陶系边缘相分布及储层主控因素[J].石油与天然气地质.2007,28(6):738-744.
    [90]王文之,田景春,张翔等.川南丹凤—塘河地区嘉陵江组储层特征及储层主控因素[J].中国地质.2012,39(1):127-134.
    [91]陈洪德,黄福喜,徐胜林.中上扬子地区碳酸盐岩储层发育分布规律及主控因素[J].矿物岩石.2009,29(4):7-15.
    [92]张涛,闫相宾.塔里木盆地深层碳酸盐岩储层主控因素探讨[J].石油与天然气地质.2007,28(6):745-754.
    [93]焦伟伟,吕修祥,周园园.塔里木盆地塔中地区奥陶系碳酸盐岩储层主控因素[J].石油与天然气地质.2011,32(2):199-206.
    [94]王瑞华,谭钦银.川东北地区飞仙关组鲕滩储层的主控因素[J].石油天然气学报.2011,33(9):37-42.
    [95]杜铭,郭康良.沙15块油藏储层相控建模研究[J].石油天然气学报.2006,28(6):46-47.
    [96]廖保方,龙国清,刘卓.非均质河道砂体多级相控建模方法探讨[J].石油天然气学报.2010,32(3):32-37.
    [97]裘怿楠,贾爱林.储层地质模型10年[J].石油学报.2000,21(4):101~104.
    [98]吴胜和,张一伟,李恕军等.提高储层随机建模精度的地质约束原则[J].石油大学学报.2001,25(1):55~58.
    [99]江同文,唐明龙,王洪峰等.克拉2气田稀井网储层精细三维地质建模[J].天然气工业.2008,28(10):11~14.
    [100]赵勇,李进步,张吉等.低渗透河流相储层建模方法与应用—以苏里格气田苏6加密试验区块为例[J].天然气工业.2010,30(7):39~42.
    [101]李毓,杨长青.储层地质建模策略及其技术方法应用[J].石油天然气学报.2009,31(3):30~35.
    [102]刘文玲.地震约束储层地质建模技术[J].石油学报.2008,29(1):64~68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700