用户名: 密码: 验证码:
煤泥水中矿物颗粒表面荷电特性及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭在我国能源消费中占有主导地位,并且在今后较长时间内其主导地位依然不变。十二五规划中明确要求:“要合理地使用能源资源,提高能源加工利用效率,构建经济清洁的能源产业体系”。而煤炭洗选加工是煤炭清洁利用的技术源头,每洗选1吨原煤就要产生3m3的煤泥水,因此,能否解决好对煤泥水的处理问题已成为“实现煤炭清洁利用”的关键因素。
     通过SEM、XRD及工业分析对淮南丁集选煤厂不同粒度级和密度级的原煤矿物组成、赋存形式及其泥化特性进行分析,发现丁集选煤厂原煤主要矿物为高岭土和石英,且以细颗粒形式分散嵌布在煤中;不同密度级原煤随着密度的增大,矿物含量逐渐增大,原煤泥化煤泥的粒度分布呈现“两头大、中间小”的特点;不同粒度级原煤,随着原煤粒度的减小,矿物含量先减小后增大,粒度为0.5mm时矿物含量最小,原煤泥化煤泥的粒度分布呈现“尾大,头小”的特点。
     煤泥颗粒表面荷负电是煤泥颗粒保持高度分散性、稳定性的主要原因,研究表明矿物颗粒表面带电原因大致有优先解离(或溶解)、吸附和电离、晶格取代等。石英颗粒表面由于水合作用存在大量的-SiOH,在不同的pH值条件下,OH-或H+在矿物表面的分布发生变化,便会影响颗粒表面的荷电性。高岭土颗粒表面的电性及荷电量可近似认为是由其层面电荷和端面电荷的代数和所决定的。高岭土层面及端面存在若干Si-O及Al-O会生成Si-OH和Al-OH,但其荷电性要受介质pH值的影响:(1)层面电性:①在酸性介质中表面带正电,②在碱性介质中表面带负电;(2)端面电性:①当pH值低时,其端面荷正电,②在中性和弱酸性介质中端面不荷电,③碱性介质中,端面会荷负电。
     通过对搅拌强度、pH值、浸泡时间、水质硬度及阳离子价态五个因素对煤伴生高岭土、石英、精煤及其混合矿物颗粒表面电动电位变化规律的研究表明,随着转速的提高及浸泡时间的增加,各矿物表面zeta电位绝对值都先增大而后趋于减小;随着水硬度及阳离子价态的增大,各矿物表面zeta电位绝对值都逐渐减小;随着pH值的增大,在pH=8左右时,各单一矿物颗粒表面zeta电位绝对值出现最大值,在pH=10左右时,混合矿物颗粒表面zeta电位绝对值出现最大值,随后都趋于平缓。这为完善煤泥水中矿物颗粒分散基本理论,为选煤厂选择药剂,改善药剂添加制度,优化煤泥水处理工艺提供理论依据,具有工业应用价值。
Coal is in a dominant position in energy consumption system and its dominance remains unchanged over an extended period in the future. The twelfth Five-Year Plan clearly required:" to use energy resources in reason, to improve energy efficiency of processure, to establish a clean and economy energy industrial system". But coal washing and processing is the technology source of clean usage,and it is necessary to produce3m3coal slurry washing one ton coal,so, it is the key factor for "realizing clean coal usage"to solve the problem of slime water or no.
     The paper uses SEM、XRD and industry analysis methods to analyse the mineral compositons, occurrence form and clay characteristics of different density and particle level of raw coal from Dingji Preparation Plant in Huainan city to master that the major mineral compositions are kaolinite and quartz with fine particles form scattered in raw coal. It is that raw coal mineral content increases gradually with the increase of coal density and the particles distribution property of mud broken from raw coal presents "two large head and small middle" for raw coal of different density level. For different particle size level raw coal, it is known that mineral content reduces first increases after with the decrease of raw coal particle size and reaches minimum amount in the grain size of0.5mm, and the particles distribution property of mud broken from raw coal presents "big tail, small head".
     The surface negative charge of slime particles is the main reason to keep highly dispersivity and stability, and the study shows that the main reasons of particle surface charged are priority dissociation(or solution), adsorption and inonization, lattice replac--ement etc. There are a lot of-SiOH with the hydrationon the quartz particle surface, and that the distribution of OH-or H+changes at different pH values will Influence the electrical characteristics of the particle surface. The electrical properties and quantities of the kaoline particle surface are approximatly decided by the charge sum of bedding surface and head face.
     there are a lot of Si-O and Al-O that can generate Si-OH and Al-OH on the kaoline particle surface, and the electrical properties of the kaoline particle surface are affected by pH value:(1)the electrical properties of bedding surface:①surface positively charges in the acidic medium,②surface negatively charges in alkaline medium;(2) the electrical properties of head face:①hen low pH value, the head face positively charges;②the head face don't charge in a neutral and weak acid medium;③the head face negatively charges in alkaline medium.
     The research in the influences of stir intensity, pH value, soaking time, water hardness and different valence cations on particle surface electric potential of coal associated kaolin, quartz, clean coal and theirs mixture shows that the mineral particle surface electric potential absolute value both increases early and then tends to decrease as the stir intensity and soaking time increase, both decreases with the water hardness and cation valence increasing, in addition, the zeta potential absolute value of a single mineral particles surfaces appear the maximum value at pH=8or so, and the zeta potential absolute value of mixture mineral particles surfaces appear the maximum value at pH=10or so with the increase of pH value, subsequently level off. It can perfect slim mineral particles basic dispersion theory in water, and provide a theoretical basis for coal preparation plant tochoose pharmacy, improve pharmacy adding system, better Slime water treatment process,so it is industrial applications.
引文
[1]陈清如.发展洁净煤技术推动节能减排[J].高校科技与产业化,2008,3:65-67.
    [2]亓欣,匡亚莉,林喆,等.高灰细泥煤泥水沉降实验研究[J].煤炭工程,2011,(2):88-90.
    [3]程宏志,常秀芳,顾欣.我国选煤厂洗煤废水处理技术现状及发展方向[J].选煤技术,2003,6:55-57.
    [4]李亚萍,李跃金.粒度组成对煤泥水沉降影响的研究[J].广东化工,2011,38(6):312-314.
    [5]李亚峰,刘铁成,曹丽丹.洗煤废水难处理的原因及处理方法研究[J].矿业安全与环保,1999,(2):55-57.
    [6]闵凡飞,张明旭,朱金波.高泥化煤泥水沉降特性及凝聚剂作用机理研究[J].矿冶工程,2011,31(4):55-58.
    [7]Sabah E, Erkan Z E.Interaction mechanism of flocculants with coal waste slurry[J]. Fuel,2006(3):350-359.
    [8]葛义杰,张兴,高明侠.凝聚剂与微生物絮凝剂对煤泥水的分布处理[J].煤炭加工与综合利用,2010,5:22-23.
    [9]李静.高泥化煤泥水的絮凝沉降[J].煤炭加工与综合利用,2006,(2):31-32.
    [10]王立成,董宪姝.东河矿选煤厂高泥化煤泥水沉降特性研究[J].选煤技术.2009,(5):17-19.
    [11]闫芳,聂荣春,张东杰,等.任楼选煤厂煤泥水处理的试验研究[J].选煤技术,2009,(1):12-14.
    [12]姚重华.混凝与絮凝剂[M].北京:中国环境科学出版社,1991,536.
    [13](日)水泽.高分子水处理剂[M].北京:化学上业出版社,1985,286.
    [14]王少会,徐初阳.难净化煤泥水沉降试验研究[J].安徽理工大学学报(自然科学版),2004,24(增刊):80-82.
    [15]徐初阳,罗慧,聂荣春,等.聚丙烯酰胺的性质对煤泥水絮凝效果的影响[J].煤炭技术,2004,23(1):63-66.
    [16]林喆,杨超,沈正义,等.高泥化煤泥水的性质及其沉降特性[J].煤炭学报,2010,35(2):312-315.
    [17]郭世名,郭凤梅.凝聚剂与絮凝剂在杏花选煤厂煤泥水处理中的应用研究[J].煤炭技术,2008,2(27):109-111.
    [18]于尔铁,顾长波.煤泥水处理新工艺—脱泥浮选与洗水二次澄清[J].世界煤炭技术,1994,6(2):15-18.
    [19]崔志广,孙体昌,寇珏,等.浮选捕收剂气浮浓缩城市污水处理厂剩余污泥的研究[J]中国矿业,2007,10(16):70-73.
    [20]杨柳,贾秀菊,张文芝,等.某造纸废水处理工程实例[J].中国矿业,2007,10(16):70-73.
    [21]李复明,陈启构,胡达清.应用竖流式浓缩池降低脱硫废水含固率的实践[J].浙江电力,2011,10:53-55.
    [22]阚小华,赵济强.高压脉冲电凝法处理电镀混合废水[J].电镀与环保,2003,23(10):30-32.
    [23]董宪姝,姚素玲,张凌云.电化学絮凝的应用与发展[J].选煤技术,2008,8(4):132-134.
    [24]夏仁专.不同阴离子度聚丙烯酰胺与硫酸铝协同作用对煤泥水沉降处理效果的实验研究[J].广东化工,2011,38(5):129-131.
    [25]刘雁鹏.选煤厂煤泥水絮凝沉降试验研究[J].中国煤炭,2011,37(9):79-81.
    [26]黄廷林,李梅,高晓梅.结团絮凝工艺处理洗煤废水的研究[J].工业用水与废水,2002,33(4):23-25.
    [27]盖春燕.高泥化煤泥水特性与处理工艺研究[D].太原:太原理工大学,2006,4:34-37.
    [28]张明旭.选煤厂煤泥水处理[M].徐州:中国矿业大学出版社,2005.
    [29]李少章,朱书全.细煤泥水凝聚与絮凝沉降[J].煤炭科学技术,2004,32(9):13-15.
    [30]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社.2003.
    [31]郭玲香,欧泽深.煤泥水悬浮液体系中EDLVO理论及应用[J].中国矿业,1988,8(6):69-72.
    [32]郭香玲,欧泽深,胡明星.煤泥水悬浮体系中EDLVO理论及应用[J].中国矿业,1999(6).
    [33]张青明,刘炯天,王永田.水质硬度对煤泥水中煤和高岭石颗粒分散行为的影响[J].煤炭学报,2008,33(9):1058-1062.
    [34]张明青,刘炯天,李小兵.煤泥水中粘土颗粒对钙离子的吸附试验研究及机理探讨[J].中国矿业大学学报,2004,33(4):547-551.
    [35]张明青,刘炯天,单爱琴,等.煤泥中Ca2+在黏土矿物表面的作用[J].煤炭学报,2005,30(5):637-641.
    [36]张明青.煤泥水凝聚沉降机理及体系耗散结构特征研究[D].徐州:中国矿业大学,2006.
    [37]刘炯天,冯莉.基于水质调整的煤泥水澄清控制方法[P].中国专利. 200710190527.5,2008.
    [38]刘炯天,张明青,曾艳.不同类型黏土对煤泥水中颗粒分散行为的影响[J].中国矿业大学学报,2010,39(1):60-63.
    [39]盖春燕,樊民强.pH值对煤泥水处理的影响[J].选煤技术,2010,2:24-26.
    [40]朱金波,王跃,闵凡飞,等.新集二矿选煤厂煤炭泥化及煤泥沉降絮凝沉降研究[J].煤炭加工与综合利用,2007,6:5-7.
    [41]闵凡飞,张明旭,范肖南.选煤厂煤泥浆燃烧特性的研究[J].煤炭学报,2004,29(2):216-219.
    [42]闵凡飞,张明旭,范肖南.选煤厂煤泥浆流变性的研究[J].选煤技术,2004,1:17-19.
    [43]张明旭,李庆,张东晨,等.几种生物脱硫菌种作为生物抑制剂对人工煤样的浮选脱硫研究[J].选煤技术,2006,(5):79-82.
    [44]徐初阳,郑描,张明旭.浮游选煤中抑制剂的应用及作用机理[J].煤炭学报,2006,31(3):351-354.
    [45]徐初阳,聂容春,张明旭.煤泥浮选中抑制剂的应用研究[J].矿冶工程,2005,25(2):34-35.
    [46]徐初阳,俞海鹰,徐天海.任楼煤矿选煤厂煤泥水絮凝沉降试验研究[J].煤炭科学技术,2009,37(3):112-114.
    [47]徐初阳,王少会.絮凝剂和凝聚剂在煤泥水处理中的复配作用[J].矿冶工程,2004,24(3):41-43.
    [48]聂容春,申秀梅,罗乐,等.光引发合成阳离子聚丙烯酰胺及其性能研究[J].精细石油化工,2011,28(3):53-56.
    [49]NIE Rongchun, GUO Li-ying, XU Chuo-yang. Study on synthesis and Flocculati--on property of cation-polya crylamide [J]. Journal of Coal Science and Engineering, 2008,14(1):143-146.
    [50]杨红霞,程小冬,刘为东.兴隆庄煤矿选煤厂煤泥水沉降试验研究[J].矿业安全与保护,2009,36(6):34-38.
    [51]朱书全,降林华,邹立壮.微细粒煤泥水用絮凝剂的合成与应用[J].中国矿业大学学报,2009,38(4):534-539.
    [52]江慧华,马森,方继敏.微生物絮凝剂产生菌的筛选及其絮凝活性研究[J].安徽农业科学,2011,39(15):8890-8993.
    [53]雷青娟,张正国.微生物絮凝剂产生菌的筛选及絮凝特性的研究[J].安徽农学通报,2011,17(13):29-31.
    [54]刘瑞娟,柴涛.微生物絮凝剂产生菌的筛选与絮凝特性研究[J].安徽农业科学,2011,39(18):11068-11069.
    [55]吴学凤,张东晨,姜绍通.酱油曲霉絮凝煤泥水的试验研究[J].煤炭学报,2007,32(4):433-435.
    [56]张东晨,张明旭,陈清如.疏水性微生物对细粒煤的絮凝试验研究[J].洁净煤技术,2006,12(2):20-22.
    [57]张东晨,张明旭,陈清如.煤泥水处理中絮凝剂的应用现状及发展展望[J].选煤技术,2004,(2):1-3.
    [58]张东晨,张明旭,吴学凤,等.煤炭生物絮凝工艺条件的优化试验[J].中国煤炭,2009,35(1):64-67.
    [59]Liang Zhi, Han Baoping, Liu Hong. Optimum conditions to treat high concentra--tion microparticle slime water with bioflocculants [J]. Mining Science and Technology, 2010,20:0478-0484.
    [60]陈洪砚,李铁庆.电絮凝法处理煤泥水的研究[J].环境保护科学,1992,18(1):43-47.
    [61]董宪姝,姚素玲,候基贵.一种电解法沉降净化煤泥水的方法[P].中国专利,200910073654.6,2009.
    [62]薛玺罡.磁处理及水在煤泥水处理中的应用[J].煤炭技术,2000,19(3):30-32.
    [63]Brian K.S., Garrison S. Surface charge properties of kaolinite [J].Clays and Clay Minerals,1997,45(1):85-91.
    [64]Etelka Tombacz, Marta Szekeres.Sutface charge heterogeneity of kaolinite inaqueous suspension in comparison with montmorillonite[J].Applied Clay Science, 2006,34(4):105-124.
    [65]M.S.Nasser, A.E.James. The effect of polyacrylamide charge density and molecular weight on the flocculation and sedimentation behaviour of kaolinite suspensions[J]. Separation and Purification Technology,2006,52(2):241-252.
    [66]Vishal Gupta, Marc A.Hampton, Jason R.Stokes, etal.Particle interactions in kaolinite suspensions and corresponding aggregate structures [J]. Journal of Colloid and Interface Science,2011,359(1):95-103.
    [67]Blanco C, Herrero J, Mendioroz S,etal. Infrared studies of surface acidity and reversible folding in palygorskite [J].Clay and Clay Minerals,1988,36(4):221-231.
    [68]J. Kou, D. Tao, G. Xu. A study of adsorption of dodecylamine on quartz surface using quartz crystal microbalance with dissipation[J].Physicochemical and Engineering Aspects,2010,368(3):75-83.
    [69]Duran J. D. G, Ramos Tejada M. M., Arroyo F. J., etal. Rheological and electroki--netic properties of sodium montmorillonite suspensions [J] Journal of Colloid and Inter- -face Science,2000,22:107-117.
    [70]Karlsson M., Craven C. Dove P.M., et al, Surface Charge Concentrations on Silica in Different 1.0M Metal-Chloride Background Electrolytes and Implications for Dissol-ution Rates[J]. Aquatic Geochemistry,2001,7:13-32.
    [71]Sabah E, Cen Gize I. An evaluation procedure for flocculation of coal preparation plant tailings[J].Water Research,2004,38(6):1542-1549.
    [72]Binoy K. Saikia, Yoshihiko Ninomiya, An investigation on the heterogeneous nature of mineral matters in Assam (India) coal by CCSEM technique[J].Fuel Processing Technology,2011,92(5):1068-1077.
    [73]Mariana G. Yossifov, Mineral and inorganic chemical compositon of the Pernik coal [J].International Joural of Coal Geology,2007,72:268-292.
    [74]Queral X, Klika Z, Weiss Z,etal. Determination of elemental affinities by density fractionation of bulk coal samples[J].Fuel,2001,80(1):83-96.
    [75]Zhuang Xinguo,Queral X, Planaf,etal.Determination of el-emental affinities by Density fractionation of bulk coal samples from the Chongqing coal district, South--western China[J]. Coal Geology,2003,55(2-4):103-115.
    [76]Senior C L, Zengt, CHE J,etal.Distribution of trace elements inselected pulverized coals as a function of particle size and density [J]. Fuel ProcessingTechnology,2000,63 (2/3):215-241.
    [77]Puszs, Krzton A,Komraus J L,etal.Interactions between organic matter and mine--rals in two bituminous coals of different rank[J].Coal Geology,1997,33(4):369-386.
    [78]Russell Nigel V, Mendez Lily B, Fraser Wigley, etal.Ashdeposition of a Spanish anthracite:Effects of included and excluded mineral matter[J].Fuel,2002,81(5):657-663.
    [79]Yu Jianglong, John Lucas, Vladimir Strezov,etal.Swelling and char structures from Density fractions of pulverized coal[J].Energy&Fuels 2003,17(5):1160-1174.
    [80]Sarbajit Ghosal, Self Sidney A.Particle size-density relationand cenosphere content of coal flyash[J].Fuel,1995,74(4):522-529.
    [81]陈忠杰,闵凡飞,朱金波,等.高泥化煤泥水絮凝沉降试验研究[J].煤炭科学技术,2010,38(9):174-178.
    [82]GB/T481-1993,生产煤样采取方法[S].北京:中国标准出版社,1993.
    [83]GB/T19093-2003,煤粉筛分试验方法[S].北京:中国标准出版社,2003.
    [84]于敦喜,徐明厚.煤焦破碎的模拟研究[J].中国电机工程学报,2005,25(9):90-93.
    [85]刘小伟,徐明厚,于敦喜,等.燃煤过程中矿物质变化与颗粒物生成的研究[J].中国电机工程学报,2005,25(22):104-108.
    [86]胡晓东.难沉降煤泥水性质研究[J].能源技术与管理,2009,(2):89-90.
    [87]李长春,王登柱.卤粉在德利能源公司瑞嘉选煤厂煤泥水处理中的应用[J].煤炭技术,2009,28(2):25-27.
    [88]卢寿慈,翁达.界面分选原理及应用[M].北京:冶金工业出版社,1992.
    [89]郑水林.非金属矿物材料[M].北京:化学工业出版社,2007.
    [90]刘国均,王徽枢,陈扬杰,等.矿物学[M].徐州:中国矿业大学出版社,1993.
    [91]Finkelstein N.P.等.浮选理论—润湿与絮凝(译文集),湖南省科技情报研究所,1981.
    [92]王培功,郑晓霞,李双志,等.酸性介质中酸不溶物微粒Si02的絮凝沉降试验[D].太原理工大学学报,2011,42(2):169-172.
    [93]殷馨,戴媛静.硅溶胶的性质、制法及应用[J].化学推进剂与高分子材料,2005,3(6):27-31.
    [94]赵胜亮,朱光明,吴国涛,等.Si02表面性质对LBG丙酮溶液体系粘度的影响[J].电化学,2002,8(1):22-25.
    [95]任磊夫.粘土矿物和粘土岩[M],北京:地质出版社,1992.
    [96]须藤俊男.粘土矿物学[M],北京:地质出版社,1981.
    [97]谢静思,甘学锋.高岭土降粘试验研究[J].中国非金属矿工业导刊,2007,3:28-31.
    [98]程宏飞,刘钦甫,王陆军,等.我国高岭土的研究进展[J].化工矿产地质,2008,30(2):125-127.
    [99]陈洁渝,严春杰,涂晶.纳米高岭土的研究与应用[J].材料导报,2006,20(Ⅵ):196-198.
    [100]程先忠,金灿,刘新海.煤系高岭土表面改性的红外光谱研究[J].光谱实验室,2005,11(6):1230-1233.
    [101]殷海荣,武丽华,陈福,等.纳米高岭土的研究与应用[J].材料导报,2006,20(6):196.
    [102]孙家跃,杜海燕.无机材料制造与应用[M].北京:化学工业出版社,2001,193.
    [103]刘新海,李一波,杨康平.沉积型煅烧高岭土表面改性与应用实验研究[J].中国粉体技术,2005,(2):6-8.
    [104]杨帅杰,沈忠悦,叶瑛.高岭石晶粒表面的电荷分布及其工业意义[J].非金属矿,2001,24(3):196-198.
    [105]徐廷婧,王河锦.景德镇地区高岭石红外光谱分析[J].岩石矿物学杂志,2010,29(1):59-66.
    [106]张明青,刘炯天,单爱琴,等.煤泥水中Ca2+在黏土矿物表面的作用[J].煤炭学报,2005,30(5):637-641.
    [107]张少鹏.对新形势下选煤的几点看法[J].洁净煤技术,2001,7:38-41.
    [108]陈开玲,钱坤.浅析煤泥水的特点及治理方法[J].洁净煤技术,2008,14(2):15-17.
    [109]刘玉果,王敏,李云志.煤泥水特性及混凝规律的研究及应用[J].山东煤炭科技,2009,(5):64-66.
    [110]芦贻春,李再耕.pH值对硅溶胶凝胶化过程的影响[J].耐火材料,1995,29(6):326-328.
    [111]许念强,顾建祥,罗康,等.二氧化硅粒径对酸性硅溶胶稳定性的影响[D].华东理工大学学报,2003,29(6):642-645.
    [112]孙传尧,印万忠.硅酸盐矿物浮选原理[M].北京:科学出版社,2001.
    [113]Zhuravlev L T.The surface chemistry of amor phous silica.Zhuravlev model[J]. Coll oids and Surfaces A:Physicochem Eng Aspects,2000,173:38.
    [114]朱龙,苏永渤,张秀娟.煤泥水动电电位的测试与应用[J].水处理技术,1998,8(4):225-227.
    [115]王宝俊,李敏,赵清艳,等.煤的表面电位与表面官能团间的关系[J].化工学报,2004,8:1329.
    [116]尚洪山,陈明波,何国锋.水相中煤的电性及其影响因素的研究[J].洁净煤技术,1998,4:53.
    [117]骆兆军,胡岳华,王毓华,等.煤的表面电位与表面官能团间的关系[J].中国有色金属学报,2001,11(4):681-682.
    [118]李启辉,吴国光,孙志强等.煤化程度与颗粒大小对煤表面ζ电位影响研究[J].能源技术与管理,2007,(3):81-82.
    [119]胡海明,陈学政,王羽.动电电位的测试在煤泥水治理中的应用[J].环境保护科学,2001,104(27):14-15.
    [120]王淀佐,胡岳华.浮选溶液化学[M].长沙:湖南科学技术出版社,1988:141-144.
    [121]张国范,王丽,冯其明,等.钛辉石与太铁矿颗粒间的相互作用的影响因素[J].中国有色金属学报,2010,20(2):340-344.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700