用户名: 密码: 验证码:
太湖流域洪水风险模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太湖流域是我国经济最为发达的区域,由于降雨丰沛且时空分布不均,加上流域碟形地貌与外江外海的影响,导致洪灾频繁且损失巨大。在太湖流域治理骨干工程基本完成后,防洪格局发生了较大的变化,如何在现有基础上更好地加强能力建设,以应对未来气候变化、流域城镇化等因素引起的洪水风险变化,是一个具有重大意义的研究课题。为了使研究更加具备科学性,结果更有参考价值与指导意义,需要在现有定性结论的基础上进一步开展量化研究,从而较准确地把握降雨量变化、海平面上升、外排能力变化、下垫面改变等因素对于太湖流域洪水的具体影响幅度。
     流域尺度的数值模拟模型是进行此类研究的前沿技术手段,具有广阔的发展前景,在国内外也开展了广泛的研究,其目前面临的主要问题有3个:①大范围的研究区域涉及众多计算对象,需要分别采用水文学、水力学、气象预报等技术手段予以解决,但当前缺乏有效的技术手段将多个学科领域的模型联合起来协同完成计算,笔者自主开发了多模型联合技术予以解决;②大范围的数值模型与微观尺度上的数模有着很多重大差异,例如目标抽象概化、参数获取、运用目标等,这些对于流域模型的实用性、扩展性有着重要影响,本论文中对这些问题作了详细分析与设计;③太湖流域洪水风险有着诸多影响因素,如果逐一进行模拟分析,计算任务量之大将是不可想象的,也是没有必要的,本论文中通过分析太湖流域防洪形势的成因与格局,提炼出较为重要的影响因素,研究其最可能的变化趋势并予以量化反映到数值模型中,设计几种代表性的场景予以计算,并通过结果分析进一步总结得出对太湖流域防洪策略的认识与建议。
     本论文的研究技术路线可以概括为:在最大程度利用现有资源的前提下,寻找或开发适宜的数值模型来分别模拟太湖流域气候、产汇流、河网、区域排涝等关键因素的影响,使用合适的联合计算技术将各个数模连接到一起以建立流域模型,在此基础上对太湖流域洪水进行模拟计算与结果分析,针对目标洪水影响因素的可能变化而设定不同场景,从而实现量化评估影响的具体幅度,并总结得出相应的思考与结论。本论文的主要研究内容及结论如下:
     1.研究太湖流域防洪的现状,探究其原因与格局;分析现有的数值模型,寻找适合太湖流域具体情况与本论文研究目标的数模;调查国内外的联合计算技术,分析其特点与适用范围。
     2.自行开发了河道水力学模型,基于太湖流域河网的特点,选择基于拉克斯显格式的有限体积法,采用基于邻接链表法表达的“图”数据结构以描述太湖河网的复杂拓扑连接关系。所开发的河网模型能够计算任意复杂的河道拓扑结构,很好地处理横断闸门与干床情况,具备较高的容错能力、可维护性与扩展性,数值计算稳定且速度较快,对于平原感潮河道的往复流动现象能很好模拟。经过比较验证,本河网模型对太湖流域河道洪水运动的模拟具有较好的精度与效果。
     3.自主开发了多模型联合计算技术,这是涉及到数值模拟与计算机技术的跨学科课题,本论文研究基于“各学科人员在其各自领域内自由发挥专业特长”的原则,采用COM、AUTOMATION、管道通信与多程序间同步技术开发了全新的联合计算平台。其具有架构开发、包容性强、附加限制少、易于实现、使用灵活、执行高效、调用便捷的特点,大大降低对各领域技术人员的专业外要求,最大程度地实现了对现有数模资源的利用,使得真正意义上的模型库与计算中心成为了可能。实际应用表明,新开发的联合计算技术完全达到预期目标,很好地实现了各个数模之间的同步与数据传输,协同搭建起了太湖流域数值模型。
     4.基于搭建的流域数值模型,对太湖流域洪水风险进行模拟计算。在思考现有防洪形势与格局的基础上,分析洪水影响因素的最可能变化趋势,并相应设定了降雨量增加、海平面上升、沿江沿海外排能力加强、下垫面变化、防洪排涝关系变化、抽排能力提高等6个场景进行模拟分析,量化评估其对于流域洪水的影响幅度,并总结得出对太湖流域洪水应对措施与策略的认识与建议。
     本项研究所建立的技术方法与成果对于其它地区的流域模型建设、大尺度洪水模拟与洪水风险变化分析等具有较好的借鉴意义与推广价值。
Taihu Basin is the most developed region in China, but it suffers from frequent flood and tremendous loss due to abundant rainfall (unevenly distributed in time and space), plate like topography and influence of high tide at boundary. After accomplishment of basin treatment framework projects, the flood control situation changed significantly. It is necessary to research how to enhance capacity building for coping with the changes of flood risk due to global warming and rapid urbanization on the base of current status. To make the research more scientific and the result more referable, quantitative analysis should be carried out based on current directive conclusions in order to get more accurate understanding about the influence of factors such as rainfall change, sea level rise, land use and etc.
     Basin scope numerical model is a new technology for research oriented to objectives above; it has large space for future development and is widely carried out in the world. However, currently there are some key problems in this field that need research:﹍arge calculation area involves thousands of targets, which needs hydrological, hydrodynamics and metrological to deal with respectively;﹍arge scale numerical model has significant difference with detailed model, such as objects abstraction, parameters figuring and calculation objectives;﹖here are many factors in Taihu Basin that affect flood risk distribution, if digital simulation is carried out one by one, the quantity of calculation task will be so tremendous that it is hard to accomplish and unnecessary also. The author refines the more important factors based on analysis of situation of flood control in the Taihu Basin, then figures out the most likely change of them and reflect it in the numerical model quantitatively, and therefore has got several representative scenarios and carried out simulation on them. Finally, some understanding and suggestions about strategy of flood control in Taihu Basin are proposed based on analysis of the simulation results of different scenarios.
     The technical routine of this paper can be summarized as:following the discipline of maximized utilization of available resources, search or develop adequate numerical model to reflect the influence of key factors such as climate, rainfall runoff, river network and pumping, use appropriate cooperative calculation technology to join models to build basin-scale model, which is used in further Taihu Basin flood analysis. Make research on the most likely change of various factors and set out several scenarios accordingly, then the conclusions can be drawn by comparing different scenario results. The task and conclusions of this paper can be divided into four parts:
     1. Study the current situation of flood control in Taihu Basin and make analysis on its layout; search available numerical models for target suitable for basin circumstance and this research; investigate world-wide joint calculation technologies and figure out their characteristics.
     2. The paper proposes a newly developed river hydrodynamic model. Considering the characteristics of river in Taihu Basin, the model uses finite volume method base on LAX explicit scheme and chooses "graph" data structure to describe the complicated connectivity of channels in basin. The model can reflect whatever topography and deal with cross gate and dry bed gracefully. It possesses good stability, maintenance and runtime efficiency. By comparing the calculated result with field data, it's believed that the model can simulate the flood movement in channel of the Taihu Basin with enough precision.
     3. A new technology base on COM, AUTOMATION, named pipe communication and multiple processes synchronization has been developed to solve the problem of connect multiple numerical models and carry out joint calculation task. It possesses the advantages of open structure, high tolerance, little additional restriction, easy accomplishment, high efficiency and flexible application. It significantly decreases the requirement of technicians in other fields, achieves maximized utilization of current numerical model resources and make real model database and calculation center possible. Proved by practical usage, the technology developed in the paper fully achieved expected objectives and successfully built the Taihu Basin model.
     4. Based on the model built above, Taihu Basin flood risk simulation was carried out. Considering the current flood control situation, the most likely change of various factors was set out and quantitatively embedded into corresponding scenarios such as:rainfall increase, sea level rising, boundary pumping capacity increase, land use change, dispatching rule change and internal pumping capacity increase. Through the simulation results of different scenarios, the quantitative influence of factors was figured out and some understanding and suggestions were drawn out about the flood control strategy in Taihu Basin. The paper made some new progress in the basin-scale model building and flood scenarios simulation at large scale. The technical routine and results can be referred for research of large scale digital model construction and analysis of flood risk changes based on simulation results in other regions.
引文
[1]佘之祥.长江三角洲水土资源与区域发展[M].合肥:中国科技大学出版社,1997,99-103.
    [2]吴浩云,管惟庆.1991年太湖流域洪水[M].北京:中国水利水电出版社,2001.
    [3]吴浩云.1999年太湖流域洪水[M].北京:中国水利水电出版社,2001.
    [4]粱瑞驹.太湖洪涝灾害[M]南京:河海大学出版社,1993.3-14.
    [5]流域洪水风险情景分析技术研究项目组,流域洪水风险情景分析技术研究终期报告[R],中国水利水电科学研究院,2009.
    [6]徐雪红.太湖流域防洪形势及近期治理防洪标准探讨[J].湖泊科学。2000,12(3):199--204.
    [7]徐向阳,张超,沈晓娟.关于太湖流域防洪标准的讨论[J].湖泊科学,2006,18(4).
    [8]苕溪流域综合规划报告(送审稿)[R],浙江省水利水电勘测设计院,1999年1月.
    [9]苕溪流域防汛手册(征求意见稿)[R],浙江省人民政府防汛抗旱指挥部办公室,2001年8月.
    [10]杨洪林,章杭惠,龚政.太湖流域防洪形势研究[J].水利规划与设计,2008,(2):14-17.
    [11]毛锐.建国以来太湖流域三次大洪水的比较及对今后治理的意见[J].湖泊科学,2000,12(1):6-11.
    [12]虞孝感,吴泰来,姜加虎等.关于1999年太湖流域洪涝灾情、成因及流域整治的若干认识和建议[J].湖泊科学,2000,12(1):1-5
    [13]吴泰来.太湖流域1999年特大洪水和对防洪规划的思考[J].湖泊科学.2000.11(1):7-12.
    [14]高俊峰,韩昌来.太湖地区的圩垸及其对洪涝的影响[J].湖泊科学.1999.11(2):105-109.
    [15]叶佰生,赖祖铭,施雅风.气候变化对天山伊犁河上游河川径流的影响[J].冰川冻土,1996,18(1):29-36.
    [16]陈洪滨,范学花,董文杰.2005年极端天气和气候事件及其他相关事件的概要回顾[J].气候与环境研究,2006,11(2):236-244.
    [17]梁潇云,任福民.2005年全球重大天气气候事件概述[J].气象,2006,32(4):74-77.
    [18]史培军.灾害研究的理论与实践[J].南京大学学报,1991(11):37-42.
    [19]董增川,长江三角洲地区城市化进程中面临的水资源问题及对策[J].中国水利.2004.10
    [20]张雨明,王维庆.猛进水库防洪调度系统[J].昆明理工大学学报,2001年8月,第26卷,第4期.
    [21]陈守煜.防洪调度系统半结构性决策理论与方法[J].水利学报,2001年11月,第11期.
    [22]王同生.太湖流域1991年洪涝及今后治理措施[J].水科学进展.1993,4(2):127-134.
    [23]韩昌来.毛锐.太湖水系结构特点及其功能的变化[J].湖泊科学.1997,9(4):300-306.
    [24]毛锐.太湖大灾与治理太湖[J].湖泊科学.1992,4(1):1-8.
    [25]王紫雯,程伟平.城市水涝灾害的生态机理分析和思考——以杭州市为主要研究对象[J].浙江大学学报(工学版),2002,36(5).
    [26]夏军.水文非线性系统理论与方法[M].武汉大学出版社,2002.11.
    [27]谢新民,陈守煜.王本德,地表地下水资源系统多目标管理模型与模型决策研究[J].大连理工大学学报.
    [28]WOOLHISER D A. Search for physically based runoff model, a hydrologic El Dorado [J]. J Hydraulic Eng,1996,122 (3):122-128.
    [29]MICHAUD J, SOROOSHIAN S. Comparison of simple versus complex distributed runoff models on a midsized semiarid watershed[J]. Water Resources,1994,30 (3):593-605.
    [30]Arnold J G. Large area hydrologic modeling and assessment I:Model development [J]. Advance of Water Resource,1998,34:73-89.
    [31]芮孝芳.流域水文模型研究中若干问题[J].水科学进展,1997第1期,P94-98.
    [32]贾仰文,王浩,倪广恒等.分布式流域水文模型原理与实践[M].北京,中国水利水电出版社.
    [33]Beven K J, Kirkby M J. A physically based variable contributing model of basin hydrology [J]. Hydrological Sciences Bulletin,1979,24(1):43-69.
    [34]ABBOTT M B et al. An introduction to the European Hydrological System[J]. J Hydrology,1986,87(1):45-77.
    [35]袁艺,史培军.土地利用对流域降雨—径流关系的影响——SCS模型在深圳市的应用[J].北京师范大学学报(自然科学版),2001.2-V37.1.
    [36]张建新,惠士博,谢森传.利用降雨入渗产流分析原理和Nash单位线汇流方法进行排涝模数计算的研究[J].水文,2002年6月第22卷第3期.
    [37]张蕾娜,李秀彬,王兆锋,李星.一种可用于表征土地利用变化水文效应的水文模型探讨[J].水文,2004,24(3).
    [38]郭生练,熊立华,杨井,彭辉,王金星.基于DEM的分布式流域水文物理模型[J].武汉大学学报,第33卷第6期.
    [39]胡立堂,王忠静,赵建世,马义华.地表水和地下水相互作用及集成模型研究[J].水利学报,第38卷第一期.
    [40]李丽,郝振纯,王加虎.基于DEM的分布式水文模型在黄河的应用探讨[J].自然科学进展,2004年14(12):P1452-1458.
    [41]苏凤阁,郝振纯.一种陆面过程模式对径流的影响研究[J],气候与环境研究,7(4)2003.
    [42]Vijay P, Sing,赵卫民,戴东,牛玉国译.水文系统:流域模拟[M].郑州:黄河水利出版社,2000.239-241.
    [43]程文辉,王船海,朱琰.太湖流域模型[M],河海大学出版社,2006.
    [44]周建康。朱春龙,罗国平.平原圩区设计排涝流量与水面率关系研究[J].灌溉排水学报,2004,23(4).
    [45]王静,喻朝庆,程晓陶,胡昌伟.太湖流域大尺度洪水分析中对圩区影响洪涝分布的模拟[J].水利水电技术.2010年9期.
    [46]王艳艳,梅青,程晓陶.流域洪水风险情景分析技术简介及其应用[J].水利水电科技进展.2009年2期.
    [47]韩松,程晓陶,梅青等.流域未来洪水风险动因响应关系定性分析方法的研究[J].中国水利水电科学研究院学报,2009,7(4):251-256.
    [48]严蔚敏,吴伟民编著.数据结构(C语言版)[M].北京:清华大学出版社,1997.
    [49]唐策善,黄刘生.数据结构[M].中国科学技术大学出版社,1992.
    [50]宁正元主编.数据结构——用C语言描述[M].北京:中国水利水电出版社,2000.
    [51]姚菁主编.数据结构(C语言版)[M].北京:机械工业出版社,2000.
    [52]许卓群主编.数据结构[M].北京:中央广播电视大学出版社,2001.
    [53]薛超英主编.数据结构——用Pascal语言[M].武汉:华中理工大学出版社,2000.
    [54]李平编.数据结构[M].北京:电子工业出版社,1986.
    [55]袁蒲佳,龙玉国,杨薇薇.数据结构[M].武汉:华中理工大学出版社,1991.
    [56]王红梅,胡明,王涛.数据结构(c++版)[M].北京:清华大学出版社,2005.
    [57]Robert. Kruse, C. L. Tondo, Bruce Leung. Data Structures & program design in C[M].北京:清华大学出版社.
    [58]吕凤翥.C++语言程序设计[M].电子工业出版社2001.
    [59]William Ford & William Topp. Data Structures With C++[M]. New Jersey:Prentice-Hall, Inc., A division of Simon & Schuster co,1996.
    [60]Bjarne Stroustrup. The C++Programming Language (Special Edition)[M]. Addison Wesley Longman, Inc.2000.
    [61]Adam Drozdek. Data Structures and algorithms in C++[M]. Thomson Learning,2002.
    [62]S. Sahni. Data Structures, Algorithms, and Applications in C++[M]. McGraw-Hill,2004.
    [63]R. Sedgewick. Algorithms in C++[M]. Addison-Wesley Publishing Company, Inc.1992.
    [64]Weiss, Mark Allen. Data Structures, and problem solving with C++[M]. Addison Wesley Longman, Inc.1996.
    [65]刁成嘉.面向对象C++程序设计[M].机械工业出版社,2004.
    [66]郑人杰.软件工程[M].清华大学出版,1999.
    [67]湖州市江河水利志编纂委员会.湖州市水利志[M].北京:中国大百科全书出版社,1995.27-69.
    [68]郝振纯,任立良,刘新仁.陆气耦合水文模式研究[A].淮河流域能量与水分循环研究(一)[M],气象出版社,1999.
    [69]郭生练,刘春蓁.大尺度水文模型及其与气候模型的联结耦合研究[J].水利学报,1997年第7期.
    [70]史学正,于东升等.中美土壤分类系统的参比基准研究[J].科学通报,2004,49(13):P1299-1303.
    [71]Lohmann D, Raschke E, Nijssen B, et al. Regional scale hydrology:I. Formulation of the VIC-2L model coupled to a routing model[J]. Hydrological Sciences Journal.1998,43(1): 131-141.
    [72]Lohmann D, Raschke E, Nijssen B, et al. Regional scale hydrology:II. Application of theVIC-2L model to the Weser River, Germany[J]. Hydrological Sciences Journal.1998, 43(1):143-158.
    [73]Liang X, Wood E F, Lettenmaier D P. Surface soil moisture parameterization of the VIC-2L model:Evaluation and modifications [J]. Global and Planetary Change,1996,13: 195-206.
    [74]Coulthard T J, Macklin M G. How sensitive are river systems to climate and land-use changes? A model-based evaluation[J]. Journal of Quaternary Science,2001,16 (4): 347-351.
    [75]MICHAEL B A, REFSGAARD J C. Distributed hydrological modelling [M]. Kluwer Academic Publishers,1996.
    [76]WANG M, HJ ELMFELT A T. DEM based overland flow routing model [J]. J Hydrologic Eng,1998,3(1):1-8.
    [77]QUINN P, BEVEN K. The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models[J]. J Hydrol., Process,1991,5:59-79.
    [78JCOSTA-CABRAL M C, BURGES S J. A model of flow over hillslopes for computation of contributing and dispersal areas[J]. Water Resources,1994,30,6:PI 681-1692.
    [79]Alley. Water balance models in one month ahead stream flow forecasting [J]. Water resources Res.,1985,21(4):597-606.
    [80]Hao Zhenchun, Su Fengge, Xie Zhenghui. Macroscale hydrological modeling over the Huaihe river basin[J]. Acta Meteorological Sinica,16 (3),2002.
    [81]J. W. Hall, R. J. Dawson, P. B. Sayers, C. Rosu, J. B. Chatterton and R. Deakin. A methodology for national-scale flood risk assessment. Water & Maritime Engineering 156 Issue WM3:235-247.
    [82]SU F G, XIE Z H. A model for assessing effects of climate change on runoff of China [J]. Progress in Natural Science,2003,13(9):701-707.
    [83]Rawls W J, Ahuja L R, Brakensiek D L, et al. Infiltration and soil water movement [M]. New York, USA:McGraw-Hill Inc.,1993.
    [84]Klockiog B. Haberlandt U. Impact of land use changes on water dynamics——a case in temperate mesoscale and macroscale river basins[J]. http://www. paper.edu.cn.. Physics and Chemistry of the Earth.2002.27:619-629.
    [85]Bronstert A. Niehoff D. Burger G. Effects of climate and land-use change on storm runoff generation:present knowledge and modeling capabilities[J]. Hydrological Processes.2002.16:509-529.
    [86]Eles C W O., Blackie J R. Land-use changes in the Balquhidder catchments simulated by a daily stream flowmodel[J]. Journal of hydrology,1993,145(3-4):315-336.
    [87]Krause P etc. al. Quantifying the impact of land use changes on the water balance of large catchments using the J2000 model[J]. Physics and Chemistry on Earth.2002.27: P663-673.
    [88]东苕溪流域水情自动测报系统初步设计报告[R],浙江省水文勘测局,2000年5月.
    [89]浙江省苕溪和杭嘉湖平原防汛水情预报参考资料,浙江省水文勘测局防汛水情预报科,2000年9月.
    [90]东苕溪流域99“6.30”特大洪水的调度及其思考[R],浙江省防汛抗旱指挥部办公室,1999年11月.
    [91]高飞,张元禧,河西走廊内陆石羊河流域水资源转化模型及其时移转化关系[J].水利学报.
    [92]金光炎.城市设计暴雨频率曲线线型的研究[J].水文,2002年2月第22卷第1期.
    [93]郭生练,李兰等.气候变化对水文水资源影响评价的不确定性分析[J].水文.1995,6:1-6.
    [94]长江防洪系统实时调度研究,《长江防洪系统实时调度研究》编辑委员会.中国水利水电出版社.1997.
    [95]Cheng Xiaotao, Hu Changwei, Han Song. Scenario Analysis Technology for Future Flood Foresight in the Taihu Basin:Progress of a China/UK Scientific Cooperation Project [C]. Proceedings of the 2007 Joint Seminar Flood Disasters and Countermeasures Against Them, August 28-29,2007 (Beijing).
    [96]Gemma Harvey, Edward Evans, Colin Thorne and Cheng Xiaotao. Scenario Analysis Technology for River Basin Flood Risk Management in the Taihu Basin:A China-UK Scientific Co-operation Project [C]. International Forum for Contemporary Chinese Studies Inaugural Conference:'Post-Olympic China:Globalizations and Sustainable Development after Three Decades of Reform', University of Nottingham, UK,19th-21st November 2008.
    [97]G. L. Harvey, C. R. Thorne, X. Cheng, E. P. Evans, S. Han, J. D. Simm and Y. Wang. Qualitative analysis of future flood in the Taihu Basin, China[J]. Journal of Flood Risk Management, Vol.2 No.2,2009.
    [98]Neilson R P. Transient ecotone response to climatic change:some conceptual and modelling approaches[M]. Ecol Appl,1993,23:385-393.
    [99]Liang X, Lettenmaier D P, Wood E F, et al. A simple hydrologically based model of land surface water and energy fluxes for general circulation models [J]. Journal of Geophysics Research,1994,99:P14415-14428.
    [100]Xiaotao CHENG, Chaoqing YU, Yanyan WANG and Changwei HU. Scenario Analysis of Future Flood Risk in the Taihu Basin under Global Warming and Rapid Urbanization [C]. Proceedings of the International Symposium on Water and Sediment Disasters in East Asia, March 23-25,2010, Kyoto, Japan.
    [101]武强,孔庆友,张自忠等.地表河网地下水系统耦合模拟Ⅰ模型[J].水利学报.
    [102]武强,徐军祥,张自忠等.地表河网地下水系统耦合模拟Ⅱ应用实例[J].水利学报.
    [103]王加虎,郝振纯,李丽.全球变化下的水资源研究进展Ⅰ——气候变化[J].水利学报,第36卷第8期.
    [104]王加虎,郝振纯,李丽.全球变化下的水资源研究进展Ⅱ——-LUCC[J]水利学 报,第37卷第3期.
    [105]周振红,杨国录,周洞汝.基于组件的水力数值模拟可视化系统[J].水科学进展.2002年1月,第13卷,第1期.
    [106]李光明Visual C++6.0经典实例大制作[M].中国人事出版社,2001.
    [107]陈光明.实用Visual C++编程大全[M].西安电子科技大学出版社,2000.
    [108]江明德.面向对象的程序设计[M].电子工业出版社,1993.
    [109]陈文宇.面向对象程序设计语言C++[M].机械工业出版社,2004.
    [110]李师贤.面向对象程序设计基础[M].高等教育出版社,1998.
    [111]Dale Rogerson. Inside COM[M]. Microsoft Press,1997.
    [112]Beck Zaratian. Visual C++6. OProgrammer's Guide[M].北京希望电脑公司,1998.
    [113]王育坚,等编著Visual C++程序基础教程[M].北京邮电大学出版社,2000.
    [114]Robert L. Krusw, Alexander J. Ryba著,钱丽萍译.C++数据结构与程序设计[M].清华大学出版社,2004.
    [115]Jon Bates, Tim Tonpkins,何健辉等译.实用Visual C++6.0教程[M].清华大学出版社,2000.
    [116]Cliford A. Shaffer. A Practical Introduction to Data Structure and Algorithm Analysis [M],电子工业出版社,2002.
    [117]Nell Dale, Chip Weems, Mark Headington. C++程序设计[M]. 高等教育出版社, 2001.
    [118]Randy Kath. The Virtual-Memory Manager in Windows NT. Microsoft Developer Network Technology Group, December 21,1992.
    [119]Windows核心编程,Jeffrey Richter,微软出版社.2008.
    [120]Windows网络编程,罗莉琴,詹祖桥,人民邮电出版社.2011..
    [121]David J. Kruglinski. Inside Visual C++,4th Edition[M]. Microsoft Press,1997.
    [122]Eugene Olafsen, Kenn Scribner, K. David White. MFC Programming with Visual C++6 Unleashed[M]. Sams Publishing,2000.
    [123]候俊杰.深入浅出MFC[M].松岗电脑图资料股份有限公司,1997.
    [124]谭浩强.C++程序设计[M].清华大学出版社,2004.
    [125]Vishal Kochhar:How A C++Compiler Implements Exception Handling, April 16, 2002.
    [126]廉师友.C++面向对象程序设计简明教程[M].西安电子科技大学出版社,1998.
    [127]Evans E., Thorne C, et al. Future flood risk management in the UK [J]. Water Management,2006,159(1):53-61.
    [128]Office of Science and Technology, Foresight Future Flooding Scientific Summary Volume I:Future risks and their drivers [R], London,2004.
    [129]Office of Science and Technology, Foresight Future Flooding Scientific Summary Volume II:Managing future risks [R], London,2004.
    [130]穆荣平,任中保,王瑞祥.技术预见历史回顾与展望,中国科学院科学与技术预见系列报告之技术预见报告[R],北京:科学出版社,2005.
    [131]浦根祥,孙中峰,万劲波.技术预见的定义及其与技术预测的关系[J].科技导报,2007(7):15-18.
    [132]郭生练.气候变化对洪水频率和洪峰流量的影响[J].水科学进展,1995,6(3):224-230.
    [133]Lahmer W. Assessment of land use and climate change impacts on the Mesoscale[J]. Physics and Chemistry of Earth.2001,26:P565-575.
    [134]任树梅,朱仲元.工程水文学[M],北京:中国农业大学出版社.
    [135]曾涛,等.气候变化对径流影响的模拟[J].冰川冻土,2004,26(3):324-332.
    [136]Carter T R, Parry M L, Harasawa H, and Nishioka S.1994. IPCC Technical Guidelines for Assessing Climate Change Impacts and Adaptations. Geneva: Intergovernmental Panel on Climate Change.
    [137]Gaffin, S. R., R. C. Rosenzweig, X. Xing, G. Yetman,2004. Downscaling and geo-spatial grid of socioeconomic projections from the IPCC Special Report on Emissions Scenarios (SRES), Global Environmental Change,105-1233.
    [138]Penning-Rowsell, E. C, Johnson, C., Tunstall, S. M., Tapsell, S., Morris, J. Chatterton, J and Green, C. The benefits of flood and coastal risk management:a manual of assessment techniques. London:Middlesex University Press (the "Multicolored Manual"),2005.
    [139]Foekje Buijs, Jonathan Simm, Michael Wallis, Paul Sayers. Performance and Reliability of Flood and Coastal Defences. R&D Technical Report FD2318/TR1, August 2007.
    [140]Paul Sayers, Ceng Mice, Jim Hall, Phd Ceng Mice, Richard Dawson, Corina Rosu, John Chatterton Phd, Rob Deakin Bsc. Risk assessment of flood and coast defences for strategic planning(RASP) - A high level methodology, http://www. rasp-project. net/rasp_defra2002_paper_f.
    [141]吴国平,黄艳,谢志仁等.太湖流域海面-地面变化信息系统研究[J].湖泊科学,1999.11(4):311-315.
    [142]Managing Flood Risk — Condition Assessment Manual. Document Reference 166_03_SD01, Environment Agency, October 2006.
    [143]Hansen M C, Defries R S, Townshend J R G, et al. Global land cover classification at lkm spatial resolution using a classification tree approach [J]. International Journal of Remote Sensing,2000,21(6-7):1331-1364.
    [144]王秀兰,包玉海.土地利用动态变化研究方法探讨[J].地理科学进展,1999年18卷1期:P81-87.
    [145]Roger P. Meyer W Bed. Changes in land use and land cover:Hydrology and water quality [A] —a global perspective [C]. Cambridge University Press,1994.
    [146]Turner B L. Land-use and land-cover change:IGBP Report No.35[R]. Stockholm and Geneva,1995.
    [147]Lambin E F, Baulies X. Land-use and land-cover change—implementation strategy[R]. IGBP Report 48,1999.
    [148]Shi P-J Gong P, et al.2000. Land-Use and Land-Cover Change Research Methodology and Practice[C]. Beijing:Science Press.2000.
    [149]Cosby B J, Hornberger G M, Clapp R B, et al. A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils[J]. Water Resources Research.1984,20(6):682-690.
    [150]水力计算手册,武汉水利电力学院水力学教研室,水利电力出版社.2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700