用户名: 密码: 验证码:
掺铥光纤放大器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着光纤通信技术的发展,特别是WDM/DWDM技术的日趋成熟,对于S波段及S+波段(1450nm~1520nm)光放大的需求日渐升高,而Tm~(3+)的能级结构中存在满足S波段及S+波段光放大的能级跃迁。虽然铥离子的能级结构十分复杂,但是掺铥光纤放大器(TDFA)是S波段及S+波段最具潜力的激光放大器件之一,对于光纤通信系统的通信窗口向S波段及S+波段拓展具有十分重要的意义和价值。所以掺铥光纤放大器已经成为光纤通信器件新的研究热点之一。
     本论文重点对掺铥光纤放大器泵浦源激光器的输出光场强度分布以及经过单透镜和双透镜耦合后的光场强度分布进行了分析、仿真和比较;基于速率方程和传输方程分析了掺铥光纤放大器的性能,建立了数学模型并进行了大量模拟仿真,其主要工作和创新点如下:
     1.概述铥元素的能级结构特点,对其光谱特性、掺铥光纤放大器的研究现状以及掺铥光纤放大器的系统组成结构进行了介绍,在此基础上对掺铥光纤放大器的泵浦方式进行了总结和比较。
     2.研究了掺铥光纤放大器泵浦源激光器的输出光场强度分布,在此基础上理论推导了泵浦源激光器输出光束经过单透镜和双透镜耦合后的光场强度分布,根据理论分析结果进行了仿真并对仿真结果进行了分析和比较。结果表明,双透镜耦合后输出光束不会因为传输距离过大而导致光束分离,在相同的前提条件下双透镜耦合后输出光束的半径要远小于单透镜,即双透镜的耦合效果明显优于单透镜。
     3.基于速率方程和传输方程对掺铥光纤放大器的泵浦方案进行了理论分析,建立了掺铥光纤放大器泵浦方案的数学模型,并求解了相应的数学方程,根据求解结果讨论了数学模型中各参数对掺铥光纤放大器性能的影响。
     4.分别模拟仿真了氟化物玻璃和碲酸盐玻璃掺铥光纤放大器的输出信号增益特性,详细研究和分析了铥离子的掺杂浓度、光纤长度、泵浦功率等参数对放大器的输出信号增益特性的影响。仿真结果表明掺铥光纤放大器中,光纤长度、掺杂浓度和泵浦功率三者之间存在着匹配关系。当输出信号增益一定时,在相同光纤长度条件下,掺杂浓度越高,所需泵浦功率越低;在相同掺杂浓度条件下,泵浦功率越高,所需的光纤长度越短;在相同泵浦功率条件下,掺杂浓度越高,所需的光纤长度越短。
The demand of the S-band optical amplification is rapidly increasing with the development of optical communication technology,particularly the rapid development of WDM/DWDM.The energy structure in Tm~(3+)exist the transition which can meet the S-band and S+-band.Although the energy structure of thulium ions are very complex,thulium-doped fiber amplifier(TDFA) is the most important device for the S-band and S+-band optical amplification,and its research will be very significant for the further broadening the optical communication bandwidth.Thulium-doped fiber amplifiers have become new hot spot of optical fiber communication devices.
     In this paper,we mainly do some analysis,simulation and comparison about the semiconductor laser multi-core pigtail outputting light field intensity,as well as the outputting light field intensity distribution of LD multi-core pigtail single-lens and dual-lens coupled.We analyze thulium-doped fiber amplifier performance based on the rate equation and the transfer equation and do a lot of simulations.The major and innovational work is as follows:
     1.Overview the level structural features of elements of the thulium,introduce its spectral characteristics and the research status as well as the system structure of thulium-doped fiber amplifier.Based on those work,some summarize and comparisons about the comparison of pumping schemes of TDFA are did.
     2.Study the thulium-doped fiber amplifier pumping source laser outputting light field intensity distribution.The outputting light field intensity distribution of LD multi-core pigtail single-lens and dual-lens coupled are analyzed and simulated after those work.The results show that large transmission distance will not lead to outputting beam separation when use dual-lens to coupled.In the same prerequisite,outputting beam radius is much smaller than single-lens after the dual-lens coupled.Dual-lens coupling effect is much better than single-lens.
     3.Use the method of rate equation and transfer equation to analyze the pump scheme of thulium-doped fiber amplifier.Mathematical model of pump scheme of thulium-doped fiber amplifier is set up,the parameters is also discussed under this model.
     4.The fluoride glass and tellurite glass thulium-doped fiber amplifier output signal gain characteristics are simulated respectively.Influence of the thulium ion doping concentration,fiber length,pumping power is detail studide and analyzed.The results show that there is a kind of match relationship among those three parameters.When outputting signal gain is a constant,the higher doping concentration,the lower the pumping power is required under a certain length of fiber;the higher pumping power, the shorter fiber length is required under a certain doping concentration;the higher doping concentration,the shorter fiber length is required under a certain pumping power.
引文
[1]Charles J.Koester,Elias Snitzer.Amplification in a Fiber Laser.Applied Optics.1964.3(10).1182-1184
    [2]M.A.Noginov,M.Cudey,P.Venkateswarlu,A.Williams.Excitation scheme for the upper energy levels in a Tm:Yb:BaY_2F_8 laser crystal.Optical Society of America.1997.14(18).2126-2136
    [3]Allain,J.Y.Monerie,M.Poignant,H.Tunable CW lasing around 0.82,1.48,1.88,2.35μm in thulium-doped fluorozirconate fiber.Electronics Letters.1989.25(24).1660-1662
    [4]戴世勋,杨建虎,柳祝平,姜中宏.TDFA最新研究进展.光纤与电缆及其应用技术.2000.(3).12-17
    [5]Komukai,T.Yamamoto,T.Sugawa,Y.Miyajima.1.47μm BAND Tm~(3+) DOPED FLUORIDIE FIBRE AMPLIFIER USING A 1.064μm UPCONVERSION PUMPING SCHEMET.ELECTRONICSLETTERS.1993.29(1).110-112
    [6]S.Aozasa,T.Sakamoto,T.Kanamori,K.Hoshino,K.Kobayashi,M.Shimizu.Tm-Doped Fiber Amplifiers for 1470-nm-Band WDM Signals.IEEE PHOTONICS TECHNOLOGY LETTERS.2000.12(10).1331-1333
    [7]T.Kasmaatsu,Y.Yano,T.Ono.Laser-diode pumping(1.4 and 1.56μm) of gain-shifted thulium-doped fiber amplifier.Electronics Letters.2000.36(19).1067-1069
    [8]Tadashi Kasamatsu,Yutaka Yano,Takashi Ono.1.49-μm-Band Gain-Shifted Thulium-Doped Fiber Amplifier for WDM Transmission Systems.JOURNAL OF LIGHTWAVE TECHNOLOGY.2002.20(19).1826-1837
    [9]Scott S.-H.Yam,Youichi Akasaka,Yoshinori Kubota,Hiroyuki Inoue,Krishnan Parameswaran.Novel Pumping Schemes for Fluoride-Based Thulium-Doped Fiber Amplifier at 690 and 1050nm(or 1400nm).IEEE PHOTONICS TECHNOLOGY LETTERS.2005.17(5).1001-1003
    [10]魏瑞.掺铥光纤激光器研究[学位论文].北京交通大学.北京交通大学.2009.3-5
    [11]戴世勋,杨建虎,柳祝平,温磊,胡丽丽,姜中宏.970nm抽运下Tm~(3+)/Er~(3+)/yb~(3+)共掺碲酸盐玻璃的发光特性.物理学报.2003.52(3).729-734
    [12]J.Kani,T.Sakamoto,M.Jinno,T.Kanamori,M.Yamada,K.Oguchi.1470nm band wavelength division multiplexing transmission.Electronics Letters.1998.34(11).1118-1119.
    [13]Tadashi Kasamatsu,Yutaka Yano,Takashi Ono.Gain-Shifted Dual-Wavelength-Pumped Thulium-Doped Fiber Amplifier for WDM Signals in the 1.48μm-1.51μm Wavelength Region.IEEE PHOTONICS TECHNOLOGYLETTERS.2001.13(1).31-33
    [14]王建全,何健武,刘雪原,顾婉仪,纪越峰.波分复用技术及其应用和发展.通讯世界.2000.(3).17-22
    [15]蒋洪福.全波光纤及其特点分析.光纤与电缆及其应用技术.2001.(3).9-7
    [16]杜戈果.铥离子(Tm~(3+))能级标注浅议.大学物理.2007.26(12).26-28
    [17]E.R.M.Taylor,L.N.Ng,J.Nilsson,R.Caponi,A.Pagano,M.Potenza,B.Sordo.Thulium-Doped Tellurite Fiber Amplifier.IEEE PHOTONICS TECHNOLOGY LETTERS. 2004.16(3).777-779
    [18]Tetsuro Komukai,Takashi Yamamoto,Tomoki Sugawa,Yoshiaki Miyajima.Upconversion Pumped Thulium-Doped Fluoride Fiber Amplifier and Laser Operating at 1.47μtm.IEEE JOURNAL OF QUANTUM ELECTRONICS.1995.31(11).1880-1889
    [19]Stuart D Jackson,Terence A King.Theoretical modeling of Tm-doped silica fiber lasers.JOURNAL OF LIGHTWAVE TECHNOLOGY.1999.17(5).948-956
    [20]T.C.Teyo,P.Poopalan,H.Ahmad.Regenerative erbium-doped fiber ring laser-amplifier.Electronics Letters.1999.35(17).1471-1472
    [21]B.P.Singh.Characteristics of regenerative erbium-doped fiber ring amplifier.Electronics Letters.2000.36(12).1013-1015
    [22]Jun Chang,Qing-Pu Wang,Xingyu Zhang,Zhejin Liu,Zhaojun Liu.S-band optical amplification by an internally generated pumping in thulium ytterbium codoped fiber.Optics Express.2005.13(11).3902-3912
    [23]Tadashi Sakamoto,Makoto Yamada,Terutoshi Kanamori,Makoto Shimizu,Yasutake Ohishi,Yukio Temnuma,Shoichi Sudo.Thulium-doped fluoride amplifiers for 1.4μm and 1.6μm operation.Optical Amplifier and Their Applications.Monterey,CA.USA.1996.USA.1996.105-115
    [24]M.M.Kozak,R.Caspary,W.Kowalsky.Thuliumodoped Fiber Amplifier for the S-Band.ICTON.Wroclaw,Poland.2004.Poland.2004.We.B1.6-51-We.B1.6-54
    [25]丁双红,张行愚,常军,王青圃,李述涛,范书振.S波段掺铥光纤放大器的研究进展.光通信研究.2005.(3).53-57
    [26]S.Shen,M.Naftaly,A.Jha,S.J.Wilson.Thulium-doped tellurite glasses for S-band amplification.OFC.Anaheim.2001.American.2001.TuQ6-1-TuQ6-3
    [27]Reinhard Caspary,Marcin M.Kozak,Wolfgang Kowalsky.Avalanche Pumping of Thulium Doped S-Band Fiber Amplifiers.ICTON.Nottingham,United Kingdom.2006.United Kingdom.2006.We.A1.2-166-We.A1.2-169
    [28]陈鹤,刘粤惠,姚小旭,冯洲明.不同Tm~(3+)浓度掺杂碲酸盐玻璃光谱性质研究.物理学报.2005.54(9).4427-4432
    [29]DU Ge-guo,LI Da-jun,LI Hong-wei,RUAN Shuang-chen.A Bi-directionally Pumped S-band Thulium-doped Silica Fiber Amplifier Using Up-conversion Pumping at 1064nm.ACTA PHOTONICA SINICA.2007.36(17).966-968
    [30]W.T.Chen,Lon A.Wang.Laser-to-Fiber Coupling Scheme by Utilizing a Lensed Fiber Integrated with a Long-Period Fiber Grating.IEEE PHOTONICS TECHNOLOGY LETTERS.2000.12(5).501-503
    [31]薛春荣.熔锥光纤的特性研究.激光与红外.2006.36(9).886-888
    [32]Ma Yan,Xie Fuzeng.Design of a Tapered Lens for Semiconductor Laser to Single-Mode Fiber Coupling.CHINESE JOURNAL OF SEMICONDUCTORS.2004.25(11),1356-1359
    [33]李爱云,王晓颖.光纤耦合LD输出光场特性研究.光子学报.2007.36(9).1664-1667
    [34]苑立波.光纤与纤端光场.光通信技术.1994.18(1).54-64
    [35]Abdul-Azeez R.Al-Rashed,Bahaa E.A.Saleh.Decentered Gaussian beams.Applied Optics.1995.34(30).6819-6825
    [36]李武军,杨爱粉,王石语,蔡德芳,文建国,过振.光纤束耦合LD输出光束的空间耦合技术研究. 激光技术.2006.30(3).304-307
    [37]李武军,朱起渐,过振,蔡德芳,王石语,文建国.偏心高斯光束的强度分.西安工业学院学报.2005.20(1).76-79
    [38]邓元龙,姚建铨,阮双琛,王鹏.光纤激光器透镜耦合系统的优化设计.激光杂志.2006.26(5).42-43
    [39]黄永明,吕英华,杨性愉.高阶模激光束通过会聚光学系统的聚焦特性.光学技术.2000.26(4).331-336
    [40]J.Q.Yao,Y,Cui,X.W.Sun,M.H.Dunn,W.Sibbett.Mixed mode coefficient and Gaussian-like distribution.ACTA OPTICA SINCA.1995.15(12).1633-1640
    [41]张俊,冯莹,陈爽.高功率激光光纤耦合系统设计与分析.光学与光电技术.2007.5(1).47-52
    [42]邓元龙,姚建铨,阮双琛,孙秀泉.大功率激光光纤透镜耦合系统设.光电技术应用.2007.20(3).7-10
    [43]郑庸.三能级系统的激光半经典理论.北京工业大学学报.1994.20(4).120-123
    [44]刘琳.掺铥光纤放大器及其应用[学位论文].东南大学.东南大学.2003.25-32
    [45]何琛娟,陈晓波,N.Sawanobori,孙寅官,陈鸾,孟超.Tm~(3+)在氟氧化物玻璃陶瓷中的光谱性质.光谱学与光谱分析.2001.21(2).147-150
    [46]廖梅松,房永征,孙洪涛,胡丽丽,张军杰.掺铥氟磷玻璃的结构、热学性质和光谱性质.光学学报.2006.26(5).713-719
    [47]Won Jae Lee,Bumki Min,Jaehyoung Park,Namkyoo Park.Study on the pumping wavelength dependency of S+-band fluoride based thulium doped fiber amplifiers.OFC.Anaheim.2001.American.2001.TuQ5-1-TuQ5-4
    [48]蒙红云,武志刚,高伟清,张昊,袁树忠,董孝义.1064nm抽运掺铥光纤放大器增益特性的理论研究.中国激光.2003.30(9).783-787
    [49]杜戈果,陈国夫.980nm泵浦掺铒光纤放大器增益特性的理论研究.中国科学(A 辑).1998.6(28).535-541
    [50]MICHEL J.F.DIGONNET.Closed-Form Expressions for the Gain in Three-and Four-Level Laser Fibers.IEEE JOURNAL OF QUANTUM ELECTRONICS.1990.26(10).1788-1796
    [51]林凤英,胡和方,裔关宏.氟化物玻璃红外光纤.红外技术.1992.14(6).5-10
    [52]K.Miazato,D.F.de Sousa,A.Delben,J.R.Delben,S.L.de Oliveira,L.A.O.Nunes.Upeonversion mechanism in Tm~(3+) doped lead fluoroindogallate glasses.Journal of Non-Crystalline Solids.2000.273(1).246-251
    [53]张龙,祁长鸿,林凤英,胡和方.Tm~(3+)离子掺杂氟铝酸盐玻璃红外及上转换光谱性质.光学学报.2002.22(2).233-237
    [54]冯衍,陈晓波,宋峰,李昆,李美仙,张光寅.798nm半导体激光激发下yb~(3+),Tm~(3+):ZBLAN玻璃的上转换发光.光学学报.1999.19(4).552-556
    [55]Meisong Liao,Shunguang Li,Hongtao Sun,Yongzheng Fang,Lili Hu,Junjie Zhang.Upconversion properties of Tm~(3+)/Yb~(3+) codoped fluorophosphate glasses with low phonon density of states.Materials Letters.2006.60(15).1783-1785
    [56]胡和方,裔关宏,林凤英,余尧楚,徐永俊,叶安敏.低损耗氟化物玻璃光纤的研制.红外与毫米波学报.1992.11(5).379-382
    [57]李建福,杨海贵.Tm~(3+)掺ZBLAN玻璃的吸收与发光特性.临沂师范学院学报.2006.28(6).28-31
    [58]Huailiang Xu,Zhankui Jiang.Optical properties of Tm~(3+)-doped fluorozirconate glass.Physics Letters A.2002.299(1).85-88
    [59]裴珊珊,江中澳,简水生.碲化物玻璃在光纤光学中的应用及研究进展.激光与红外.2004.34(4).254-256
    [60]刘斌.掺铥光纤放大器的研究[学位论文].北京交通大学.北京交通大学.2006.38-40
    [61]Mira Naftaly,Shaoxiong Shen,Animesh Jha.Tm~(3+)-doped tellurite glass for a broadband amplifier at 1.47μm.APPLIED OPTICS.2000.39(27).4979-4984
    [62]WANG Xunsi,NIE Qiuhua,XU Tiefeng,SHEN Xiang,DAI Shixun,GAI Na.Tm~(3+)-doped tellurite glass with Yb~(3+) energy sensitized for broadband amplifier at 1400-1700nm bands.JOURNAL OF RARE EARTHS.2008.26(6).907-911
    [63]A.Cucinotta,F.Poli,S.Selleri.Gain Characteristics of Thulium-Doped Tellurite Fiber Amplifiers by Dual-Wavelength(800nm+1064nm) Pumping.OFC.Martin Fermann.2003.America.2003.11-12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700