塔克拉玛干沙漠腹地近地层湍流特征的观测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气边界层是地表提供物质和能量的主要扩散和消耗场所。沙漠边界层的研究对沙漠地区陆—气相互作用的模拟有着极其密切的关系。塔克拉玛干沙漠是世界第二大流动沙漠,同时也是我国沙漠的典型代表。对塔克拉玛干流动沙漠腹地近地层的研究,可为沙漠周边城市的发展起到一定作用,同时也加深了沙漠腹地近地层的理论研究。本文利用沙漠腹地大气环境监测站塔中的80m梯度探测资料以及10m高度的OPEC快速响应探测系统的湍流资料,对大气边界层低层的湍流动力特征进行了详细的研究,同时分析了沙尘暴天气下湍流的相关特性,得出以下主要结论:
     (1)不稳定层结条件和稳定层结条件下,沙漠腹地近地层无因次速度分量方差与稳定度z/L的关系在春季、夏季和冬季均符合相似理论的次幂规律,但最佳幂指数各有不同,并不是唯一的1/3次幂。不稳定层结条件下,无因次温度方差在夏季符合-1/3次幂规律,其余情况离散度较大,规律不明显。近中性层结条件下,三个方向无因次速度分量方差均接近常数,总体表现为:u方向最大,v方向次之,w方向最小:湍流强度也有着同样的规律。
     (2)沙漠腹地湍流动能、摩擦速度和特征温度均表现出明显的日变化特征。摩擦速度则随稳定或不稳定程度的增大而减小,但最大值出现在z/L=0.2处。
     (3)沙漠腹地的湍流动能与季节变化有关。夏季略高与春季,冬季最小;湍流总动能中水平方向的动能占主导地位,铅直方向的影响较小;强不稳定层结条件下,热力湍能供给率明显强于机械湍能供给率,稳定层结条件下,两者作用相当。无因次扰动动能e/u_*~2随稳定或不稳定程度的增大而增大,同时离散度也增大。
     (4)欧拉时间自相关系数则表现出强衰减、渐衰减和缓慢衰减三种类型,且不同层结条件,沙尘天气的欧拉时间自相关系数衰减总体上强于晴天。
     (5)不稳定层结条件下,春季晴天近地层的铅直脉动以12-17s的周期为主,最小周期表现为1-1.5s,春季沙尘暴时最主要的周期则在6-10s左右,最小周期为0.3-0.5s。稳定层结条件下,春季晴天以周期10-16s的振荡为主,最短周期为0.7-1s,而沙尘暴则在11-20s的周期上振荡最强,最小周期振荡在0.4-0.6s左右。
The atmospheric boundary layer is the place of main proliferation and consumed for the surface material and the energy. The research in desert boundary layer has the extremely close relationship to the simulation of desert region Land -Gas interaction. The Taklimakan desert is the world second large flowing desert, simultaneously is also Chinese desert typical representative. The research to boundary layer over hinterland of Taklimakan flowing desert might have active function for desert peripheral city development, simultaneously also makes the desert hinterland surface layer fundamental research deeply. Using these data from the 80m gradient survey and OPEC fast response detection system at 10m height in the desert center atmospheric environment inspection station-tazhong, this article has amply researched the atmospheric boundary lower layer turbulence dynamical characteristics, analyzed the correlative turbulence characteristics in the sand storm weather process, draws the following main conclusions:
     (1) Under the unstable and stable condition, the relations desert hinterland surface layer dimensionless component of velocity variance with the stability conform to the similarity theory power rules in spring, summer and winter but the best power has the difference respectively, not the only "1/3 power". Under the unstable condition, the dimensionless temperature variance conforms to the "-1/3 power" rules in summer, other seasons the dispersions are large, the rules are not obvious. Under near neutral condition, three direction dimensionless component of velocity variance are close constants, the overall performance is: The u direction is biggest, the v direction next best, the w direction is smallest. The turbulence intensity also has the similar rule.
     (2) The desert hinterland turbulent kinetic energy, the rubbing speed and the characteristic temperature display obvious diurnal variation characteristic. The rubbing speed reduces along with the stable or unstable degree increases, but the maximum value appears at z/L = -0.2 . The Euler time autocorrelation coefficient displays the over damp and gradually weakens two types.
     (3) The desert hinterland turbulent kinetic energy is related to the seasonal variation. The TKE is slightly larger in summer than spring, the smallest in winter. Horizontal direction's turbulent kinetic energy occupies the dominant position, the influence of plumb direction is small in the turbulent total kinetic energy. Under the unstable condition, the thermal energy provides obvious strongly than the mechanical. Under stable condition, both of them effect is equally. The dimensionless perturbation kinetic energy increases along with increase of stable or the unstable degree, the dispersion degree is also increase.
     (4)The Euler time autocorrelation coefficient displays the fast decay, slow decay and gradual decay three types. During the different condition, Euler time autocorrelation coefficient in the sand storm decays strongly than fine day.
     (5) Under the unstable condition, the standard day vertical pulsation peculiarity is primarily at the 12-17s time scale, the smallest time scale appears at 1-1.5s in spring, while the sand storm main time scale is about 6-10s, the smallest is 0.3-0.5s. Under the stable condition, at the standard day the time scale is around 10-16s primarily, the most short time scale is at 0.7-1s, the sand storm vibrates at the 11 -20s time scale strongly, the smallest time scale is about 0.4-0.6s.
引文
[1]胡非.湍流、间歇性与大气边界层.北京:科学出版,1995.
    [2]张强.大气边界层研究综述.干旱气象,2003,21,74-78.
    [3]Garratt J R.The Atmospheric Boundary-Layer.Cambridge:Cambridge University Press,1992:1-316.
    [4]周秀骥等译,大气边界层探测,北京:气象出版社,1990,1-295.
    [5]蔡树棠,刘宇陆.湍流理论[M].上海:上海交通大学出版社,1993.1-6.
    [6]Hu Yinqiao.Boundary-layer meteorology[J].Advance in Earth Sciences,1991,6(6):57-59.
    [7]Ekman V W.On the influence of the Earth rotation on ocean current[J].Arkiv Mat Astron Fysik,1905,2(11):1-53.
    [8]Taylor C.Eddy motion in the atmospherie[J].Phil Trans,1915.
    [9]Taylor C.Statistical theory of turbulence,Parts 1-4[J].Pro Roy Soc A,1935,151:421.
    [10]Hinze J O.Turbulence,An Introduction to its Mechanism and Theory[M].New York:Mc Graw-Hill Book Company,INC,1959.
    [11]Kolmogorov A N.The local structure of turbulence in incompressible viscous fluid for very large Reynolds number[J].Dokl Akad Naud SSSR,1941,30:301-305.
    [12]Priestley C H B.Turbulent Transfer in the Lower Atmosphere[M].Chicago:University of Chicago Press,1959.
    [13]Moinn A S,Obukhov A M.Basic laws of turbulent mixing in theatmosphere near the ground[J].Tr Akad Nauk SSSR Geofiz inst,1954,24(151):163-187.
    [14]Blackadar A K.The vertical distribution of wind and turbulent ex2change in a neutral atmosphere[J].J Geophys Res,1962,67:3095-3102.
    [15]Wyngaard J C,Cote O R,lzumi Y.Local free convection,similarilty,and the budgets of shear stress and heat flux[J].J Atmos Sci,1971,28:11171-11182.
    [16]Dyer A J,Bradley E F.An alternative analysis of flux - gradientrelationships at the 1976 ITCE[J].Boundary-Layer Meteorology,1982,22:3-19.
    [17]Nieuwstadt F T M.The turbulent structure of the stable nocturnal boundary layer[J].J Atmos Sci,1984,41:2202-2216.
    [18]Shao Y,Hacher J M.Local similarity relationships in a horizontalhomogeneous boundary layer[J].Boundary-Layer Meteorology,1990,52:17-40.
    [19]周秀骥.长江三角洲低层大气物理化学过程和生态过程的相互作用.中国气象科学院年报(英文版),1999.
    [20]周秀骥,李维亮.中国地区大气臭氧变化及其对气候环境的影响-国家自然科学重大基金项目.中 国气象科学院年报(英文版),1997.
    [21]罗云峰,李维亮,周秀骥.20世纪80年代中国地区大气气溶胶光学特征的平均状况分析,气象学报,2001,59(1):77-86.
    [22]周培源.关于Reynolds求似应力方法的推广和湍流的性质[J].中国物理学报,1940,(4):1-33.
    [23]苏从先.关于层结大气中近地层湍流交换的基本规律[J].气象学报,1959,30(1):114-118.
    [24]周秀骥.湍流分子动力学理论[J].大气科学,1977,(4):300-305.
    [25]周明煌.大气边界中湍流场的团块结构[J].中国科学,1981,(5):614-622.
    [26]赵鸣.自由对流与稳定层结边界层风廓线的解析表达和边界层项的抽吸速度[J].大气科学,1992,16(1):18-28.
    [27]胡隐樵,张强.论大气边界层的局地相似性[J].大气科学,1993,17(1):10-20.
    [28]陈红岩,胡非,曾庆存.处理时问序列提高计算湍流通量的精度.气候与环境研究,2000,5(5):304-311.
    [29]胡非.大气边界层湍流涡旋结构的小波分解.气候与环境研究,1998,3(2):97-105.
    [30]Li Xin,Hu Fei,Liu Gang et al.Multi-scal fractal characteristics of atmospheric boundary-layer turbulence.Advances in Atmospheric Sciences.2001,18,787-792.
    [31]胡非.间歇性湍流速度场的概率分布.基础科学研究新进展,北京:中国科学技术出版社,1995,256-259.
    [32]刘罡,李听,胡非.大气边界层风速脉动的分形模拟.气候与环境研究,1998,3(3):260-265.
    [33]Zhao Songnian,Synchro-cascade pattern in the atmospheric turbulence,J.Geophys.Res.2003,108(D8),ACL4-1-ACL4 8.
    [34]苏从先,胡隐樵.绿洲和湖泊的冷岛效应[J].科学通报,1987,10:756-758.
    [35]“黑河试验”核心小组.黑河地区地气相互作用观测试验研究(HEIFE)[J].地球科学进展,1991,6(4):34-38.
    [36]胡隐樵,高由禧.黑河实验(HEIFE)一对干旱地区陆面过程的一些新认识[J].气象学报,1994,52(3):285-296.
    [37]张强,胡隐樵.局地相似性在近地面层大气中的一个应用[J].气象学报,1994,52(2):212-222.
    [38]吕达仁,陈佐忠,陈家宜等.内蒙古半干旱草原土壤-植被-大气相互作用[M].北京:气象出版社,2005.
    [39]张强,卫国安,黄荣辉.绿洲对其临近荒漠大气水分循环的影响-敦煌试验数据分析[J].自然科学进展,2002,12(2):170-175.
    [40]刘树华,张景光,刘昌明等.荒漠下垫面陆面过程和大气边界层相互作用敏感性实验[J].中国沙漠,2002,22(6):636-644.
    [41]梅凡民J.Rajot,s.Alfaro等.平坦沙地的空气动力学粗糙度变化及其物理意义[J].自然科学进展,2006,16(3):325-330.
    [42]李江风.塔克拉玛干沙漠和周边山区天气气候[M].北京,气象出版社,2003,9.
    [1]胡隐樵,高由禧.黑河实验(HEIFE)--对干旱地区陆面过程的一些新认识[J].气象学报,1994,52(3):285-296.
    [2]刘熙明.非均匀边界层结构和湍流通量特征的研究[D].中国科学院研究生院博士论文.2006.
    [3]王介民,刘晓虎,马耀明.HEIFE戈壁地区近地层大气的湍流结构和输送特征[J].气象学报,1993,51(3):343-350.
    [4]Hedde,T,and P.Durand.Turbulence intensities and bulk coefficients in the surface layer above the sea,Bound.-Layer Meteor.,1994,71,415-432.
    [5]Andreas,E.,R.J.Hill,J.R.Gosz,R.I.Moore,W.D.Otto and A.D.Sarma,Statistics of surface-layer turbulence over terrain with meter-scale heterogeneity,Bound.-Layer Mereor.,1998,86,379- 408.
    [6]Panofsky,H.A.and J.A.Dutton,Atmospheric Turbulence,Wiley,New York,1984,156-173.
    [7]仲雷,马耀明,李茂善.珠穆朗玛峰绒布河谷近地层大气湍流及能量输送特征分析[J].大气科学,2007,31(1):48-56.
    [8]张宏升,李富余,陈家宜.不同下垫面湍流统计特征研究[J].高原气象,2004,23(5):598-604.
    [9]徐玉貌,周朝辅,李振华等.广州市近地层大气的湍流微结构和谱特征[J].大气科学,1993,17(3):338-348.
    [10]陈铭夏,李宗恺,王庆安等.南京市近地层湍流结构及输送特征研究[J].气象科学,2000,20(2):111-119
    [11]Mahrt L.,Jielmn San,W.Blumen,et al.Nocturnal boundary-layer regimes[J].Boundary-layer Meteorology,1998,88:255-278.
    [12]仲雷,马耀明,苏中波等.珠峰北坡地区近地层大气湍流与地气能量交换特征[J].地球科学进展, 2006,21(12):1293-1303.
    [13]苏红兵,洪钟祥.北京城郊近地面层湍流实验观测[J].大气科学,1994,18(6):739-750.
    [14]王介民,刘晓虎,祁永强.应用涡旋相关方法对戈壁地区湍流输送特征的初步研究[J].高原气象,1990.9(2):120-129.
    [15]李宗恺,潘云仙,孙润桥.空气污染气象学原理及应用.北京:气象出版社,1985:145:124-132.
    [1]李宗恺,潘云仙,孙润桥.空气污染气象学原理及应用.北京:气象出版社,1985:145:124-132.
    [2]王华聪.环境科学.1988,9(2):70-76.
    [3]Moore G E et al.Boundary-Layer Meteorology,1985;31(4):349-368.
    [4]曹文俊,朱汶等.天津市郊近地面层湍流特征量的研究[J].南京气象学院学报, 1993,16(2):201-207.
    [5]丁裕国,江志红.气象数据时间序列的信号处理[M].北京:气象出版社,1998.278-283.
    [6]王勇,丁园圆,刘峰贵.西宁近48a来气温变化的多时间尺度分析[J].国土与自然资源研究.2006,1:46-48
    [7]邓自旺,林振山,周晓兰.西安市近50年来气候变化多时间尺度分析[J].高原气象.1997.16(1):81-93
    [8]吴洪宝.气候变率诊断和预测方法[M]北京:气象出版社.2005.210-235
    [9]林振山.气候建模、诊断和预测的研究[M]北京:气象出版社.1996.176-186
    [10]Torrence C and Compo G P,A practical guide to wavelet analysis.Bulletin of American Meteorological society,1998,79(1):61-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700