用户名: 密码: 验证码:
渤海海冰预报及三维数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渤海海域冬季海水温度较低,每年都会结冰。冰情严重时会导致海冰灾害,给人类在海上的生命财产安全造成危害。通过卫星遥感获取海冰资料,结合气象条件深入研究海冰生消演变规律,利用数值模型模拟海冰演化,建立和完善海冰预报模型,对于防灾减灾具有十分重要的意义。
     为了获取更为精确的海冰预报基础资料,本文采用CART决策树方法从MODIS卫星遥感数据反演海冰,同时对可见光、近红外和热红外多波段进行自动分类计算,有效消除了传统阈值法反演高悬沙等特殊海洋环境时出现的海冰误判。反演结果采用高分辨率中国环境与灾害监测预报小卫星(HJ-1A/1B)进行校验,确保了海冰预报基础资料的精度。
     根据本文遥感反演的6个冬季辽东湾海冰面积,结合锦州与营口两个气象观测站的实测气象资料分析,可以认为辽东湾海冰面积增长主要受低气温影响,其中低温天气时发生的离岸向大风累积次数直接影响年度海冰面积极值。通过回归分析发现低于-5°C的累积冻冰温度与冻冰阶段的海冰面积具有显著的线性相关关系。
     基于最小二乘法开发了辽东湾海冰面积的长期和短期两种预报公式,长期预测公式只需提供气象条件即可进行预报。短期预报公式在预报下一期海冰面积时除需给出气象条件外,还需给出上一期的海冰面积观测值。拟合及预测结果表明两个公式均能实现较为准确的海冰面积预报。通过进一步引入非线性逼近能力更为强大的BP神经网络模型用于开发海冰预报模型,预报精度得到进一步提高。
     本文最后通过提出适合渤海特点的模型参数,考虑海洋-海冰耦合的海冰动力过程和热力过程,将基于有限体积算法的非结构化网格FVCOM三维海洋模型用于2003~2004年冬季渤海海冰数值模拟。模拟结果表明,水动力、温盐以及海冰面积和厚度计算值与实测值吻合均较好,所建立的三维海冰数学模型输入参数合理,适合用于渤海中长期海冰数值模拟,具有较高的计算精度。FVCOM所采用的非结构化网格模型可实现对复杂岸线的准确描述及重点区域的局部加密,与气象预报相结合,未来可实现海冰的精细化模拟与预报。
The water temperature in the Bohai Sea is low in winter and the sea ice occursevery year. In heavy ice years, the sea ice disaster would be induced and be harmful tothe safety of human life and property in the sea. Therefore, it is of great importancefor preventing and reducing sea disaster to develop prediction models of sea icethrough obtaining the sea ice information by satellite remote sensing, investigating theprocesses of sea ice formation and disappearance using meteorological data,simulating the sea ice evolution applying the mumerical model.
     To obtain basic data with high accuracy for sea ice forecasting, the methodologyof CART decision tree was utilized to retrieve sea ice from MODIS satallite remotingsensing data. The multi-bands, including visible light, near infrared light and thermalinfrared imaging were automatically used to classify sea ice and other category, andthe misjudgment of sea ice was effectively eliminated comparing with the traditionalthreshold methods when retrieving sea ice from MODIS data with special seaenvironment such as high sediment suspension. The retrieved results are verified bythe Small Satellite Constellation for Environment and Disaster Monitoring andForecasting(HJ-1A/1B)with high spatial resolution.
     Based on the sea ice acreage of6winters in the Liaodong Bay retrieved by remotesensing, combined with the analysis of measured data by meteorological stations inJinzhou and Yingkou, it is concluded that the accruement of sea ice area in theLiaodong Bay is mainly affected by the low air temperature, and especially theaccumulated times of strong wind offshore in days with lower air temperature directlyinfluences the annual maximum area of sea ice. It is found that the accumulatedfreezing air temperature lower than-5°C has significant linear correlation with seaice acreage in the frozen phase.
     The formulae for long term and short term forecasting of sea ice acreage in theLiaodong Bay were developed based on the least-square-method. The long termforecasting formula can run just on the given weather conditions. The short termforecasting formula should run on the given weather conditions and the last measuredvalue of sea ice acreage. The fitting and forecasting results show that both formulaecan rather accurately forecast the sea ice acreage. The BP neural networks model withstronger non-linear approximation capabilities was further used to develop the sea iceforecast model, and the accuracy is improved.
     In the end, a three-dimensional unstructered grid FVCOM model based on thefinite-volume solver was used for numerical simulation of sea ice in2003~2004winter in the Bohai Sea. The parameters of the model were adjusted to be suitable for the Bohai Sea, and the dynamical processes and thermodynamic processes of sea icewere fully incorporated through coupling of ocean and ice model. The simulatedresults show good agreement with measured data such as hydrodynamics, sea watertemperature, sea water salinity, sea ice area and thickness. It is indicated that thedeveloped3D sea ice model in the present dissertation is reasonable for parametersand suitable for long-term numerical simulation of sea ice with high accuracy. Theunstructured triangular meshes used in FVCOM can accurately describe the complexshoreline and be locally refined for the interesting region, therefore, combined withthe weather foarcast, the model can be applied in the refined simulation and forecastof sea ice in the future.
引文
[1]李志军.渤海海冰灾害和人类活动之间的关系[J].海洋预报,2010,27(1):8-12.
    [2]王相玉,袁本坤,商杰等.渤黄海海冰灾害与防御对策[J].海岸工程,2011,30(4):46-55.
    [3]杨华庭.近十年来的海洋灾害与减灾[J].海洋预报,2002,19(1):2-8.
    [4]张方俭,费立淑.我国的海冰灾害及其防御[J].海洋通报,1994,13(5):75-83.
    [5]孙劭,苏洁,史培军.2010年渤海海冰灾害特征分析[J].自然灾害学报,2011,20(6):87-93.
    [6]付博新,宋向群,郭子坚等.海冰对港口作业的影响及应对措施[J].水道港口,2007,28(6):444-447.
    [7]史庆增,苏彪,刘波.海冰对海上油气工程的破坏及减灾措施[J].石油工程建设,2005,31(4):19-23.
    [8]程浩力,刘德俊,高忠杰.滩海油气设施海冰灾害及减灾措施分析[J].辽宁石油化工大学学报,2011,31(1):32-39.
    [9]李志军,高树岗,严德成等.渤海平整冰厚度的分区统计[J].中国海上油气(工程),1996,8(1):43-46.
    [10]渤海工程设计公司.辽东湾北岸海冰物理力学性质测试与分析[R].1991.
    [11]国家海洋环境保护研究所,辽河油田滩海勘探开发公司.盖州辽东湾北部盖州滩海区工程海冰环境原位监测与研究[R].1995.
    [12]国家海洋局第一海洋研究所,渤海石油工程设计公司.辽东湾北部潮间海冰调查及分析[R].1991.
    [13]国家海洋环境监测中心等.辽东湾北部盖州滩海区海冰冰情预报[R].1993.
    [14]渤海石油监测公司. JZ9-3油田DRPW沉箱海冰调查总结报告[R].1996.
    [15]杨国金,刘春厚,张涛.渤海海冰工程图集[M].海洋出版社,1991.
    [16]杜碧兰等.渤海航空遥感冰情图集[M].海洋出版社,1990.
    [17]国家海洋局第一海洋研究所.辽东湾JZ20-2油田海域冬季水文气象分析观测报告[R].1994.
    [18]乐章燕,许映军,顾卫,等.2005年渤海海冰冰厚热力增长特征实验的个例研究[J].气象科学,2008,28(增刊):26-30.
    [19]岳前进,季顺迎.辽东湾冰季太阳辐射分析[J].海洋与湖沼,2000,31(5):562-567.
    [20]练继建,赵新.静动水冰厚生长消融全过程的辐射冰冻度-日法预测研究[J].水利学报,2011,42(11):1261-1267.
    [21]国巧真,顾卫,李京等.基于遥感数据的渤海海冰灾害风险研究[J].灾害学,2008,23(2):10-18.
    [22]国巧真,陈云浩,李京,等.遥感技术在我国海冰研究方面的进展[J].海洋预报,2006,23(4):95-103.
    [23]赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2004.
    [24]张廷新.星载微波遥感器的技术发展与未来[J].空间电子技术,1998,(1):1-25.
    [25]马树斌.主动式海洋微波遥感探测原理和应用[J].黄渤海海洋,1994,12(3):56-64.
    [26] Brown R D, Cote P. Interannual variability of landfast ice thickness in theCanadian High Arctic,1950-89[J]. Arctic,1992,45(3):273-284.
    [27] Eicken H, Lange M A. Sea ice thickness data: The many vs. the few[J].Geophys. Res. Lett.,1989,16(6):495–498.
    [28] Rothrock D A, Yu Y, Maykut G A. Thinning of the Arctic sea-ice cover[J].Geophys. Res. Lett.,1999,26(23):3469-3472.
    [29] Rothrock D A, Wensnahan M. The accuracy of sea-ice drafts measured from U.S. Navy submarines[J]. J. Atmos. Oceanic Technol.,2007,24(11):1936.
    [30] Gloersen P, Parkinson C L, Cavalieri D J, et at. Spatial distribution of trends andseasonality in the hemispheric sea ice covers:1978-1996[J]. J. Geophys. Res.,1999,104(C9):20827-20835.
    [31] Parkinson C L, Cavalieri D J, Gloersen P, et at. Arctic sea ice extents, areas, andtrends,1978-1996[J]. J. Geophys. Res.,1999,104(C9):20837-20856.
    [32] Comiso J C. A rapidly declining perennial sea ice cover in the Arctic[J].Geophys. Res. Lett.,2002,29(20):1956-1959.
    [33] Comiso J C, Cavalieri D J, Markus T. Sea Ice Concentration, Ice Temperature,and Snow Depth Using AMSR-E Data[J]. IEEE Trans. Geosci. Remote Sens.,2003,41(2):243-252.
    [34] Comiso J C, Parkinson C L. Arctic sea ice parameters from AMSR-E data usingtwo techniques and comparisons with sea ice from SSM/I[J]. J. Geophys. Res.,2008,113, C02S06.
    [35] Cavalieri D J, Parkinson C L. Antarctic sea ice variability and trends,1979-2006[J]. J. Geophys. Res.,2008,113, C07004.
    [36] Agnew T, Lambe A, Long D. Estimating sea ice area flux across the CanadianArctic Archipelago using enhanced AMSR-E[J]. J. Geophys. Res.,2008,113,C10011.
    [37] Dokken S T. Sea ice and ocean environmental applications of spaceborneSAR[D]. Chalmers University of Technology, G teborg, Sweden,2000.
    [38] Kern S, Kaleschke L, Clausi D A. A comparison of two85-GHz SSM/I iceconcentration algorithms with AVHRR and ERS-2SAR imagery[J]. IEEETransactions on Geoscience and Remote Sensing,2003,41(10):2294-2306.
    [39] Kwok R. Summer sea ice motion from the18GHz channel of AMSR-E and theexchange of sea ice between the Pacific and Atlantic sectors[J]. Geophys. Res.Lett.,2008,35, L03504.
    [40] Mahoney A, Eicken H, Gaylord A G et at. Alaska landfast sea ice: Links withbathymetry and atmospheric circulation[J]. J. Geophys. Res.,2007,112,C02001.
    [41] Heacock T, Hirose T, Lee F, et at. Sea-ice tracking on the east coast of Canadausing NOAA/AVHRR imagery[J]. Annals of Glaciology,1993,17:405-413.
    [42] Ninnis R M, Emery W J, Collins M J. Automated extraction of pack ice motionfrom Advanced Very High Resolution Radiometer imagery[J]. J. Geophys. Res.,1986,91(C9):10725–10734.
    [43] Key J, Haefliger M. Arctic ice surface temperature retrieval from AVHRRthermal channels[J]. J. Geophys. Res.,1992,97(D5):5885–5893.
    [44] Lindsay R W, Rothrock D A. Arctic sea ice leads from advanced very highresolution radiometer images[J]. J. Geophys. Res.,1995,100(C3):4533-4544.
    [45] Spinhirne J D, Palm S P, Hart W D. Antarctica cloud cover for October2003from GLAS satellite lidar profiling[J]. Geophys. Res. Lett.,2005,32: L22S05.
    [46] Ackerman S A, Strabala K I, Menzel W P, et at. Discriminating clear sky fromclouds with MODIS[J]. J. Geophys. Res.,103(D24):32141-32157.
    [47]舒迟.星载SAR在防抗海冰灾害中的应用研究[J].中国水运,2011,11(6):71-73.
    [48]郑新江,赵长海,刘诚,等.利用气象卫星资料提取海冰定量参数[J].中国海上油气(工程),1992,4(6):40-70.
    [49] Wu H D, Bai S, Zhang Z H. Numerical sea ice prediction in China[J]. ActaOceanologica Sinica,1998,17(2):167-185.
    [50] Wu H D, BaiI S, Li H, et al. Modeling and forecasting of Bohai Sea ice [J]. J. ofCold Region Engineering,2000,14(2):68-80.
    [51]吴奎桥,徐莹,郝轶萌. MODIS数据在海冰遥感中的应用[J].海洋预报,2005,22(supplement):44-49.
    [52]谢锋,顾卫,袁艺.辽东湾海冰资源量的遥感估算方法研究.资源科学,2003,3(25):17~23.
    [53]郭凤莲,赵仁宇,王维滨.无源微波遥感技术在海冰测厚中的应用研究[J].遥感学报,2000,4(2):112-117.
    [54]罗亚威,张蕴斐,孙从容等.“海洋1号”卫星在海冰监测和预报中的应用[J].2005,27(1):7-18.
    [55]赵宝刚.渤海辽东湾冰区工程点雷达海冰监测和预报技术研究[D].大连海事大学,2008.
    [56]武晋雯,张玉书,冯锐,等.基于MODIS的海冰面积遥感监测及其与气温的相关分析[J].遥感技术与应用,2009,24(1):73-76.
    [57]王宁.基于MODIS数据的渤海海冰重要参数提取技术与探测系统[D].中国海洋大学,2009.
    [58]郭衍游,焦明连.利用MODIS数据反演渤海海冰分布[J].淮海工学院学报(自然科学版),2010,19(1):84-87.
    [59] Guo H T, Xie H H. Application of MODIS Data to Monitor Sea Ice in BohaiSea[A].2010Second IITA International Conference on Geoscience and RemoteSensing significance[C],2010,36-38.
    [60]马龙. NASA MODIS海冰产品评价分析[J].国土资源遥感,2011,88(1):115-117.
    [61] Zhang N, Zhang Q H, Wang L L. Mapping sea ice area of Liaodong bay for the2009-2010winter using modis and china environment satellite data[A].2011International Conference on Remote Sensing, Environment and TransportationEngineering[C],2011,1329-1332.
    [62]邓钟,池天河,张新.基于HJ星影像多方法海冰信息提取对比研究[J].闽江学院学报,2011,32(2):122-125.
    [63]朱海天,曾韬,梁超等.卫星遥感海冰监测系统在渤海海冰监测中的应用[J].海洋预报,2011,28(6):55-59.
    [64] Shi W, Wang M H. Sea ice properties in the Bohai Sea measured byMODIS-Aqua:1. Satellite algorithm development[J]. J. Marine Syst.,2012,95:32-40.
    [65]任朝辉,邵峰晶,王常颖等.基于数据挖掘的MODIS影像海冰检测方法[J].青岛大学学报(工程技术版),2012,27(2):1-27.
    [66]丁德文,等.工程海冰学概论[M].北京:海洋出版社,2000.
    [67] Li N, Gu W, Seiji H, et al. Relationship between sea ice thickness andtemperature in Bohai Sea of China [J]. Journal of the Faculty of AgricultureKyushu University,2005,50(1):165-173.
    [68]李宁,雷飏,顾卫,等.环辽东湾地区冬季平均气温对渤海海冰面积的影响[J].资源科学,2008,30(12):1818-1824.
    [69]岳海波,张杰,纪永刚,等.辽东湾海冰面积变化模拟和预测探讨[J].海洋学报,2009,31(5):169-174.
    [70] Su H, Wang Y P, Yang J X. Monitoring the Spatiotemporal Evolution of Sea Icein the Bohai Sea in the2009–2010Winter Combining MODIS andMeteorological Data[J]. Estuaries and Coasts,2011,35(1):281-291.
    [71] Zhang N, Zhang Q H. Evolution of Sea Ice Area in the Liaodong Bay during theWinter of2009-2010[A].20122nd International Conference on Remote Sensing,Environment and Transportation Engineering[C],2012,1196-1199.
    [72] Campbell W J. The wind-driven circulation of ice and water in a polar ocean[J].J. Geophys. Res.,1965,70(14):3279-3301.
    [73] Maykut G A, Untersteiner N. Some results from a time-dependentthermodynamic model of sea ice[J]. J. Geophys. Res.,1971,76(6):1550–1575.
    [74] Semtner A J. A model for the thermodynamic growth of sea ice in numericalinvestigations of climate[J]. J. Phys. Oceanogr.,1976,6:379–389.
    [75] Thorndike A S, Rothrock D S, Maykut G A. The thickness distribution of seaice[J]. J. Geophys. Res.,1975,80(33):4501–4513.
    [76] Hibler W D. A dynamic thermodynamic sea ice model[J]. J. Phys. Oceanogr.,1979,9:815-846.
    [77] Hibler W D. Modeling a variable thickness sea ice cover[J]. Mon. Wea. Rev.,1980,108:1943-1973.
    [78] Bitz C M, Lipscomb W H. An energy-conserving thermodynamic model of seaice[J]. J. Geophys. Res.,1999,104(C7):15669-15677.
    [79] Lipscomb W H. Remapping the thickness distribution in sea ice models[J]. J.Geophys. Res.,2001,106(C7):13989-14000.
    [80] Hunke E C, Lipscomb W H. CICE: the Los Alamos Sea Ice ModelDocumentation and Software User’s Manual Version4.0LA-CC-06-012[Z]. T-3Fluid Dynamics Group, Los Alamos National Laboratory,2008.
    [81] Gao G, Chen C S, Qi J H, et at. An unstructured-grid, finite-volume sea icemodel: Development, validation, and application[J]. J. Geophys. Res.,2011,116:C00D04.
    [82] Felzenbaum A I. The theory of steady drift of ice and the calculation of the longperiod mean drift in the central part of the Arctic Basin[J]. Probl North,1961,2:13-44.
    [83] Bryan K, Manabe S, Pacanowski R L. A global ocean-atmosphere climatemodel.Part II:The oceanic circulation[J]. J Phys Oceanogr,1975,5(1):30-46.
    [84] Manabe S, Bryan K, Spelman M J. A global ocean-atmosphere climate modelwith seasonal variation for future studies of climate sensitivity[J]. Dyn. Atmos.Oceans,1979,3:393-426.
    [85] Parkinson C L, Washington W M. A large scale numerical model of sea ice[J]. JGeophys Res.,1979,84(C1):311-337.
    [86] Hibler W D. Differential sea ice drift II: Comparison of mesoscale stainmeasurements to linear drift theory predictions[J]. J Glaciol,1974,13(69):457-471.
    [87] Hibler W D, Tucker W B. Some results from a linear viscous model of theArctic ice cover[J]. J. Glaciol,1979,22(87):293-304.
    [88] Lepparanta M, Hibler W D. The role of plastic ice interaction in Marginal IceZone dynamics[J]. J. Geophys. Res,1985,90(C6):11899-11909.
    [89] Coon M D, Maykut S A, Pritchard R S. Modeling the pack ice as anelastic-plastic material[J]. AIDJEX Bull.,1974,24:1-105.
    [90] Pritchard R S, Coon M D, McPhee M G. Simulation of sea ice dynamics duringAIDJEX[J]. J Pressure Vessel Tech,1977,99(J):491-497.
    [91] Flato G M, Hibler W D. Modeling pack ice as a cavitating fluid[J]. J. Phys.Oceanogr.,1992,22(6):626-651.
    [92] Hunke E C. Viscous–Plastic Sea Ice Dynamics with the EVP Model:Linearization Issues[J]. J. Comput. Phys,2001,170:18-38.
    [93] Hunke E C, Dukowicz J K. The Elastic–Viscous–Plastic sea ice dynamics modelin general orthogonal curvilinear coordinates on a sphere incorporation of metricterms[J]. Monthly Weather Review,2001,130:1848-1865.
    [94] Hunke E C, Dukowicz J K. An elastic-viscous-plastic model for sea icedynamics[J]. J. Phys. Oceanogr.,1997,27:1849-1867.
    [95]臧恒范,王绍武.海温韵律与海冰的长期预报[J].海洋学报,1983,5(2):163~171.
    [96]张启文.渤海海冰变化与气象条件的关系[J].海洋预报,1986,3(1):49~54.
    [97]王仁树,刘钦政,陈伟斌,等.渤海海冰漂移过程的数值模拟和试验[J].海洋与湖沼,1994,25(3):301-305.
    [98]王志联,吴辉碇.海冰的热力过程及其与动力过程的耦合模拟[J].海洋与湖沼,1994,25(4):408-415.
    [99]白珊,吴辉碇.渤海的海冰数值预报[J].气象学报,1998,56(2):139-153.
    [100]刘饮政,刘煜,白珊,等.2002-2003渤海海冰数值预报[J].海洋预报,2003,20(3):61-67.
    [101]李春花,刘煜,白珊,等.2004~2005年度冬季渤海海冰数值预报[J].海洋预报,2006,23(1):1-8.
    [102]刘煜,白珊,李春花,等.2005-2006年冬季渤海海冰数值预报[J].海洋预报,2006,23:1-10.
    [103] Wu H D, Bai S, Zhang Z H. Numerical simulation for dynamical processes ofsea ice[J]. Acta Oceanologica Sinica,1997,16(3):303-325.
    [104] Shen H T, Chen Y C, Wake A, et al. Lagrangian discrete parcel simulation ofriver ice dynamics [J]. International Journal of Offshore and Polar Engineering,1993,3(4):328-332.
    [105] Pritchard R, Mueller A, Hanzlick D, et al. Forecasting Bering Sea ice edgebehavior[J]. J. Geophys. Res,1990,95:775-788.
    [106] Shen H T, Su J S, Liu L W. SPH simulation of river ice dynamics[J]. J.Comput. Phys,2000,165:752-770.
    [107] Lindsay R W, Stern H L. A New Lagrangian Model of Arctic Sea Ice[J]. J.Phys. Oceanogr.,2004,34:272-283.
    [108] Flato G M. A particle-in-cell sea-ice model[J]. Atmosphere and Oceanography,1993,31(3):339-358.
    [109]李海,季顺迎,沈洪道等.海冰动力学的混合拉格朗日-欧拉数值方法[J].海洋学报,2008,30(2):1-11.
    [110]王瑞学,季顺迎,岳前进.海冰动力学数值模拟中改进的PIC方法[J].计算力学学报,2006,23(4):440-446.
    [111]唐茂宁,刘钦政,刘煜,白珊.渤海海冰季节演变的数值模拟[J].海洋预报,2010,27(2):48-52.
    [112] Liu Y, Liu Q Z, Su J, etc., Seasonal Simulations of a Coupled Ice-ocean Modelin the Bohai Sea and North Yellow Sea since the Winter of1997/1998[A].Proceedings of the Twenty-first (2011) International Offshore and PolarEngineering Conference[C],2011,19-24.
    [113]吴龙涛,吴辉碇,孙兰涛等. MODIS渤海海冰遥感资料反演[J].中国海洋大学学报,2006,36(2):173-179.
    [114]王荣,唐伶俐,戴昌达. MODIS数据在测量地物辐射亮度和反射率特性中的应用[J].遥感信息,2002,(3):21-24.
    [115]韩素芹,黎贞发,孙治贵. EOS/MODIS卫星对渤海海冰的观测研究[J].气象科学,2005,25(6):624-628.
    [116]王桂芹,黄道.决策树算法研究及应用[J].电脑应用技术,2008,(72):1-7.
    [117] Iyer S K, Saxenab B. Improved genetic algorithm for the pemutation flow shopscheduling problem[J]. Computers&Operations Research,2004,31(4):593-606.
    [118] Srinivas M, Patnaik L M. Adaptive Probabilities of Crossover and Mutation inGenetic Algorithms[J]. IEEE Transactions on Systems, Man and Cybernetics,1994,24(4):656-667.
    [119]齐乐,岳彩荣.基于CART决策树方法的遥感影像分类[J].林业调查规划,2011,36(2):62-66.
    [120]戚长松,余忠华,侯智等.基于CART决策树的复杂生产过程质量预测方法研究[J].先进管理技术,2010,(3):94-102.
    [121]陈云,戴锦芳,李俊杰.基于影像多种特征的CART决策树分类方法及其应用[J].地理与地理信息科学,2008,24(2):33-36.
    [122]徐军,谭莹,郑云峰.基于CART决策树技术的林业地类遥感影像分类研究[J].华东森林经理,2011,25(4):79-84.
    [123]陈辉林,夏道勋.基于CART决策树数据挖掘算法的应用研究[J].煤炭技术,2011,30(10):164-166.
    [124]张晓娟,杨英健,盖利亚等.基于CART决策树与最大似然比法的植被分类方法研究[J].遥感应用,2010:88-92.
    [125]董叶辉,南颖,刘志锋等.基于ETM影像多种特征的CART决策树分类[J].资源开发与市场,2011,27(2):116-130.
    [126] Richards J A. Remote Sensing Digital Image Analysis[M]. Springer-Verlag,Berlin,1999, p.240.
    [127]于道正.黄、渤海区冬季海冰年度预报方法的探讨[J].海洋通报,1982,(2):1-6.
    [128]杨国金.中国近海工程环境参数区划[J].海洋预报,1998,15(3):132-139.
    [129]胡伍生.神经网络理论及其工程应用[M].北京:测绘出版社,2006,63-83.
    [130]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2006:1-90.
    [131]徐庐生.微机神经网络[M].北京:中国医药科技出版社,1995.
    [132]高大启.有教师的线性基本函数前向三层神经网络结构研究[J].计算机学报,1998,21(1):80-85.
    [133]陈再辉,江丽钧,朱晓燕,等.基于贝叶斯正则化BP神经网络的DEM趋势面逼近[J].海洋测绘,2009,29(4):32-41.
    [134]李来强,王树林,赵兵涛.BP神经网络的LM算法及其对颗粒碰撞振动阻尼的预测[J].上海理工大学学报,2006,28(4):331-333.
    [135] Martin R, Heinrich B. A Direct Adaptive Method for Faster BackpropagationLearning:The RPROP Algorithm[A]. Ruspini H. Proceedings of the IEEEInternational Conference on Neural Networks(ICNN)[C]. IEEE Press, NewYork,1993,586-591.
    [136] Chen C, Liu H, Beardsley R C. An unstructured, finite-volume, three-dimensional, primitive equation ocean model: application to coastal ocean andestuaries[J]. J. Atm.&Oceanic Tech.,2003,20:159-186.
    [137] Blumberg A F. A primer for Ecom-si[R]. Technical Report of HydroQual, Inc.,1994.
    [138] Haidvogel D B, Arango H G, Hedstrom K, et al. Model evaluation experimentsin the North Atlantic Basin, Simulation in nonlinear terrain-followingcoordinates[J]. Dyn. Atmo.Oceans.,2000,32:239-281.
    [139] Chen C, Zhu J, Ralph E, Green S A, and Budd J. Prognostic modeling studiesof the Keweenaw current in Lake Superior. Part I: formation and evolution[J].J. Phys. Oceanogr.,2001,31:379-395.
    [140] Chen C, Zhu J, Zheng L, Ralph E and Budd J W. A non-orthogonal primitiveequation coastal ocean circulation model: application to Lake Superior[J]. J.Great Lakes Res.,2004,30:41-54.
    [141] Pedlosky J. Longshore currents, upwelling and bottom topography[J]. J. Phys.Oceanogr.,1974,4:214-226.
    [142] Chen C G, Cowles and Beardsley R C. An unstructured grid, finite-volumecoastal ocean model: FVCOM user manual[R]. SMAST/UMASSD TechnicalReport-04-0601,2004.
    [143] Maykut G A, McPhee M G. Solar heating of the Arctic mixed layer[J]. J.Geophys. Res.,1995,100(C12):24691-24703.
    [144] Rothrock D A. The Energetics of the plastic deformation of pack ice byridging[J]. J. Geophys. Res.,1975,80(33):4514–4519.
    [145] Lipscomb W H, Hunke E. C, Maslowski W, Jakacki J. Ridging, strength, andstability in high-resolution sea ice models[J]. J. Geophys. Res.,2007,112:C03S91.
    [146]季顺迎,岳前进,赵凯.渤海海冰动力学的质点网格法数值模拟[J].水动力学研究与进展,2003,18(6):748-760.
    [147]张德良.计算流体力学教程[M].北京:高等教育出版社,2010.
    [148] Chen C S, Cowles G, Beardsley R C. An unstructured grid, finite-volumecoastal ocean model: FVCOM user manual[Z]. Sch. of Mar. Sci. and Technol.,Univ. of Mass.,2006.
    [149] Pietrzak J, Jakobson J B, Burchard H, Vested H J, Petersen O. A three-dimensional hydrostatic model for coastal and ocean modelling using ageneralised topography following co-ordinate system[J]. Ocean Modelling,2003,4:173-205.
    [150] Pacanowski R C, Dixon K. CICE: The GFDL modular ocean model usersguide, version1.0[R]. A Rosati-GFDL Ocean Group Tech. Rep,1991.
    [151] Bryan K. A numerical method for the study of the circulation of the worldocean [J]. J. Comput. Phys,1969,4:347-376.
    [152] Danish Hydraulic Institute. MIKE3Estuarine and Coastal Hydraulics andOceanography, Hydrodynamic Module, Release2.7User Guide and ReferenceManual [R]. H rsholm, Denmark,1998.
    [153] Harms I H. Water mass transformation in the Barents Sea—application of theHamburg Shelf Ocean Model (HamSOM)[J]. ICES Journal of Marine Science,1997,54(3):351-365.
    [154] Blumberg A F, Mellor G L. A description of a three-dimensional coastal oceancirculation model [J]. Coastal and Estuarine Sciences,1987,4:1–16.
    [155] Haidvogel D B, Wilkin J L, Young R E. A semi-spectral primitive equationocean circulation model using vertical sigma and orthogonal curvilinearhorizontal co-ordinates[J]. J. Comput. Phys,1991,94:151–185.
    [156] Luyten P J, Jones J E, Proctor R, Tabor A, Tett P, Wild-Allen K.COHERENS-a coupled hydrodynamical-ecological model for regional andshelf seas: user docu-mentation[R]. Management Unit of the MathematicalModels of the North Sea, MUMM Internal Document,1999.
    [157] Bleck R, Rooth C, Hu D, et al. Salinity-driven thermocline transients in awind and thermohaline-forced isopycnic coordinate model of the NorthAtlantic[J]. Journal of Physics Oceanography,1992,22:1486-1505.
    [158] Gerdes R. A primitive equation ocean circulation model using a generalvertical co-ordinate transformation. Part1: description and testing of the model[J]. J. Geophys. Res,1993,98:14683–14701
    [159] Song Y, Haidvogel D. A semi-implicit ocean circulation model using ageneralised topography-following coordinate system[J]. J. Comput. Phys,1994,115:228–244.
    [160] Shchepetkin F, McWilliams J C. The regional oceanic modeling system(ROMS): a split-explicit, free-surface, topography-following-coordinateoceanic model [J]. Ocean Modelling,2004,9(4):347-404.
    [161] Bleck R, Benjamin S. Regional weather prediction with a model combiningterrain-following and isentropic coordinates[J]. Part I: Model description.Monthly Weather Review,1993,121:1770-1785.
    [162] Bleck R, Boudra D. Initial testing of a numerical ocean circulation model usinga hybrid (quasi-isopycnic) vertical coordinate[J]. J. Phys. Oceanogr.,1981,11:755-770.
    [163] Spall M A, Robinson A R. Regional primitive equation studies of the gulfstream meander and ring formation region[J]. J. Phys. Oceanogr.,1990,20:985–1016.
    [164] Gary J M. Estimate of truncation error in transformed co-ordinate, primitiveequation atmospheric models[J]. Journal of Atmospheric Sciences,1973,30:223–233.
    [165] Haney R L. On the Pressure Gradient Force over Steep Topography in SigmaCoordinate Ocean Models[J]. J. Phys. Oceanogr.,1991,21:610-619.
    [166] Reid R O, Bodine B R. Numerical model for storm surges in Galveston Bay [J].J. Waterway Harbour Div,1968,94:33-57.
    [167] Lynch D R, Gray W G. Finite element simulation of flow in deforming regions[J]. J. Comput. Phys,1980,36(2):135-153.
    [168]陶建华.波浪在岸滩上的爬高和破碎的数学模型[J].海洋学报,1984,6(5):692-700.
    [169]王泽良,王日新,陶建华.渤海湾流场以及污染物分布的数值模拟研究[J].海洋与湖沼,1999,30(2):224-230.
    [170] Sidén G L D, Lynch D R. Wave equation hydrodynamics on deformingelements [J]. Journal for Numerical Methods in Fluids,1988,8(9):1071-1093.
    [171] Austria P M, Aldama A A. Adaptive mesh scheme for free surface flows withmoving boundaries[J]. Computational Methods in Surface Hydrology,Springer-Verlag, New York,1990,456-460.
    [172] Leendertse J J.A Water-quality Simulation Model for Well-mixed Estuariesand Coasta1Seas, Vol. I, principles of computation[R]. Rand CorporationReport RM-6230-RC,1970.
    [173] Falconer R A, Chen Y P. Improved representation of flooding and drying andwind stress effects in a two-dimensional tidal numerical model[A].Proceedings of the Institution of Civil Engineers[C],1991,91(2):659-687.
    [174] Stelling G S, Wiersma A K, Willemse J. Practical aspects of accurate tidalcomputations[J]. Journal of Hydraulic Engineering,1986,112(9):802-817.
    [175] Lin B, Falconer R A. Three-dimensional layer-integrated modelling ofestuarine flows with flooding and drying[J]. Estuarine, Coastal and ShelfScience,1997,44(6):737-751.
    [176] Oey L Y. A wetting and drying scheme for POM [J]. Ocean Modelling,2005,9(2):133-150.
    [177] Flather R A, Heaps N S. Tidal computations for Morecambe Bay[J].Geophysical Journal of the Royal Astronomical Society,1975,42(2):489-517.
    [178] Leendertse J J. Aspects of SIMSYS2D, a system for two-dimensional flowcomputation[R]. Rand Corporation Report R-3572-USGS,1987.
    [179] Ip J T C, Lynch D R, Friedrichs C T.1998. Simulation of estuarine floodingand dewatering with application to Great Bay, New Hampshire[J]. Estuarine,Coastal and Shelf Science,1998,47:119-141.
    [180] Zheng L, Chen C, Alber M, Liu H. A modeling study of the Satilla RiverEstuary, Georgia. II: Suspended sediment[J]. Estuaries and Coasts,2003,26(3):670-679.
    [181] Davis A M, Jones J E, and Xing J. Review of recent developments in tidalhydrodynamic modeling, I: Spectral models[J]. J. Hydraulic Eng., ASCE,1997,123:278-292.
    [182] Casulli V, Cheng R T. Semi-implicit finite difference methods forthree-dimensional shallow water flow [J]. International Journal for NumericalMethods in Fluids,1992,15:629-648.
    [183] Cheng R T, Casulli V, Gartner J W. Tidal, residual, intertidal mudflat (TRIM)model and its applications to San Francisco Bay, California[J]. Estuarine,Coastal and Shelf Science,1993,36:235-280.
    [184] Casulli V, Cattani E. Stability, accuracy and efficiency of a semi-implicitmethod for three-dimensional shallow water flow[J]. Computers andMathematics with Application,1994,27:99-112.
    [185] Hervouet J M, Janin J M. Finite-element algorithms for modeling floodpropagation[A]. ASCE[C],1994,102-113.
    [186] Wilcox D. Turbulence modeling for CFD[M]. DCW Industries, Inc,2000.
    [187]李孟国,郑敬云.中国海域潮汐预报软件Chinatide的应用[J].水道港口,2007,28(1):65-68.
    [188]方国洪,杨景飞.渤海潮波运动的一个二维数值模式[J].海洋与湖沼,1985,16(5):337-346.
    [189]张娜.渤海潮汐预报及流场特性分析[D].天津大学,2007.
    [190]冯士筰,张经,魏皓.渤海环境动力学导论[M].科学出版社,2007.
    [191]冯士筰.渤海环境流体动力学研究的焦点[J].山东海洋学院学报,1988,18(2):1-7.
    [192]陈满春,刘克修.渤海湾水位、流场的一个数值预报模式[J].海洋通报,2006,25(4):16-22.
    [193]高振会,陈锦年,王学昌.黄河径流量与秋季渤海底层盐度相关性初步分析[J].海洋通报,1991,10(3):111-112.
    [194]孙卫阳,王宗山.黄、渤海盐度准三维数值预报模式[J].海洋学报,1993,15(5):37-45.
    [195]王宗山,徐伯昌,龚滨等.黄渤海底层温盐数值预报方法的研究Ⅲ底层温度预报模式[J].海洋学报,1993,15(3):14-18.
    [196]赵进平,侍茂崇,李诗新.低盐区及渤海低盐区的盐度特征[J].海洋科学集刊,1998,40:249-260.
    [197]贾瑞丽,孙璐.渤海、黄海冬夏季主要月份的海温分布特征[J].海洋通报,21(4):1-8.
    [198]刘哲,魏皓,蒋松年.渤海多年月平均温盐场的季节变化特征及形成机制的初步分析[J].青岛海洋大学学报,2003,33(1):7-14.
    [199] Lin C L. Long-term variations of temperature and salinity of the Bohai Sea andtheir influence on its ecosystem[J]. Progress in ceanography,2001,49:106-113.
    [200]方国洪,王凯,郭丰义,等.近30年渤海水文和气象状况的长期变化和相互关系[J].海洋与湖沼,2002,33(5):515-525.
    [201]吴德星,牟林,李强,等.渤海盐度长期变化特征及可能的主导因素[J].自然科学进展,2004,14(2):191-195.
    [202]鲍献文,万修全,吴德星,等.2000年夏末和翌年初冬渤海水文特征[J].海洋学报,2004,26(1):14-24.
    [203]俎婷婷,鲍献文,谢骏,等.渤海中部断面环境要素分布及其变化趋势[J].中国海洋大学学报,2006,35(6):889-894.
    [204]马超,吴德星,林霄沛.渤、黄海盐度的年际与长期变化特征及成因[J].中国海洋大学学报,2007,36(6)增刊:7-12.
    [205]宋文鹏.渤海冬、夏季温盐场结构及其海流特征分析[D].中国海洋大学,2009.
    [206]黄大吉,苏纪兰,陈宗镛.三维陆架海模式在渤海中的应用—Ⅱ、温度的季节性变化[J].海洋学报,1996,18(6):8-17.
    [207]林霄沛,吴德星,鲍献文,等.渤海海峡断面温度结构及流量的季节变化[J].青岛海洋大学学报,2002,32(3):355-360.
    [208]陈新平.渤、黄海海温结构及相应环流场的数值模拟研究[D].青岛:中国海洋大学,2006.
    [209]程济生.黄渤海近岸水域生态环境与生物群落[M].中国海洋大学出版社,2004.
    [210]白珊,刘钦政,李海等.渤海的海冰[J].海洋预报,1999,16(3):1-9.
    [211] McPhee M G. Turbulent Heat Flux in the Upper Ocean Under Sea Ice [J]. J.Geophys. Res.,1992,97:5365-5379.
    [212] Josberger E G. Bottom ablation and heat transfer coefficients from the1983Marginal Ice Zone Experiment[J]. J. Geophys. Res.,1987,92(C7):7012-7016.
    [213] Haapala J, Lepparanta M. Simulating the Baltic Sea ice season with a coupledice–ocean model[J]. Tellus A,1996,48:622-643.
    [214] Shirasawa K and Ingram G R. Currents and turbulent fluxes under thefirst-year sea ice in Resolute Passage, Northwest Territories, Canada[J].Journal of Marine System,1997,11:21-32.
    [215]苏洁,吴辉碇,刘钦政等.渤海冰-海洋耦合模式[J].海洋学报,2005,27(1):19-26.
    [216] Josberger E G, Martin S. A laboratory and theoretical study of the boundarylayer adjacent to a vertical melting ice wall in salt water[J]. Journal of FluidMechanics,1981,111:439-473.
    [217] Perovich D K. On the summer decay of a sea ice cover[D]. Univ. Wash.,Seattle,1983.
    [218] Maykut G A, Perovich D K. The Role of Shortwave Radiation in the SummerDecay of a Sea Ice Cover [J]. J. Geophys. Res.,1987,92(C7):7032-7044.
    [219] Tang C L. A two-dimensional thermodynamic model for sea ice advance andretreat in the Newfoundland marginal ice zone[J].1991,96(C3):4723-4737.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700