用户名: 密码: 验证码:
三峡库区紫色土坡耕地水量平衡研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡库区农业以旱作粮食作物为主,坡耕地是库区主要的农业生产用地,降水是该区域农业生产的主要来源,降水总量大,但降水时间分布不均,径流损失大,该区域季节性干旱十分突出,基本上是十年九旱,干旱缺水严重制约该区域农业的持续发展。紫色土坡耕地是库区重要的耕地资源,耕作频繁,人为扰动剧烈,水土流失严重,以雨养农业为主,土层薄,蓄水保肥能力差,水分亏缺是作物生长的主要障碍因子。如何合理调节利用降水资源,解决该区域季节性干旱与植物生长发育协调性差的矛盾,作物耗水特性和农田水量平衡研究就显得特别重要。国内外有关农田水量平衡的研究早已不只局限于理论本身,而是将相关理论用于指导农业生产实践,并取得了丰硕的成果,但是,国内的研究主要集中于干旱、半干旱的华北平原和黄土高原地区,而在南方季节性干旱地区,特别是三峡库区紫色土坡耕地水量平衡的研究未见详细报道。目前,紫色土坡耕地水量平衡要素研究中径流的研究较多、较深入,但在地表径流模拟计算方面仍过程复杂,同时对最主要也是最难确定的农田蒸散量这一平衡要素,特别是涉及农田蒸散量的确定方面未见详细研究。为此,本研究针对紫色土坡耕地水量平衡研究中的不足,选择重庆市开县竹溪镇石碗小流域坡耕地(坡式梯地)为研究对象,以紫色砂岩、泥岩发育形成的中性紫色土为供试土壤,开展坡耕地水量平衡分析研究,为今后全面开展三峡库区紫色土坡耕地水量平衡的监测和预测等深入研究打下基础,同时希望能为库区坡耕地分类改造,坡耕地集、蓄、供、管的降水资源化集成利用体系的建设提供科学依据。
     试验研究以为三峡库区季节性干旱问题的解决提供可靠数据为出发点,以2007-2012年盆栽试验、测坑试验和径流小区试验观测数据为依据,以坡面产流汇流理论、水量平衡原理为理论基础,采用试验观测、理论分析计算等方法,对三峡库区紫色土坡耕地水量平衡要素进行了探讨,对常规种植模式下单作小麦、油菜、玉米、红薯和小麦/玉米‖红薯、油菜/玉米‖红薯间套作模式的作物耗水特性和坡耕地水量平衡状况进行初步研究。主要研究结果如下
     (1)水分下渗过程主要受控于降水强度的变化过程
     2007-2012年作物生长期内降水呈现出夏秋多、冬春少,夏秋季多暴雨,降水量集中的特点。6-8月古年均降水量的43.4%,7、8月暴雨量占月均降水量的55.2%、44.5%。降水分布特征参数(σ、Cv、Cs)分析结果表明作物生长期内降水在时间分布上呈不均匀性,One-Sample K-S检验表明作物生长期年内各月降水旱正态分布。
     坡耕地单点土壤水分下渗在时空分布上存在变异性,坡面不同位置初始下渗率和稳定下渗率具有较大差异,下渗历时60min拟合第1分钟末下渗率8.03~20.83mm.min-1(Kostiakov公式拟合值),稳定下渗率0.76~3.81mm.min-1,均值1.42mm.min-1(实测值),耕作对土壤下渗影响显著。初始下渗的0~10min时段,土壤下渗率迅速下降,而且下降幅度较大,10~25min时段,下降幅度明显减小,下渗历时25min后,逐渐趋于稳定,在27.7~35.4min内达到稳定下渗阶段。单点下渗特性可用Kostiakov公式来描述,公式中第1分钟末的下渗速率与初始含水量呈高度负相关关系(可用指数函数关系式表达),下渗率和下渗量表达式如下:
     自然降水条件下土壤下渗特性与降水强度有密切的关系,下渗率的变化过程主要受控于降水强度的变化过程,坡面下渗特性受诸多因素的影响,在空间上和时间上都呈现出不稳定和不连续性变化。暴雨时段前后降水强度不能满足下渗率要求,降水全部下渗,即f(t)=i(t),降水强度大时,土壤的下渗率大,降水强度小时,下渗率则小。在暴雨时段内,前时段降水强度大时,即i(t)≥fp(t),土壤的下渗率大,即f(t)=fp(t),但维持较高下渗率的时间较短,以后就逐渐减小;在暴雨时段内,前时段降水强度小时,即i(t)≤fp(t),降水全部渗入土壤,即f(t)=i(t),此时下渗率小,当降水强度增大到i(t)≥fp(t)时,下渗率达最大f(t)=fp(t),随后又逐渐减小,维持这种较低或较高下渗率的时间长短,取决于暴雨时段内前时段小强度降水历时。
     (2)分时段净雨模拟方法能较好反映的坡面产流过程
     不同降水特性、雨前土壤含水量和耕作状况等对产流时间、产流量和径流成分组成有影响。雨峰靠前、强度大的降水,地表径流出流时间早而且地表径流量大,若土壤初始含水量高,暴雨时段后小强度降水历时长,则壤中流产流量也较大;雨峰靠中的降水,暴雨前土壤含水量高,即使是中等强度的降水,如果降水量大、历时长也将产生大量的地表径流和壤中流;雨峰靠后的降水,如果暴雨时段内前期降水未使土壤含水量明显提高,降水首先满足表层土壤的缺水量,当降水强度超过下渗能力时开始产生地表径流,若降水量不大、暴雨历时较短,降水损失量大,则地表径流和壤中流出流量偏小。
     地表径流主要为暴雨产生的超渗产流,7、8月以地表径流为主,月均径流系数分别为0.36、0.30;5、6月和9月以壤中流为主,耕作后土壤以壤中流产流为主,试验区坡耕地壤中流较发育,壤中流径流系数0.15~0.34。壤中流的产生与降水强度无直接关系,与土壤前期含水量、土壤中是否存在自由重力水和暴雨前后小强度降水特性有关。2008~2012年降水径流主要出现在5~9月,月均径流系数分别为0.15、0.28、0.36、0.30、0.07,5~9月月均降水径流关系可表示为:R=0.559P-44.03R2=0.948
     以坡面水流运动波理论、流量过程的倍比假定和叠加假定原理为理论依据,以暴雨时段平均下渗率代替瞬时下渗率的分时段净雨模拟方法能较好反映自然降水条件下的地表径流产流过程,简化了模拟过程,可操作性强,模拟结果较好,模拟地表径流量与实测值相吻合。雨峰靠前、靠中和靠后的三次降水模拟产流过程与实际观测结果大致吻合,模拟地表径流量分别为34.4mm、39.7mm和10.2mm,与实际观测结果也大致相同。
     (3)农田蒸散量采用作物系数法确定
     太阳辐射采用Hargreaves公式计算。标准的Penman-Monteith计算公式以能量平衡和水汽扩散理论为基础,既考虑了作物的生理特征,又考虑了空气动力学参数的变化,较为全面地考虑了影响蒸散发的各种因素,具有较充分的理论依据。试验区参考作物蒸散量主要由空气动力学项ET0(aero)贡献,约占70%,辐射项ET0(rad)约占30%。2001-2012年日、月、年参考作物蒸散量的变化趋势均与温度的变化趋势相同,而年参考作物蒸散量的变化趋势与日照时数变化趋势相反。相关性分析和敏感性分析结果,最高温度和日照时数与参考作物蒸散量的相关性一致,同时日照时数与最高温度具有较大的相关性,饱和水汽压差与参考作物蒸散量具有高度相关性,而饱和水汽压差是温度和相对湿度对参考作物蒸散量影响的综合反映;最高温度的变化对参考作物蒸散量的影响最大,敏感性最强,而日照时数的变化对参考作物蒸散量儿乎无影响,敏感性最弱,结果体现出试验区温度对参考作物蒸散量的影响远大于日照时数,而日照时数对参考作物蒸散量的影响主要通过温度间接体现;最高温度(Tmax)、最高相对湿度(RHmax)和最低相对湿度(RHmin)是参考作物蒸散量三个最主要的敏感性因子。显著性分析结果,Angstrom公式、Hargreaves辐射计算公式和重庆地区拟合经验公式计算太阳辐射所得日、月、年参考作物蒸散量值均无显著差异(α=0.05)。确定采用Penman-Monteith公式计算参考作物蒸散量时,采用Hargreaves公式计算太阳辐射。
     作物系数采用双值作物系数。单值作物系数计算简单,各个阶段取其平均值,反映不出作物蒸腾量和土壤蒸发量的大小:双值作物系数不仅能反映各生长阶段作物蒸腾量和土壤蒸发量的大小也能反映基本作物系数(Kcb)和土壤蒸发系数(Ke)的时程变化特征,而且双值作物系数的日变化过程,有利于分时段(如:日、旬、月)作物系数的确定以及间套作模式作物系数的确定,从而有利于坡耕地各旬、各月水量平衡分析。经调整后小麦、油菜、玉米、红薯全生长期作物系数分别为0.92、0.93、1.06、0.98。
     权重系数法确定问套作模式作物系数。间套作模式田间结构为一人工复合群体,有主、副作物之分,涉及不同作物的不同生育期,单位面积上不同作物在田间结构中占的面积比例将直接决定其农田蒸散量的多少,而权重系数能反映出单位面积上不同作物在田间结构中占有的面积比例。采用权重系数计算小麦/玉米‖红薯、油菜/玉米‖红薯间套作模式下各月作物系数,从而解决了利用作物系数法计算农田蒸散量时,间套作模式下作物系数难确定的问题。具体为,以作物幅宽与间距之和占带宽的比作为权重系数,分别乘以间套作模式的不同作物的作物系数,取其和作为间套作模式的作物系数,即:式中:K1为间套作模式的作物系数:Kci为间套作时第i作物的作物系数;fi为第i作物的权重系数;li为第i作物的幅宽;d、L—间距、带宽;i为间、套作时作物种类(i=1、2……n)。
     (4)作物耗水主要受土壤水分胁迫
     降水量(P)是坡耕地土壤水分的主要来源,农田蒸散量(ETc)是坡耕地土壤水分主要损失项,径流量(R)、渗漏损失量(F'd)主要产生于5-9月,试验区坡耕地水量平衡简化模型可表达为:P-ETc-R-Fd'=ΔW。
     标准状态下,坡耕地水量平衡值为负值(⊿W<0),水分均处于亏缺状况。2007-2012年小麦、油菜、玉米和红薯单作以及小麦/玉米‖红薯、油菜/玉米‖红薯间套作全生长期作物需水量均值为359.4mm、359.1mm、684.4mm、841.3mm、1178.3mm、1158.7mm,亏缺量为136.2mm、135.9mm、298.7mm、336.4mm、451.9mm、432.3mm,作物全生长期水量平衡值为负值(⊿W<0),十壤水分处于亏缺状态,水分亏缺时期主要为2-4月和7-9月,与试验区春旱、夏伏旱和秋旱旱情发生时期相一致。
     自然降水条件下,坡耕地作物耗水量受土壤水分胁迫的制约。在水分胁迫下,2008-2012年小麦、油菜、玉米和红薯单作全生长期作物耗水量均值为255.6mm、256.0mm、553.3mm、621.8mm,全生长期水分胁迫系数(Ks)均值分别为0.85、0.84、0.87、0.82。作物不同生长阶段受水分胁迫的影响及程度不一,生育中期、生长后期受水分胁迫严重。作物发生水分胁迫现象受气象因子变化的影响显著,发生水分胁迫时的土壤含水量有随参考作物蒸散量的增大而增高的趋势,即当参考作物蒸散量较大时发生水分胁迫的土壤相对含水量越高,当参考作物蒸散量较小时发生水分胁迫的相对含水量较低。小麦、油菜发生水分胁迫时土壤相对含水量约60%左右;玉米、红薯的相对含水量范围变幅大,玉米在61.1%-76.8%范围内均可发生水分胁迫现象,对应参考作物蒸散量范围3.68-10.76mm.d-1,红薯为51.2%-80.3%,对应参考作物蒸散量范围1.66--11.42mm.d-1。
     综上所述,基于坡面汇流理论、流量过程的倍比假定和叠加假定原理为基础,以暴雨时段平均’下渗率代替瞬时下渗率的分时段净雨模拟方法,能较好模拟自然降水条件下的地表径流产流过程,简化了模拟过程,可操作性强,便于实际应用;在详细分析研究基础上,确定Penman-Monteith公式计算参考作物蒸散量时,采用Hargreaves公式计算太阳辐射。确定作物系数采用双值作物系数法计算。权重系数法解决了间套作模式下农田蒸散量计算时作物系数难确定的问题;坡耕地土壤水分亏缺严重,作物耗水量主要受土壤水分胁迫。这些研究成果不仅丰富了紫色土丘陵区作物耗水量的研究内容,也为紫色土丘陵区深入开展农田水量平衡研究打下基础。但在自然条件下降水下渗特性、坡面曼宁糙率系数、短时段水量平衡以及水分胁迫条件下农田水量平衡等研究方面还有待于进一步完善。
Three Gorges Reservoir Basin (TGRB) is a fragile Eco-economy area in China, where the agriculture is mainly dry farming cereals. The slope farmland is the main agriculture land use, and precipitation is the key resources for agriculture. The total precipitation is plenty; however, the uneven distribution in time and space makes the seasonal drought a serious problem in this region, which greatly hinders the sustainable development of agriculture. The slope land of purple soil, with frequent cultivation and human disturbance, is facing serious erosion. The rain-fed agriculture in this thin soil layer makes the water the key factor of productivity. Hence, how to manage the precipitation resources efficiently and match the crop water requirement with rainfall is a critical point in dealing with the seasonal drought and plant growth. Literatures shows that the farmland water balance is not only theoretically, but also practically to direct the real agricultural production. However, the research in China was mainly focused on arid and semi-arid areas like North China Plain and loess plateau, seldom seen in the southern part with seasonal drought, especially, in the TGRB's purple soil area. Currently, the research in the slope farmland of purple soil is mainly on runoff, but less attention paid on evapotranspiration (ET), especially crop ET. In order to fill the research gap on farmland water balance in Southern part of China, this paper chose the ShiWan catchment's slope land in KaiXian County of Chongqing as the study area, using the purple soil as the testing samples, to research on farmland water balance. This research will help the future work on purple soil water balance, its monitoring and forecasting, at the same time, hopefully it can help the categorization of slope farmland, provide the scientific background to integrating rainfall collecting, storage, supply and management in southern China part.
     Aiming to providing scientific basis for solving the seasonal drought problem, this study performed the pot experiment during2007~2012, pit-test experiment, and runoff plot experiment, integrating water balance, slope runoff generation theory, using field observation and theoretical analysis and calculation, the water balance and various components were analyzed in the purple soil farmland in TGRB. In order to reflect the real farmland situation, the regular wheat, oil-seed, maize and sweet potato and rotation combination of wheat/maize‖sweet potato, oil-seed/maize‖sweet potato were arranged during the experiment. The main results are as follows:
     (1) The infiltration process was dominated by the variation of rainfall intensity.
     During the growing season of2007to2012, it was shown that the summer and autumn had more rainfall, while less in winter and spring. Furthermore, there are usually rainstorms in summer and autumn and the rain were prone to cluster. The rainfall during June to August accounted for43.4%of the annual rainfall, and July and August rainfall accounted for55.2%and44.5%of the monthly average values. The statistical parameters Cv and Cs showed that the rainfall distribution were uneven during the growing season, one-sample K-S test showing that the monthly rainfall being with normal distribution.
     The single point infiltration varied in space and time in the slope land. The initial and stable infiltration rates had huge difference in different location of the slope land. For the60mins duration, the simulated rate in the end of1min ranges from8.03to20.83mm.min-1(Kostiakov simulation), and the stable rate ranges from0.76to3.81mm.min-1, an average value of1.42mm.min-1, and the cultivation had an important effect on infiltration. The infiltration rate decreased with time, during the period of0to10mins, the infiltration decreased fast with large amplitude; for the period10to25mins, the decreasing rate slowed down. After25mins, the rate starts to be stable and reached constant during27.7-35.4mins. The infiltration process can be simulated by Kostiakov formula, the infiltration rate a in the end of1min inversely correlated with initial soil water content, the infiltration rate and accumulated infiltration can be simulated by:
     The soil infiltration characteristics had a close relationship with rainfall intensity, the infiltration rate was dominated by rainfall intensity, and furthermore, the slope land infiltration was affected by many factors, which showed an unstable and non-continuous situation on both temporal and spatial scales. The rainfall cannot meet the infiltration during the beginning and end of the storm, which means f(t)=i(t) during this period. During the storm, when i(t)≥fp(t),f(t)=fp(t), but with short time interval and decrease with time. When i(t)≤fp(t), f(t)=i(t), all the rain infiltrated. With rainfall increase, the infiltration increases until to the maximum, and then decreases again. This process was dependent on the rainfall duration, infiltration characteristics and rainfall intensity.
     (2) Simulation with different time-interval can best reflect the runoff generation process during natural rainfall condition.
     The various factor like rainfall characteristics, antecedent soil water content and cultivation method had impact on the amount, time and component of runoff. With early peak and high intensity rainfall, runoff came early with large amount; if with high initial soil water content and long duration of low intensity rainfall after storm, the interflow accounted a significant amount. With the peak rainfall in the middle, high initial soil water content, even with normal intensity rain, if it lasts long enough, there would also be high runoff and interflow. However, with late peak rainstorm, if the previous rainfall being not replenishing the soil clearly, the rain will first satisfy the soil water moisture. Under this situation, only when the rainfall intensity exceeds the infiltration rate, there occurs runoff. If with low rainfall and short time, the loss will be huge and runoff and interflow are less.
     The surface runoff was mainly from infiltration excess runoff, and the runoff was during July and August. There are quite developed interflow in the study area, which can be found in May, June and September with a runoff coefficient of0.15-0.34. This interflow had no direct relation with rainfall intensity; however, it is related with antecedent soil moisture, saturation soil water and low intensity rainfall. The runoff mainly came during May to September and the monthly runoff coefficient is0.15,0.28,0.36,0.30and0.07separately. The relationship between rainfall and runoff can be expressed as: R=0.559P-44.03R2=0.948
     Based on the kinematic wave theory, proportionality and superposition theory, the time-interval runoff simulation can best reflect the runoff generation process. The method can clarify the initial and end time point, at the same time simplified the whole process. The results showed that there was perfect match between simulated values with measured data. The simulated runoff process matched well for the precipitation peak at the front, middle and rear of the rainfall event, the simulated runoff amount being34.4mm,39.7mm and10.2mm, which was in accordance with the observed data.
     (3) The evapotranspiration (ETc) was calculated by crop coefficient.
     The radiation was determined by Hargreaves formula. The standard Penman-Monteith formula is based on energy balance and water-vapor diffusion process, which not only accounts for physiologic characteristics, but also integrates aero-dynamics variations. The formula takes into consideration of various factors influencing ET, and has strong theoretical background. The reference evapotranspiration (ETo) have two parts:one is radiation part ET0(rad), another is aero-dynamic part ET0(aero).The (ET0) was mainly contributed by ETo(aero), accounting for70%, while with ET0(rad) being30%. During the period of2001~2012, the monthly and annual ET0(aero), ET0varied with a similar trend with temperature, while opposite with sunshine hours. Correlation and sensitivity analysis showed that:the climatic factors (temperature and sunshine hours) displayed significant correlation with ETo, same correlation being found between sunshine hour and maximum temperature; while the saturation vapor pressure deficit was the comprehensive reflection of crop reference evapotranspiration from temperature and relative humidity. The maximum temperature (Tmax) is the most sensitive factors for ET0while the sunshine hour the least sensitive. The results showed that the effect of temperature had far exceeded the effect of sunshine hour, which was only an indirect factor. Among the factors, the maximum temperature (Tmax), maximum relative humidity (RHmax), minimum relative humidity (RHmin) are three most sensitive factors for ET0. The significance analysis showed that:Angstrom, Hargreaves formula and Chongqing empirical formula had significant difference with the level of α=0.05in calculating daily ET0(rad) and annual ET0(rad), while monthly ET0(rad) had no significant difference. While the radiation (Rs) method to calculate the three methods daily ET0, monthly ET0and annual ETo had no significant different with α=0.05. According comprehensive analysis, the reference evapotranspiration was determined by Penman-Monteith method, the radiation by Hargreaves formula.
     The determination of crop coefficient was done by dual-crop coefficient. Single crop coefficient is simple which takes the average of the three growing period of a crop. However, the results from different hydrological years have clear difference due to the initial growing period coefficient greatly affected by rainfall (or irrigation) situation. Dual crop water coefficient can not only reflect the transpiration and soil water evaporation, but also the temporal variation of the basal crop coefficient (Kcb) and the soil evaporation coefficient (Ke). Furthermore, the daily variation of dual crop water coefficient will help the determination of various time intervals (e.g. day's, decade's or month's) crop coefficient and the coefficient during rotation and co-existence for two or more crops. By adopting the dual crop coefficient, the crop coefficient of wheat, oil seed, maize and sweet potato was0.92,0.93,1.06, and0.98.
     The determination of intercropping patterns crop coefficient was done by weighted sum method. For intercropping plantation, it is more complex as there is main crop and associate crop, furthermore, the two or more crops are not planted simultaneously, which makes it difficult to determine the coefficient. Here, a weighted sum method was proposed to calculate the monthly crop coefficient of wheat/maize‖sweet potato, oil seed/maize‖sweet potato, and hence solve the problem of difficulty to determine the coefficient issues. More specifically, based on the range and space of crops as the weight, multiplied by the crop's coefficient, the sum will be used as the total crop coefficient, that is:
     Where K'being the coefficient of intercropping crops; Kci being the ith crop's coefficient;fi being the ith crop's weight;li being ith crop's range; d, L being space and range; i being the crop species (i=1、2......n).
     (4) The crop water consumption in the purple slope farmland limited by soil water stress.
     Precipitation (P) is the main water source and evapotranspiration (ETc) is the main water consumption item in the purple slope farmland. The runoff (R) and deep percolation (Fd') was during May to September. According the theoretical analysis, the water balance in the purple soil farmland is: P-ETc-R-Fd'=ΔWs
     Under the standard situation, the water budget was negative(ΔW<0), there was water shortage. the crop water requirement for wheat, oil seed, maize, and sweet potato, and the intercropping of wheat/maize‖sweet potato, oil seed/maize‖sweet potato was359.4mm,359.1mm,684.4mm,841.3mm,1178.3mm, and1158.7mm separately, with a shortage of136.2mm、135.9mm、298.7mm、336.4mm、451.9mm、432.3mm, for each of them. The water budget was negative (ΔW<0), there was water shortage for the whole growing period, the main water shortage period was during February to April and July to September, coinciding with the spring drought, summer drought, midsummer drought and autumn drought situation in the region.
     Under natural precipitation situation, the crop water consumption limited by soil water stress. Under water stress situation, during2008to2012, the crop water requirement for wheat, oil seed, maize, and sweet potato was255.6mm、256.0mm、553.3mm、621.8mm, separately, with a water stress coefficient of0.85,0.84,0.87,0.82each. The degree of water stress in different growing season were different, there was serious water stress during middle season and late season. During water stress, the soil water content increased with increasing ET0, which means that with high ET0, the critical soil water content is high during water stress and vice versa. For wheat and oil seed, when the soil water content reached60%of field capacity, water stress occurred. For maize and sweet potato, the critical soil water content was most clearly affected by meteorological factors and the range of soil moisture being large as61.1%(ET0=3.68mm.d-1)~76.8%(ET0=10.76mm.d-1) for maize and51.2%(ET0=.66mm.d-1)~80.3%(ET0=11.42mm.d-1) for sweet potato.
     In summary, based on the kinematic wave theory, proportionality and superposition theory, and by using the average infiltration rate for a rainfall interval instead of instant infiltrate rate, the time-interval runoff simulation can best reflect the runoff generation process. The theory is not only simplified the simulation process, but also being easily applicable for real world situation. After further research, the Penman-Monteith formula was suggested to calculate ETo and Hargreaves formula to calculate radiation, and the crop coefficient was calculated by dual crop coefficient method, and weighted sum coefficient solved the problem of dual or rotation mode of crops to fulfill the research gap in purple hilly area. The soil water deficit in the purple slope farmland was extremely serious, and the crop water consumption limited by soil water stress. The research results not only enrich the water consumption issue, but also laid a strong base on farmland water balance study. However, the infiltration characteristic under natural precipitation, slope land Manning coefficient, water balance in short time interval and water balance under water shortage should be further explored.
引文
[1]陈志雄.农田水量平衡[J].土壤学进展,1985,(1):1-8.
    [2]吴发启,史东梅.水土保持农业技术[M].科学出版社,2012.
    [3]陈世正,王宏富等.水土保持农学[M].中国水利水电出版社,2002.
    [4]康绍忠,刘晓明等.十壤—植物—大气连续体水分传输理论及其应用[M].水利电力出版社,1994.
    [5]沈冰,黄红虎.水文学原理[M].中国水利水电出版社,2008.
    [6]芮孝芳.水文学原理[M].中国水利水电出版社,2004.
    [7]余新晓.水文与水资源学[M].中国林业出版社,2010.
    [8]Fohrer N, Haverkamp S, et al. Hydrologic response to land use changes on the catchment scale [J]. Physics and Chemistry of the Earth (B),2001,26:577-582.
    [9]McColl C, Aggett G. Land-use forecasting and hydrologic model integration for improved land-use decision support [J]. Environmental Management.2007,84:494-512.
    [10]许申来,李秀珍等.岷江上游不同景观结构小流域水量平衡的比较[J].应用生态学报,2006,17(10):1832-1838.
    [11]中国科协学会学术部.青藏高原冰川融水深循环及其地质环境效应[M].中国科学技术出版社,2009.
    [12]王渺林,侯保俭.未来气候变化对长江上游流域水资源影响分析[C]中国水利学会2010学术年会论文集.241-245.
    [13]王乃昂,李卓仑等.巴丹吉林沙漠湖泊水循环及其与气候变化的关系[C].自然地理学与生态安全学术论文,2012.
    [14]杨帆,张万军.太行山低山区不同植被群落蒸散与水量平衡研究[J].土壤通报,2007,.38(3):434-438.
    [15]周石斫.纳木错湖水量不平衡研究[C].青藏高原冰川融水深循环及其地质环境效应,2009,96-102.
    [16]Shiqiao Zhou, Shichang Kang, et al. Water balance observations reveal significant subsurface water seepage from Lake Nam Co, south-central Tibetan Plateau [J]. Hydrology,2013,491:89-99.
    [17]李丽娇,薛丽娟等.基于SWAT的西苕溪流域降雨—径流关系及水量平衡分析[J].水土保持通报,2008,28(5):81-85.
    [18]郑祖金,崔原来等.灌区塘堰拦蓄地表径流能力的研究[J].中国农村水利水电,2005,(1):39-40.
    [19]Shahbaz Mushtaq, David Dawe, et al. An Assessment of Collective Action for Pond Management in Zhanghe Irrigation System (ZIS), China [J]. Agricultural Systems,2007, (92):140-156.
    [20]刘涓,张仕超等.西南丘陵山区塘堰系统对农田水量平衡的局地调控作用[J].水资源与水工程学报,2010,21(3):43-47.
    [21]董小涛,李致家等.不同水文模型在半干旱地区的应用比较研究[J].河海大学学报(自然科学版),2006,34(2):132-135.
    [22]罗蒋梅.基于不同率定期资料的月、季径流预报方法研究[D].南京信息工程大学,2012.
    [23]Jayakrishnan R, Srinivasan R, et al. Advances in the Application of the SWAT Model for Water Resources Management [J]. Hydrological Process,2005(19):749-762.
    [24]张雪松,郝芳华等.基于SWAT模型的中尺度流域产流产沙模拟研究[J].水土保持研究,2003,10(4):38-42.
    [25]张利平,陈小凤等.VIC模型与SWAT模型在中小流域径流模拟中的对比研究[J].长江流域资源与环境,2009,18(8):745-752.
    [26]A Van GRIENSVEN, W BAUWENS. Application and evaluation of ESWAT on the Dender Basin and the Wister Lake Basin [J]. Hydrological Processes,2005,19(3):827-838.
    [27]桑学锋,周祖吴等.基于广义ET的水资源与水环境综合规划研究Ⅱ:模型[J].水利学报,2009,40(10):1153-1161.
    [28]陈强,秦大庸等SWAT模型与水资源配置模型的耦合研究[J].灌溉排水学报,2011,29(1):19-22.
    [29]Cowan I R. Transport of water in the soil-plant-atmosphere system [J]. Applied Ecology,1965, (2): 221-239.
    [30]Philip J R. Plant water relations:some physical aspects [J]. Annual Review of Plant Physiology,1966, (17):245-268.
    [31]J. Doorenbos, W. Q. Pruitt. Crop Water Requirements [M]. FAO Irrigation and Drainage Papers(24), 1981.
    [32]张孝中,韩仕峰等.黄土高原南部农田水量平衡分析研究[J].水土保持通报,1990,10(6):7-12.
    [33]李开元,李玉山.黄土高原农田水量平衡研究[J].水土保持学报,1995,9(2):39-44.
    [34]Eastham J, Rose CW, et al. The effect of tree spacing on evaporation from an agroforestry experiment [J]. Agricultural and Forest Meteorology,1988,42(1):355-368.
    [35]孟平,宋兆民等.农林复合系统水分效应研究[J].林业科学研究,1996,9(5):443-448.
    [36]Singh P, Alagarswamy G, et al. Soybean-chickpea rotation on Vertic Inceptisols Ⅰ. Effeet of soil depth and landform on light interception, water balance and crop yields [J]. Field Crops Research,1999,63(3): 211-224.
    [37]Singh P, Alagarswamy G, et al. Soybean-chickpea rotation on Vertic Inceptisols Ⅱ. Long-term simulation of water balance and crop yields [J]. Field Crops Research,1999,63(3):225-236.
    [38]Chen Z. X, Vauclin M. Study on soil water balance in Fengqiu region:Ⅰ. Spatial variability of soil moisture in the field [J]. Acta Pedologica Sinica,1989,26:309-315.
    [39]康绍忠,刘晓明等.土壤-植物-大气连续体水分传输理论及其应用[M].水利电力出版社,1994.
    [40]Chen Z. X, Vauclin M. Study on soil water balance in Fengqiu region:Ⅲ. Water flux passing through the boundary of root zone [J]. Acta Pedologica Sinica,1991,28:66-72.
    [41]刘吕明.土壤-植物-大气系统水分运动的界面过程研究[J].地理学报,1997,5(2):367-374.
    [42]刘吕明,王会肖.土壤-作物-大气界面水分过程与节水调控[M].科学出版社,1999.
    [43]刘吕明、窦清晨.土壤—植被—大气连续体模型中的蒸散发计算[J].水科学进展,1992,3(4):256-253.
    [44]康绍忠、刘晓明等.土壤—植被—大气连续体水分传输的计算机模拟[J].水利学报,1992,(3):1-12.
    [45]R Silberstein, M Sivapalan, et al. On the validation of a coupled water and energy balance model at small catchment scales [J]. Hydrology,1999,220(3-4):149-168.
    [46]M Kumar, N S Raghuwanshi, et al. Estimating evapotranspiration using artificial neural network [J]. Irrigation and Drainage Engineering,2002,128(4):224-233.
    [47]尚松浩.土壤水分动态模拟模型及其应用[M].科学出版社,2009.
    [48]陈皓锐,黄介生等.冬小麦根层土壤水量平衡的系统动力学模型[J].农业工程学报,2010,26(10):21-28.
    [49]Th. M. Boers, M. De Graaf, et al. A Linear regression model combined with a soil water balance model to design micro-catchments for water harvesting in arid zones [J]. Agricultural Water Management, 1986,11 (3-4):187-206.
    [50]Choudhury B J. Modeling the effect s of weather condition and soil water potential on canopy temperature of corn [J]. Agricultural Meteorology,1983, (29):169-182.
    [51]朱首军.渭北旱塬农林复合系统水量平衡要素变化规律的试验研究[D].西北农林科技大学,2001.
    [52]佟玲.西北干旱内陆区石羊河流域农业耗水对变化环境响应的研究[D].西北农林科技大学,2007.
    [53]孟秦倩.黄土高原山地苹果园土壤水分消耗规律与果树生长响应[D].西北农林科技大学,2011.
    [54]张景林,王留芳.宁南半干旱地区农田水分平衡与稳定型种植制度研究[J].干旱地区农业研究,1995,13(4):58-66.
    [55]刘忠民,山仑等.宁南山区草田轮作研究:Ⅱ.不同轮作制度下的农田水分平衡,水土保持学报,1993,7(4):67-71.
    [56]陈家宙,陈明亮等.不同水分状况下红壤水稻的水量平衡和生产能力[J].华中农业大学学报,2000,19(6):554-558.
    [57]陈家宙.红壤农田水量平衡和水分转换及作物的生产力[D].华中农业大学,2001.
    [58]魏朝富.紫色土水势的温度效应及水热力学函数的研究[J].西南农业大学学报(增刊),1989(6):143-147.
    [59]魏朝富.四川盆南紫色土水分特征及抗旱性能的研究[J].中国农业气象,1992,13(4):40--43.
    [60]李军健,吕刚等.紫色土旱坡地土壤水分时空分布特征[J].西南农业大学学报(自然科学版),2006,28(1):161-164.
    [61]魏朝富,谢德体等.四川盆地红棕紫泥土壤水分移动性与蒸发性能的研究[J].干旱地区农业研究,1994,2(2):43--48.
    [62]刘刚才.紫色土坡耕地的降雨产流机制及产流后土壤水分的变化特征[D].四川大学,2001.
    [63]傅涛.三峡库区坡面水土流失机理与预测评价建模[D].西南农业大学,2002.
    [64]倪九派,魏朝富等.坡度对三峡库区紫色土坡面径流侵蚀的影响分析[J].泥沙研究,2009,(2):29-33.
    [65]张建华,杨文元等.川中丘陵区小麦耗水及其与产量的关系[J].西南农业学报,1995,8(2):11-18.
    [66]门宝辉.SPAC理论及其在川中丘陵区节水农业中的应用研究[D].四川大学,2004.
    [67]廖勇.川中丘陵区主要作物需水量及其变化规律研究[D].四川大学,2005.
    [68]Varado N, Braud I, et al. Assessment of an efficient numerical solution of the ID Richards'equation on bare soil [J]. Hydrology,2006,323(1-4):244-257.
    [69]Green W H, Ampt G A. Studies on soil physics, flow of air and water through soils [J]. Agr. Sci.,1911, 76(4):1-24.
    [70]Philip J R. The theory of infiltration [J]. Soil Sci.,1957-1958,83:345-357; 435-448; 84:163-177; 85:278-286.
    [71]A N Kostiakov. On the dynamics of the coefficients of water percolation in soils, sixth commission, Internal Soil sci, part A,1932.
    [72]Horton R E. An approach toward a physical interpretation of infiltration-capacity [J]. Soil Sci. Soc. AM.J.,1940,5(3):399-417.
    [73]蒋定生.黄土高原土壤入渗速率的研究[J].土壤学报,1986,23(4):23-32.
    [74]蒋定生.黄土高原水土流失与治理模式[M].中国水利水电出版社.1997.
    [75]傅斌,王玉宽等.紫色土坡耕地降雨入渗试验研究[J].农业工程学报,2008,24(7):39-43.
    [76]马浩,尹忠东等.川中丘陵紫色土区土壤水分入渗性能研究[J].西北林学院学报.2011,26(3):68-72.
    [77]余新晓.降雨入渗及产流问题的研究进展和评述[J].北京林业大学学报,1991,13(4):88-94.
    [78]Fagerlund F F, Niemi A, et al. Comparison of relative permeability-fluid saturation-capillary pressure relations in the modeling of non-aqueous phase liquid infiltration in variably saturated, layered media [J]. Advances in Water Resources,2006,29(11):1705-1730.
    [79]马履一.国内外土壤水分研究现状与进展[J].世界林业研究,1997,(5):26-32.
    [80]王玉宽,王古礼等.黄土高原坡面降雨产流过程的试验分析[J].水土保持学报,1991,5(2):25-31.
    [81]陈洪松,邵明安等.土壤初始含水率对坡面降雨入渗及土壤水分再分布的影响[J].农业工程学报,2006,22(1):44-47.
    [82]吴发启,赵西宁等.坡耕地土壤水分入渗影响因素分析[J].水土保持通报,2003,23(1):16-18,78.
    [83]Rubin J. Theory of rainfall uptake initially driver than their field capacity and its aapplications [J]. Water Resources Research,1966,2(4):739-749.
    [84]Aken A O, Yen B C. Effect of rainfall intensity on infiltration and surface runoff rates [J]. Hydraulic Research,1984,21(2):324-331.
    [85]李裕元,邵明安.降雨条件下坡地水分转化特征实验研究[J].水利学报,2004,(4):48-53.
    [86]赵勇钢,赵世伟等.半干旱典型草原区退耕地土壤结构特征及其对入渗的影响[J].农业工程学报,2008,24(6):14-20.
    [87]张振华,杨润亚等.土壤质地、密度及供水方式对点源入渗特性的影响[J].农业系统科学与综合研究,2004,20(2):81-84.
    [88]李卓,吴普特等.不同粘粒含量土壤水分入渗能力模拟试验研究[J].干早地区农业研究,2009,27(3):71-77.
    [89]解文艳,樊贵盛.土壤质地对土壤入渗能力的影响[J].太原理工大学学报,2004,35(5):537-540.
    [90]李卓,吴普特等.容重对七壤水分入渗能力影响模拟试验[J].农业工程学报,2009,25(6):40-45.
    [91]王国梁,刘国彬等.黄土丘陵沟壑区小流域植被恢复对土壤稳定入渗的影响[J].自然资源学报,2003,18(5):529-535.
    [92]曾辰,王全九等.初始含水率对土壤垂直线源入渗特征的影响[J].农业工程学报,2010,26(1):24-30.
    [93]贾志军,王贵平等.土壤含水率对坡耕地产流影响的研究[J].山西水土保持科技,1990(4):25-27.
    [94 Borgesen C D, Jacobsen O H, et al. Soil hydraulic properties near saturation, an improved conductivity model [J]. Hydrology,2006,324(1-4):40-50.
    [95]袁建平,雷廷武等.黄土丘陵区小流域土壤入渗速率空间变异性[J].水利学报,2001,10:88-92.
    [96]赵西宁,吴发启等.黄土高原沟壑区坡耕地土壤入渗规律研究[J].干旱区资源与环境,2004,18(4): 109-112.
    [97]郭继志.关于坡度与径流量和冲刷量的探讨[J].黄河建设,1958,4(3):9-11.
    [98]余新晓,赵玉涛等.长江上游亚高山暗针叶林土壤水分入渗特征研究[J].应用生态学报,2004,14(1):15-19.
    [99]杨永辉,赵世伟等.耕作对土壤入渗性能的影响[J].生态学报,2006,26(5):1624-1630.
    [100]王伟,张洪江等.重庆市四面山林地土壤水分入渗特性研究与评价[J].水土保持学报,2008,22(4):95-99.
    [101]Lipiec J, Kus J, et al. Soil porosity and water infiltration as influenced by tillage methods [J]. Soil and Tillage Research,2006,89(2):210-220.
    [102]Ndiaye B, Molenat J, et al. Effects of agricultural practices on hydraulic properties and water movement in soils in Brittany (France) [J]. Soil and Tillage Research,2007,93(2):251-263.
    [103]Juan P E, Markus F. Hydraulic properties in a silt loam soil under natural prairie, conventional till, and no-till [J]. Soil Sci. Soc. of American,2004,68(5):1679-1689.
    [104]Hillel D. Environmental Soil Physics [M]. San Diego:Academic Press,1998.
    [105]Leaney F W, Smettem K R, et al. Estimating the contribution of preferential flow to subsurface runoff from a hillslope using deuterium and chloride [J]. Hydrology,1993,147:83-103.
    [106]Smettem K R J, et al. The influence of Macropores on runoff generation from a hill slope soil with a contrasting textual [J]. Hydrology,1991,199:36-52.
    [107]Tsuyoshi Miyazaki. Water flow in soils[M].New York, Marcel Dekker, Inc.1993.
    [108]王占礼,黄新会等.黄土裸坡降雨产流过程试验研究[J].水土保持通报,2005,25(4):1--4.
    [109]高军侠,党宏斌等.黄土高原南部裸露坡耕地产流产沙试验研究[J].生态学杂志,2004,23(3):138-140.
    [110]赵鹏宇,徐学选.黄土丘陵区不同土地利用方式降雨产流试验研究[J].中国水土保持,2009,(1):55-57.
    [111]汪涛,朱波等.紫色土坡耕地径流特征试验研究[J].水土保持学报,2008,22(6):30-34.
    [112]钟壬琳,张平仓.紫色土坡面径流与侵蚀特征模拟试验研究[J].长江科学院院报,2011,28(11):22-26.
    [113]辛伟,朱波等.紫色土丘陵区典型坡地产流及产沙模拟试验研究[J].水土保持通报,2008,28(2):31-35.
    [114]徐勤学,王天巍等.紫色土坡地壤中流特征[J].水科学进展,2010,21(2):229-234.
    [115]付智勇,李朝霞.三峡库区不同厚度紫色土坡耕地产流机制分析.水科学进展[J],2011,22(5):680-688.
    [116]付智勇.三峡库区不同厚度紫色土坡面水文过程及侵蚀响应[D].华中农业大学,2012.
    [117]刘刚才,林三益等.四川丘陵区常规耕作制下紫色土径流发生特征及其表面流数值模拟[J].水利学报,2002,33(12):101-108.
    [118]牛俊,张平仓等.长江上游紫色土坡耕地水土流失特征及其防治对策[J].中国水土保持科学,2010,8(6):64-68.
    [119]徐佩,王玉宽等.紫色土坡耕地壤中产流特征及分析[J].水土保持通报,2006,26(6):14-18.
    [120]丁文峰,张平仓等.紫色土坡面壤中流形成与坡面侵蚀产沙关系试验研究[J],长江科学院院报,2008,25(3):14-17.
    [121]朱波,汪涛等.紫色土坡耕地硝酸盐淋失特征[J].环境科学学报,2008,28(3):525-533.
    [122]黄文俊,吴学鹏等.现行坡面汇流理论的检验与分析[J].水文,1982,(5):15-23.
    [123]吴彰春,岑国平等.坡面汇流的试验研究[J].水利学报,1995,(7):84---88.
    [124]安禹,窦孝鹏.单元坡面汇流过程研究[J].吉林水利,2007,(9):16--19
    [125]裴铁璠,李金中.壤中流模型研究的现状及存在问题[J].应用生态学报,1998,9(5):543-548.
    [126]芮孝芳,宫兴龙等.流域产流分析及计算[J].水利发电学报,2009,28(6):146-150.
    [127]崔庆峰.探析产汇流理论的研究[J].黑龙江水利科技,2011,39(4):133-134.
    [128]Woolhiser D R, Ligget J A.Unsteady one-dimensional flow over a Plane:The rising hydrograph [J].Water Resource Research,1967,3(3):753-771.
    [129]Zhang Weihua, Terrance W. Cundy. Modeling of two-dimensional overland flow [J].Water Resource Research,1989,25(9):2019-2035.
    [130]杨建英,赵廷宁等.运动波理论及其在黄土坡面径流模拟中的应用[J].北京林业大学学报,1993,15(1):1-11.
    [131]刘贤赵,康绍忠.黄土区考虑滞后作用的坡地水量转化模型[J]..十壤学报,2000,37(1):16-23.
    [132]沈冰,王文焰.降水条件下黄土坡地表层土壤水分运动实验与数值模拟的研究[J].水利学报,1992,(6):29-35.
    [133]沈冰.非饱和土壤水运动模型应用实例[J].西北水资源与水工程,1992,3(2):80-83.
    [134]王百田,王斌瑞.黄十坡面地表处理与产流过程研究[J].水土保持学报,1994,8(2):18-24.
    [135]刘贤赵,康绍忠.黄土区考虑滞后作用的坡地水量转化模型[J].十壤学报,2000,37(1):16-23.
    [136]Keith Beven.On Subsurface Stormflow:Prediction With Simple Kinematic Theory for Saturated and Unsaturated Flows [J]. Water Resources Research,1982,18(6):1627-1633.
    [137]Patrick G. Sloan, Ian D. Moore. Modeling Subsurface Stormflow on Steeply Sloping Forested Watersheds [J]. Water Resources Research,1984,20(12):1815-1822.
    [138]Guido Daniel Salvucci. Series Solution for Richards Equation Under Concentration Boundary Conditions and Uniform Initial Conditions [J]. Water Resources Research,1996,32(8):2401-2407.
    [139]Roger E. Smith, Bemd Diekkriiger. Effective Soil Water Characteristics and Ensemble Soil Water Profiles in Heterogeneous Soils [J]. Water Resources Research,1996,32(7):1993-2002.
    [140]Antonis D Koussis. A Linear Conceptual Subsurface Storm Flow Model [J]. Water Resources Research,1992,28(4):1047-1052.
    [141]李金中,裴铁璠等.森林流域坡地壤中流模型与模拟研究[J].林业科学,1999,35(4):2-8.
    [142]康绍忠,梁银丽等.旱区水—土—作物关系及其最优调控原理[M].中国农业出版社,1998.
    [143]康绍忠,蔡焕杰.农业水管理学[M].中国农业出版社,1996.
    [144]陈凤,蔡焕杰等.杨凌地区冬小麦和夏玉米蒸发蒸腾和作物系数的确定[J].农业工程学报,2006,22(5):191-193.
    [145]张永忠,李宝庆.用水量平衡法计算农田实际蒸发量[C].左大康,谢贤群.农田蒸发研究[M],气象出版社,1991.
    [146]汀秀敏,申双和等.大型称重式蒸渗仪测定的冬小麦农田的蒸散规律研究[J].气象与环境科学,2011,34(4):14-18.
    [147]Esmaie L M, Gail E B. Comparison of Bowen ratio-energy balance and the water balance methods for the measurement of evapotranspiration [J]. Hydrology,1993,146:209-220.
    [148]Alves I, Perrier A, et al. Aerodynamic and surface resistance of complete cover crops:How good is the "big leaf" [J]. Transactions of the ASAE,1997,41(2):345-351.
    [149]张卫强,贺康宁等.稳态气孔计法和整株称重法测定蒸腾速率的比较研究[J].水土保持研究,2007,14(6):192-194.
    [150]杨建伟,梁宗锁等.不同干旱土壤条件下杨树的耗水规律及水分利用效率研究[J].植物生态学报,2004,28(5):630-636.
    [151]张仁华.定量热红外遥感模型及地面实验基础[M].科学出版社,2009.
    [152]Per-Erik Jansson, Louise Karlberg著;张洪江,程金花等译.土壤-植物-大气系统热量、物质运移综合模型理论与实践[M].科学出版社,2010.
    [153]Chen Zhi-Xiong. Soil Water Balance Measurement in Field Scale [J]. Pedosphere,1992,2(2):15-124.
    [154]余新晓.土壤动力水文学问题的研究及其在防护林体系建设中的应用[J].世界林业研究,1995,(3):27-33.
    [155]Richard G. ALLEN, Luis S. PEREIRA, et al. FAO Irrigation and Drainage Paper (No.56) [M].1998.
    [156]刘钰,L S Pereira对FAO推荐的作物系数计算方法的验证[J].农业工程学报,2000,16(5):26-30.
    [157]Tyagi N K, Sharma D K, et al. Evapotranspiration and crop coefficients of wheat and sorghum [J]. Irrigation and Drainage Engineering,2000,126(4):215-222.
    [158]樊引琴,蔡焕杰.单作物系数法和双作物系数法计算作物需水量的比较研究[J].水利学报,2002,(3):50-54.
    [159]H L Penman. Natural evaporation from open water, bare soil and grass [J]. Mathematical and Physical Sciences,1948,193(1032):120-145.
    [160]M E Jenson, J L Wright, et al. Estimating soil moisture depletion from climate, crop and soil data [J]. Transaction of the ASAE,1971,14(5),954-959.
    [161]Trajkoric S. Temperature-based approaches for estimating reference evapotranspiration [J]. Irrigation and Drainage Engineering,2005,131(4):316-325.
    [162]Hargreaves G H, Samani Z A. Reference crop evapotranspiration from temperature [J]. Applied Engineering in Agriculture,1985,1(2):96-99.
    [163]C H B Priestley, R J Taylor. On the assessment of surface heat flux and evaporation using large scale parameters [J].MonthlyWeather Review,1972,100(2):81-92.
    [164]Doorenbos J, Pruitt W O. FAO irrigation and drain paper (No.24) [M].1977.
    [165]Irmak S, Irmak A, et al. Solar and Net Radiation-Based Equations to Estimate Reference Evapotranspiration in Humid Climates [J]. Irrigation and Drainage Engineering,2003,129(5):336-347.
    [166]徐俊增、彭世彰等.基于气象预报的参考作物蒸发蒸腾量的神经网络预测模型[J].水利学报,2006,37(3):376-379.
    [167]丁加丽、彭世彰等.基于温度资料的参考作物蒸发蒸腾量计算方法[J].河海大学学报,2007,35(6): 633-637.
    [168]龚元石Penman-Monteith公式与FAO-PPP-17 Penman修止式计算参考作物蒸散量的比较[J].北京农业大学学报,1995,21(1):68-75.
    [169]Monteith J L. Evaporation and environment [J]. Symposia of the Society for Experimental Biology, 1965,19:205-234.
    [170]Allen R G, Jensen M E, et al. Operational estimates of reference evapotranspiration [J]. Agronomy, 1989,81:650-662.
    [171]Lecina S, Martinea A, et al. Fixed versus variable bulk canopy resistance for reference evapotranspiration estimation using the Penman-Monteith equation under semiarid condition [J]. Agricultural and Water Management,2003,60(3):181-198.
    [172]Naoum S, Tsanis I K. Hydroinformatics in evapotranspiration estimation [J]. Environmental Model & Software,2003,18(3):261-271.
    [173]毛飞,张光智等.参考作物蒸散量的多种计算方法及其结果的比较[J].应用气象学报,2000,(11):128-136.
    [174]孙庆宇,佟玲等.参考作物蒸发蒸腾量计算方法在海河流域的适用性[J].农业工程学报,2010,26(11):68-72.
    [175]李为虎,杨永红.参考作物蒸发蒸腾量计算方法在拉萨的适用性对比分析[J].安徽农业科学,2009,37(34):16745-16748.
    [176]谢平,陈晓宏等.湛江地区适宜参考作物蒸发蒸腾量计算模型分析[J].农业工程学报,2008,24(5):6-11.
    [177]曹雯,申双和等.西北地区生长季参考作物蒸散变化成因的定量分析[J].地理学报,2011,66(3):407-415.
    [178]Irmak S, Alien R Q et al. Daily grass and alfalfa reference evapotranspiration estimates and alfalfa-to-grass evapotranspiration ratio in Florida [J]. Irrigation and Drainage Engineering,2003,129(5): 360-370.
    [179]Bois B, Pieri P, et al. Using remotely sensed solar radiation data for reference evapotranspiration estimation at a daily time step [J]. Agricultural and Forest Meteorology,2008,148(4):619-630.
    [180]Gong L B, Xu C Y, et al. Sensitivity of the Penman-Monteith reference evapotranspiration to key climatic variables in the Changjiang basin [J]. Hydrology,2006,329:620-629.
    [181]王艳君,姜彤等.长江流域1961-2000年蒸发量变化趋势研究[J].气候变化研究进展,2005,1(3):99-105.
    [182]梁丽乔,李丽娟等.松嫩平原西部生长季参考作物蒸散发的敏感性分析[J].农业工程学报,2008,24(5):1-5.
    [183]李春强,洪克勤等.河北省近35年(1965-1999年)参考作物蒸散量的时空变化[J].中国农业气象,2008,29(4):414-419.
    [184]段永红,陶澍等.北京市参考作物蒸散量的时空分布特征[J].中国农业气象,2004,25(2):22-25.
    [185]罗雨,刘海军等.北京地区参考作物蒸散量变化趋势及其主要影响因素分析[J].干旱地区农业研究,2010,28(1):34-38.
    [186]Pereia A R, Pruitt W O. Adaptation of the Thornthwaite scheme for estimating daily reference evapotranspiration [J]. Agricultural Water Management,2004,66(3):251-257.
    [187]张莉,彭世彰等.辐射参数计算方法对参考作物蒸发蒸腾量计算值的影响[J].河海大学学报(自然科学版),2008,36(3):306-310.
    [188]曹雯,申双和.我国太阳总辐射计算方法的研究[J].南京气象学院学报,2008,31(4):587-591.
    [189]PETER E T, STEVENW R. An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation [J]. Agricultural and Forest Meteorology,1999, 93:211-228.
    [190]熊友胜,杨艳等.重庆丘陵山区参考作物蒸散量的确定及气候影响因素分析[J].灌溉排水学报,2013,32(3):11-15.
    [191]陈玉民,郭国双.中国主要作物需水量及灌溉[M].水利电力出版社,1995.
    [192]胡庆芳,杨大文等.Angstrom公式参数对ET0的影响及FAO建议值适用性评价[J].水科学进展,2010,25(5):644-652.
    [193]Sahin U, Kuslu Y, Tune P, Kiziloglu F M. Determining crop and pan coefficients for cauliflower and red cabbage crops under cool season semiarid climatic condition [J]. Agricultural Sciences,2009,8(2): 167-171.
    [194]陈玉民.关于作物系数的研究及新进展[J].灌溉排水,1987,6(2):1-7.
    [195]中国主要作物需水量等值线图协作组.中国主要作物需水量等值线图[M].中国农业科技出版社,1993.
    [196]Pruitt W O, Angus D E. Large weighing lysimeter for measuring evapotranspiration [J]. Trans. ASAE, 1960, (3):13-15.
    [197]Shaozhong Kang, Binjie Gu, et al. Crop coefficient and radio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region [J]. Agricultural water management,2003,59(3):239-254.
    [198]李玉霖,崔建垣等.奈曼地区灌溉麦田蒸散量及作物系数的确定[J].应用生态学报,2003,14(6):930-934.
    [199]刘钰,Teixeira J L等.作物需水量与灌溉制度模拟[J].水利水电技术,1997,28(4):38-43.
    [200]石贵余,张金宏等.河套灌区灌溉制度研究[J].灌溉排水学报,2003,22(5):72-76.
    [201]Allen R G. Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparion study [J]. Hydrology,2000,229(1-2):27-41.
    [202]赵丽雯,吉喜斌.基于FAO-56双作物系数法估算农田作物蒸腾和土壤蒸发研究[J].中国农业科学,2010,43(19):4016-4026.
    [203]赵娜娜,刘钰等.夏玉米作物系数计算与耗水量研究[J].水利学报,2010,41(8):953-959,969.
    [204]Idso S B, Jackson R D, et al. Normalizing the stress degree day for environmental variability [J]. Agricultural Meteorology,1981,24:45-55.
    [205]Jackson R D, Idso S B, et al. Canopy temperature as a crop water stress indicator [J]. Water Resource Research,1981,17:1133-1138.
    [206]袁国富,罗毅等.作物冠层表面温度诊断冬小麦水分胁迫的试验研究[J].农业工程学报,2002,18(6):13-17.
    [207]赵晨,罗毅等.作物水分胁迫指数与土壤含水量关系探讨[J].中国生态农业学报,2001,9(1):34-36.
    [208]王仰仁,孙小平.山西农业节水理论与作物高效用水模式[M].中国科学技术出版社,2003.
    [209]胡庆芳,尚松浩等.FAO56计算水分胁迫系数的方法在田间水量平衡分析中的应用[J].农业工程学报,2006,22(5):40-43.
    [210]刘玉洁,罗毅.FAO-56土壤水分胁迫指数计算方法试验研究[J].资源科学,2010,32(10):1902-1909.
    [211]刘会斌,王勤等.广元市主要农作物需水量时空特征分析[J].贵州气象,2011,35(3):31-33.
    [212]张祖新,龚时宏等.雨水集蓄工程技术[M].中国水利水电出版社,1999.
    [213]山仓,康绍忠等.中国节水农业[M].中国农业出版社.2004.
    [214]赵松岭.集水农业引论[M].陕西科学技术出版社.1996.
    [215]Scott C A, Silva-Ochoa P. Collective action for water harvesting irrigation in the Lerma-Chapala Basin, Mexico[J].Water Policy,2001,3:555-572.
    [216]蔡焕杰,王键.降雨聚集条件下节水高效农业综合技术[J].干旱地区农业研究,1998,16(3):78-83.
    [217]孔四新.集水高效农林技术[M].河南科技出版社.1998.
    [218]Abellan P, Sanchez-Fernandeza D, et al. Irrigation pools as macro invertebrate habitat in a semi-arid agricultural landscape (SE Spain)[J]. Arid Environments,2006,4:124-135.
    [219]中国程学技术协会学会工作部编著.中国土地退化防治研究[M].中国科学技术出版社,1990.
    [220]黄振平.水文统计学[M].河海大学出版社,2003.
    [221]D Hillel著;华孟,叶和才译.土壤和水—物理原理和过程[M].农业出版社,1981.
    [222]张蔚榛.地下水与土壤水动力学[M].中国水利水电出版社,1996.
    [223]Donald M, Gray. Handbook on the Principles of Hydrology [M]. Water Information Center Publication,1973.
    [224]Holton H N. A concept for infiltration estimates in water-shed engineering [J]. Dept, Agr. Res. Service,1961,39(30):41-51.
    [225]郝成义,杜欢政等.统计分析与计算机应用[M].中国统计出版社.1993.
    [226]姜娜,邵明安等.水蚀风蚀交错带坡面土壤入渗特性的空间变异及其分形特征[J].土壤学报,2005,42(6):904-908.
    [227]MACHIWAL D, JHA M K, et al. Modelling infiltration and quantifying spatial soil variability in a wasteland of kharagpur, India [J]. Biosystems Engineering,2006,95(4):569-582.
    [228]刘继龙,马孝义等.土壤入渗特性的空间变异性及土壤转换函数[J].水科学进展,2010,21(2):214-221.
    [229]梁学田.水文学原理[M].水利电力出版社,1992.
    [230]Fekersillassie D, Einsenhauer D E. Feedback-controlled surge irrigation:Ⅰ. model development [J]. Transactions of the ASAE,2000,43(6):1621-1630.
    [231]Holzapfel E A, Jara J, et al. Infiltration parameters for furrow irrigation[J]. Agricultural Water Management,2004,68(1):19-32.
    [232]缴锡云,马海燕等.膜沟灌溉入渗规律试验初报[J].中国农学通报,2007,23(4):456-459.
    [233]刘春成,李毅.四种入渗模型对斥水土壤入渗规律适用性[J].农业工程学报,2011,27(5):62-67.
    [234]解文艳.樊贵盛.土壤含水量对土壤入渗能力的影响[J].太原理工大学学报,2004,35(3):272-275.
    [235]解文艳,樊贵盛.土壤结构对土壤入渗能力影响[J].太原理工大学学报,2004,35(4):281-284.
    [236]熊友胜,魏朝富等.三峡库区紫色土水分入渗模型比较分析[J].灌溉排水学报,2013,32(1):43-46.
    [237]R L Elliott, W R Walker. Field evaluation of furrow infiltration and advance functions [J]. Agricultural Engineers,1982,25(2):396-400.
    [238]M Esfandiari, B L Maheshwari. Application of the optimization method for estimating infiltration characteristics in furrow irrigation and its comparison with other methods [J]. Agricultural Water Management,1997,34(2):169-185.
    [239]缴锡云,王文焰等.估算土壤入渗参数的改进Maheshwari法[J].水利学报,2001,(1):62-67.
    [240]孙景生,康绍忠等.不同沟灌条件下土壤入渗参数的估算[J].灌溉排水学报,2005,24(4):46-50.
    [241]王维汉,陈晓东等.土壤入渗参数的估算方法用其变异性研究进展[J].中国农学通报,2010,27(6):272-275.
    [242]冯锦萍.用常规土壤物理参数确定入渗参数的方法研究[D].太原理工大学,2003.
    [243]李卓.土壤机械组成及容重对水分特征参数影响模拟试验研究[D].西北农林科技大学,2009.
    [244]李雪转.非充分供水土壤水分入渗规律的试验研究与过程模拟[D].太原理工大学,2010.
    [245]H J Vogel, K Roth Quantitative morphology and network representation of soil pore structure [J]. Advances in Water Resources,2001,24:233-242.
    [246]G B Bodman, E A Colman. Moisture and energy condition during down-ward entry of water into soil [J]. Soil Science Society of America Proceeding,1944,8:116-121.
    [247]A J. Franzluebbers. Water infiltration and soil structure related to organic matter and its stratification with depth [J]. Soil and Tillage Research,2002,66(2):197-205.
    [248]严冬春,文安邦等.紫色土坡面跌坑贯穿发生细沟的水动力过程[J].长江流域资源与环境,2012,(21)1:94-99.
    [249]樊军,邵明安等.黄土地参考作物蒸散量多种计算方法的比较研究[J].农业工程学报,2008,24(3):98-99.
    [250]丁加丽,彭世彰等.基于Penman-Monteith方程的节水灌溉稻田蒸散量模型[J].农业工程学报,2010,26(4):3 1-36.
    [251]刘钰,蔡林根.参照腾发量的新定义及计算方法的对比[J].水利学报,1997,(6):27-33.
    [252]李玉霖,崔建垣等.参考作物蒸散量计算方法的比较研究[J].中国沙漠,2002,22(4):372-376.
    [253]DOZER J, FREW J. Rapid calculation of terrain parameters for radiation modeling from digital elevation data [J]. Geosicence and Remote Sensing,1990,28(5):963-969.
    [254]傅抱璞等.山地气候资源与开发利用[M].南京大学出版社,1996.
    [255]BRISTOW K L, CAMPBELL G S. On the relationship between incoming solar radiation and daily maximum and minimum temperature [J]. Agricultural and Forest Meteorology,1984,31:159-166.
    [256]程炳岩,孙卫国等.重庆地区太阳总辐射的气候学计算方法研究[J].西南大学学报(自然科学版),2011,33(9):94--104.
    [257]刘钰等.参照腾发量的新定义及计算方法对比[J].水利学报,1998,6:27-33.
    [258]张东,张万昌等.汉江上游流域蒸散量计算方法的比较及改进[J].资源科学,2005,27(1):97-103.
    [259]史建国,严昌文等.黄河流域潜在蒸散量时空格局变化分析[J].干旱区研究,2007,24(6):773-778.
    [260]杨贵羽,王知生等.海河流域ET0演变规律及灵敏度分析[J].水科学进展,2009,20(3):409--415.
    [261]李丽清.统计与统计分析[M].中南大学出版社,2011.
    [262]许建聪,尚岳全.碎石土滑坡的因素敏感性计算分析[J].2007,28(10):2046-2051.
    [263]傅伯杰,陈利顶等.中国生态区划的目的、任务及特点[J].生态学报,1999,19(5):591-595.
    [264]Barreto L S. A regional index of ecological sensitivity [J]. An. Inst. Super. Agron.,1984,41:379-387.
    [265]Kumar KSK, Parikh J. Indian agriculture and climate sensitivity [J]. Global Environmental Change, 2001,11(2):147-154.
    [266]Muzik I. Sensitivity of hydrologic systems to climate change [J]. Canadian Water Resources,2001, 26(2):233-252.
    [267]国家发展改革委建设部编.建设项目经济评价方法与参数(第三版)[M].中国计划出版社,2006.
    [268]刘小虎SPSS 12.0 for Windows在农业试验统计中的应用[M].东北大学出版社,2007.
    [269]卢纹岱SPSS for Windows统计分析[M].电子工业出版社,2006.
    [270]薛薇.基于SPSS的数据分析[M].中国人民大学出版社,2006.
    [271]李古清,翁笃鸣.丘陵山地总辐射的计算模式[J].气象学报,1988,46(4):461--468.
    [272]陈志军.基于起伏地形下重庆地区的天文辐射、气温分布研究[D].南京气象学院,2004.
    [273]张文华,朱志龙等.作物需水计算[M].中国环境科学出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700