用户名: 密码: 验证码:
丙烷脱氢用Pt纳米催化剂的制备、表征及其催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种重要的化工基础原料,丙烯近年来需求不断上涨,其与丙烷的价格差也不断提高。丙烷脱氢是增产丙烯的重要工艺,目前制约其应用的主要瓶颈在于催化剂活性和稳定性有待提高。本文以制备丙烷脱氢制丙烯用高温稳定型纳米催化剂为目标,以期解决传统丙烷脱氢Pt基催化剂在苛刻条件下的Pt组分烧结、易积炭及失活的难题。
     结合液相合成和超声波震荡负载法制备了Pt纳米粒子催化剂,考察了Pt纳米粒子制备方法、负载方法和载体等对Pt纳米粒子结构性质及丙烷脱氢性能的影响。研究表明,不同制备条件对形成不同形貌的Pt纳米粒子具有很大的影响,用硼氢化钠化学还原法制备的Pt纳米粒子,粒径均匀;稳定剂PVP可以阻止Pt纳米粒子的聚集,当n(PVP)/n(Pt)=15:1时,Pt纳米粒子分布较窄;超声波振荡法制备的Pt纳米粒子催化剂表现出更好地丙烯选择性及丙烷转化率,催化剂稳定性更好。自制的γ-Al2O3-3载体孔道以介孔为主,孔径范围在6-10nm,通过超声波振荡法制备的Pt纳米粒子负载在自制γ-Al2O3-3负载催化剂上,Pt粒子分布均匀,平均粒径约为3nm,其丙烷脱氢性能更优。
     以氧化铝为载体,采用液相合成-超声波震荡法制备了Pt纳米粒子催化剂,结合丙烷脱氢实验及透射电镜(TEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)以及CO红外吸附等表征方法,考察了助剂Sn、Ce对催化剂结构及其丙烷脱氢性能的影响。助剂Sn的添加,可以提高Pt/Al2O3催化剂的丙烯选择性;采用共还原法添加助剂Sn要比浸渍法得到的催化剂性能好。采用以助剂Ce修饰后的氧化铝为载体所得到的催化剂,其Pt纳米粒子平均粒径为2.9nm,粒径分布均匀;少量的Ce以Ce3+形式存在,Ce可以与载体、Pt纳米粒子之间产生相互作用,从而提高了Pt纳米粒子的抗烧结性能。
     采用液相还原法制备了SnO2包裹Pt纳米颗粒的新型Pt@SnO2/Al2O3催化剂,并对该催化剂的制备方法及其丙烷脱氢反应工艺条件进行了考察。研究表明,以PVP为稳定剂,PVP/Pt摩尔比为15:1,乙醇-水体系,Pt添加量为0.4wt%,Pt/Sn摩尔比为1:1.5时,Pt@SnO2/Al2O3催化剂拥有较高的反应活性、较优的稳定性能和较强的抗积炭性能。通过对其丙烷脱氢反应工艺进行优化,确定最佳反应工艺条件为:还原温度为500℃、还原时间为4h,反应空速为1400h-1,丙烷/氢气的进料比为1:1,脱氢反应温度为580℃。催化剂稳定性考察结果表明,Pt@SnO2/Al2O3催化剂在72h内丙烷转化率和丙烯选择性分别稳定在23%和93%以上,并且都优于商用PtSn催化剂。
     在液相还原法制备Pt@SnO2/Al2O3催化剂基础上,通过引入助剂K、Ce对Pt@SnO2/Al2O3催化剂进行了进一步的优化。相比于Pt@SnO2/Al2O3,经Ce改性后的催化剂初始转化率提高了5.2%左右,反应200min以后,催化剂仍然保持着93%的丙烯选择性和27%的丙烷转化率。经助剂K修饰后的Pt@SnO2/Al2O3,丙烷转化率和丙烯选择性达到最佳,分别为24.5%和97.5%。NH3-TPD、H2-TPR、Py-IR和H2-O2滴定等表征结果表明,经助剂K、Ce修饰后的催化剂,其金属纳米粒子的负载均匀性得到了提高,载体和活性组分之间的相互作用得到了加强,积炭量减少,深度脱氢性能降低,高温稳定性进一步提高。
     利用固定床微分反应器研究了Pt@SnO2/Al2O3催化剂上丙烷脱氢反应的本征动力学。从基于多相催化表面反应的Langmuir-Hinshelwood机理出发,推导出了4个丙烷脱氢反应速率模型。通过不同反应温度下Pt@SnO2/Al2O3催化剂上丙烷脱氢反应的实验数据对方程(Ⅱ)进行了拟合,得到该模型不同温度下的动力学参数,根据Arrhenius方程和Van’t Hoff方程进而得到了反应活化能、吸附活化能和指前因子等参数的估值。统计检验和Boudart准则表明,所建立的动力学模型是合理的。
The demand of propylene, an important basic chemical raw material, growscontinuously. The price difference between propylene and propane also is rising.Propane dehydrogenation is an important process for producing propylene. At present,the bottleneck which restricts its application is the poor stability of catalyst. In thiswork, a stable nano-catalyst was prepared to relieve the deactivation problemassociated with the traditional propane dehydrogenation platinum-based catalyst.
     Platinum nanoparticle catalysts were prepared through a liquid-phase synthesisroute combined with ultrasonic vibration method. Effect of preparing methods,loading methods, and carriers on the structure and properties of platinumnanoparticles were investigated. Relationship between the dehydrogenationperformances with the structural properties was clarified. Results show thatpreparation conditions influence the morphologies of platinum nanoparticles.Platinum nanoparticles prepared are uniform using chemical reduction method usingNaBH4as a reducing agent. Stabilizer, PVP, prevents aggregation of platinumnanoparticles. The particle size distribution of platinum nanoparticles is narrow whenthe molar ratio of PVP to Platinum was15:1. Platinum nano-catalyst exhibits a highselectivity to propylene and a high conversion of propane when prepared by ultrasonicvibration method. The pore diameter of mesoporous alumina ranged from6to10nm.Br nsted acid sites exist on the surface of carrier. The platinum nano-catalyst preparedby ultrasonic vibration method exhibits good performance in propanedehydrogenation. The distribution of platinum nanoparticles is uniform, and theaverage diameter of particles is3nm.
     Effect of tin and cerium as promoters on the structure and dehydrogenationperformance of catalysts was investigated. The catalyst was characterized by using various techniques: TEM, XRD, XPS and CO-chemisorption. The tin promoterincreases the selectivity to propene of Pt/Al2O3catalyst. The dehydrogenationperformance of the catalyst prepared by reduction method is better than that ofcatalyst prepared by impregnation. The particle size distribution of platinumnanoparticles when using cerium modified alumina as the support is uniform with theaverage diameter centered at2.9nm. Cerium exists in the form of Ce3+at low content.It interacts with carrier and platinum nanoparticles, increasing the resistance tosintering.
     Pt@SnO2/Al2O3catalyst was obtained by liquid-phase reduction. Effect ofpreparing methods and reaction conditions was investigated. Resuts show thatPt@SnO2/Al2O3catalyst for the dehydrogenation of propane exhibits the highestactivity, stability and resistance to coke when prepared under conditions as follows:PVP as stabilizer, the molar ratio of PVP to Platinum as15:1, ethanol-water as thesolvents, platinum content of0.4wt%, the molar ratio of platinum to tin as1:1.5. Byinvestigating the influence of reaction conditions on the performance fordehydrogenation, the optimal conditions were determined as follows: reductiontemperature at500℃, reaction time of4h, space velocity of1400h-1,propane/hydrogen feed ratio of1:1and reaction temperature at580℃. The conversionof propane and selectivity to propene were23%and93%respectively after reactionof72h, which is superior to PtSn commercial catalyst.
     The catalysts were further optimized by introducing K, Ce promoters toPt@SnO2/Al2O3catalyst. Compared with Pt@SnO2/Al2O3catalysts, the initialconversion of the catalysts modified by Ce increased by about5.2%. The conversionof propane and the selectivity to propylene were27%and93%respectively afterreaction for200min. The Pt@SnO2/Al2O3catalyst modified by K promoter shows thebest performance, and the conversion of propane and the selectivity to propylene were24.5%and97.5%respectively. NH3-TPD, H2-TPR, Py-IR and H2-O2titration analysisshowed that the active component of catalyst was better dispersed after modified by K,Ce promoters. Besides, the interaction between the active components and carrier wasstrengthened, decreasing the amount carbon and preventing the reaction of deep dehydrogenation. Hence, the stability of the catalyst at high temperature is furtherimproved.
     The intrinsic kinetics of dehydrogenation reaction was studied using a fixed beddifferential reactor. Four propane dehydrogenation reaction models were deducedbased on Langmuir-Hinshelwood mechanism for heterogeneous catalytic surfacereactions. The kinetic parameters of the model were obtained by fitting the equationⅡwith experimental data. The activation energy, adsorption energy and pre-exponentialfactor were obtained according to the Arrhenius equation and Van't Hoff equation.Statistical tests and Boudart guidelines indicate that the dynamic model is reliable.
引文
[1]赵文明,张倩.丙烯国内市场发展趋势及原料多元化对市场的影响.化学工业,2013,31(11):1-22.
    [2]周巍.丙烷脱氢制丙烯技术浅析.石油化工设计,2013,30(3):36-38
    [3] G. Ertl, H. Kn zinger, F. Schüth, J. Weitkamp. Handbook of Heterogeneous Catalysis.2ndedition, Wiley-VCh,2008,3206-3211
    [4]余长林,葛庆杰,徐恒泳,等.丙烷脱氢制丙烯研究新进展.化工进展,2006,25(9):977-982
    [5] F. Carniato, C. Bisio, G. Gatti, et al. On the properties of a novel V-containing saponitecatalyst for propane oxidative dehydrogenation. Catalysis Letters,2009,131(1-2):42-48
    [6] Y. M. Liu, L.C. Wang, M. Chen, et al. Highly selective Ce-Ni-O catalysts for efficient lowtemperature oxidative dehydrogenation of propane. Catalysis Letters,2009,130(3-4):350-354
    [7] T.Davies, S.H. Taylor. The oxidative dehydrogenation of propane using gallium-molybdenumoxide-based catalysts. Journal of Molecular Catalysis A: Chemical,2004,220(1):77-84
    [8]李建辉,李仁贵,汪彩彩,等.介孔Ni基催化剂上乙烯氧化脱氢制乙烯.催化学报,2009,30(8):714-716
    [9] G.A. Savelieva, D.B. Abdukhalykov, K. Dossumov. Research of the activity of catalysts onthe base of H3PW12O40in partial oxidative conversion of C3-C4alkanes. Catalysis Letters,2009,128(1-2):106-110
    [10] J.M.L. Nieto. Microporous and mesoporous materials with isolated vanadium species asselective catalysts in the gas phase oxidation reactions. Topics in Catalysis,2001,15(2-4):189-194
    [11]严乐平.丙烷脱氢制丙烯生产技术的应用前景.上海化工,2010,35(7):22-27
    [12] P. Bai, D.l. Liu, P. Wu, et al. Catalytic Dehydrogenation of Propane to Propene: CatalystDevelopment, Mechanistic Aspects and Reactor Design. Reviews in Advanced Sciences andEngineering,2014,3(2):1–16
    [13] Weckhuysen B M, Schoonheydt R A. Alkane dehydrogenation over supported chromiumoxide catalysts.Catalysis Today,1999,51(2):223-232
    [14] Kumar M S, Hammer N, Holmen A, et al. The nature of active chromium species inCr-catalysts for dehydrogenation of propane: New insights by a comprehensivespectroscopic study. Journal of Catalysis,2009,261(1):116-128
    [15]张帆,聂颖颖,缪长喜,等.Cr/NaZSM-5催化剂上CO2氧化丙烷脱氢反应.高等学校化学学报,2012,33(1):96-101
    [16] Nijhuis T A, Tinnemans S T, Visser T,et al. Towards real-time spectroscopic process controlfor the dehydrogenation of propane over supported chromium oxide catalysts.ChemicalEngineering Sciences,2004,59(22-23):5487-5492
    [17] S. Airaksinen, M A Baňares, A. I. O. Krause. In-situ characterization of carbon-containingspecies formed on chromia/alumina during propane dehydrogenation. Journal of Catalysis,2005,230(2):507-513
    [18] Cabrera F, Ardissone D, Gorriz O F. Dehydrogenation of propane on chromia/aluminacatalysts promoted by tin. Catalysis Today,2008,133-135:800-804
    [19] Rombi E, Cutrufello M G, Solinas V, et al. Effects of potassium addition on the acidity andreducibility of chromia/alumina dehydrogenation catalysts. Applied Catalysis A: General,2003,251(2):255–266
    [20]刘淑鹤,方向晨,张喜文.丙烷脱氢催化反应机理及动力学研究进展.化工进展,2009,28(2):51-57
    [21]杨维慎,林励吾.负载型铂锡催化剂的研究进展.石油化工,1993,22(5):347-352
    [22]余长林.丙烷脱氢铂催化剂与反应性能的研究:[博士学位论文].大连:中国科学院大连化学物理研究所,2007
    [23]董文生,王浩静,王心葵,等.不同载体的Pt-Sn催化剂上丙烷脱氢性能的研究.天然气化工,1999,24(3):9-11
    [24]窦春娟.双金属Pt-Sn丁烷脱氢催化剂的研究:[硕士学位论文].青岛:中国石油大学(华东),2003
    [25] Ruckenstein E, Pulvermacher B. Growth kinetics and the size distributions of supportedmetal crystallites. Journal of Catalysis,1973,29(2):224-245
    [26] Barbier J. Deactivation of reforming catalysts by coking-a review. Applied catalysis,1986,23(2):225-243
    [27] Fiedorow R M, Wanke S E. The sintering of supported metal catalysts: I. Redispersion ofsupported platinum in oxygen. Journal of Catalysis,1976,43(1):34-41
    [28] Schmid G. Large clusters and colloids. Metals in the embryonic state. Chemical Reviews,1992,92(8):1709-1727
    [29]杨春雁,杨卫亚,凌凤香,等.负载型金属催化剂表面金属分散度的测定.化工进展,2010,2(8):1468-1501
    [30] Roy S, Ghosh A, Chaudhuri N R. Thermal studies of2-methyl-1,2-propanediaminecomplexes of nickel (II) in the solid state. Transition Metal Chemistry,1989,14(6):443-445
    [31] Semagina N, Kiwi Minsker L. Recent advances in the liquid-phase synthesis of metalnanostructures with controlled shape and size for catalysis. Catalysis Reviews,2009,51(2):147-217
    [32] Roucoux A, Schulz J, Patin H. Reduced transition metal colloids: A novel family of reusablecatalysts. Chemical Reviews,2002,102(10):3757-3778
    [33] Narayanan R, El-Sayed M A. Effect of catalysis on the stability of metallic nanoparticles:Suzuki reaction catalyzed by PVP-palladium nanoparticles. Journal of the AmericanChemical Society,2003,125(27):8340-8347
    [34] Kinoshita K. Particle-size effects for oxygen reduction on highly dispered platinum in acidelectrolytes. Journal of the Electrochemical Society,1990,137(3):845-848
    [35] Sanchez-Sanchez C M, Solla-Gullon J, Vidal-Iglesias F J, et al. Imaging structure sensitivecatalysis on different shape-controlled platinum nanoparticles. Journal of the AmericanChemical Society,2010,132(16):5622-5624
    [36] Serrano-Ruiz J C, López-Cudero A. Hydrogenation of α,β unsaturated aldehydes overpolycrystalline,(111) and (100) preferentially oriented Pt nanoparticles supported on carbon.Journal of Catalysis,2008,253(1):159-166
    [37] Ahmadi T S, Wang Z L, Green T C, et al. Shape-controlled synthesis of colloidal platinumnanoparticles. Science,1996,272(5270):1924-1926
    [38] Wang Z L,Ahmad T S,El-Sayed M A. Steps,ledges and kinks on the surfaces of platinumnanoparticles of different shapes. Surface Science,1997,380(2-3):302-310
    [39] Mahmoud M A,Tabor C E,El-Sayed M A,et al. A new catalytically active colloidal platinumnanocatalyst:The multiarmed nanostar single crystal. Journal of the American ChemicalSociety,2008,130(14):4590-4591
    [40] El-Sayed M A, Yoo J W. Preparation of cubic Pt Na noparticles deposited on aluminaand their application to propene hydrogenation. ChemCatChem,2010,2(3):268-271
    [41] Kinge S, Bonnemann H. One-pot dual size-and shape selective synthesis of tetrahedral Ptnanoparticles. Applied organometallic chemistry,2006,20(11):784-787
    [42] Jintian R, Tilley R D. Shape-controlled growth of platinum nanoparticles. Small,2007,3(9):1508-1512
    [43] Scheeren C W, Machado G, Teixeira S R, et al. Synthesis and characterization of Pt (0)nanoparticles in imidazolium ionic liquids. Journal of Physical Chemistry B,2006,110(26):13011-13020
    [44]郑孙洁,严新焕.形貌可控的Pt纳米催化剂的制备及其应用进展.化工进展,2011,30(3):513-519
    [45] Tao A R, Habas S, Yang P D. Shape control of colloidal metal nanocrystals. Small,2008,4(3):310-325
    [46]骆益鸣,刘迎新,严巍.金属纳米簇催化剂的稳定化方法研究进展.化工进展,2010,29(6):1056-1060
    [47] Gates B C. Supported Metal Clusters: Synthesis, Structure and Catalysis. Chemical Reviews,1995,95(3):511-522
    [48] Yin Y, Alivisatos A P. Colloidal nanocrystal synthesis and the organic-inorganic interface.Nature,2005,437(7059):664-670
    [49] Kim C, Lee H. Shape effect of Pt nanocrystals on electrocatalytic hydrogenation. CatalysisCommunications,2009,11(1):7-10
    [50] Lee H, Habas S E, Kweskin S, et al. Morphological control of catalytically active platinumnanocrystals. Angewandte Chemie International Edition,2006,45(46):7824-7828
    [51] Bratlie K M, Lee H, Komvopoulos K, et al. Platinum nanoparticle shape effects on benzenehydrogenation selectivity. Nano Letters,2007,7(10):3097-3101
    [52] Vu B. K., Song M. B., Ahn I.T., Suh T. W., et al. Location and structure of coke generatedover Pt-Sn/Al2O3in propane dehydrogenation. Journal of Industrial and EngineeringChemistry.2010,17(1):71-76
    [53]杨维慎,吴荣安,林励吾.丙烷在负载型催化剂上脱氢反应的研究(Ⅲ)-丙烷在氧化铝负载的Pt-金属氧化物催化剂上的脱氢.燃料化学学报,1991,19(3):201-207
    [54] Kumar M. S., Chen D., Holmen a., et al. Dehydrogenation of propane over Pt-SBA-15andPt-Sn/SBA-15: Effect of Sn on the dispersion of Pt and catalytic behavior. Catalysis Today,2009,142(1):17–23
    [55] Vu, B.K., Song, M.B., Ahn, I.Y., et, al. Pt-Sn alloy phases and coke mobility overPt-Sn/Al2O3and Pt-Sn/ZnAl2O4catalysts for propane dehydrogenation. Applied Catalysis A:General,2011,400(1-2):25-33
    [56] Bari s, O.A., Holmen, A., Blekkan, E.A. Propane dehydrogenation over supported platinumcatalysts: effect of tin as a promoter. Catalysis Today,1995,24(3):361-364
    [57]马占华,张慧,李军,等.铂系丙烷脱氢催化剂助剂研究进展.现代化工,2011,31(10):20-23
    [58]吴文海,李应成,吴省,等.锡组分状态对Pt/Al2O3丙烷脱氢性能的影响.化学反应工程与工艺,2009,25(1):41-45
    [59] Merlen E., Beccat P., Bertolini J. C., et al. Characterization of Bimetallic Pt-Sn/Al2O3Catalysts: Relationship between Particle Size and Structure. Journal of Catalysis,1996,159(1):178-188
    [60] Rodriguez D, Sanchez J, Arteaga G. Effect of tin and potassium addition on the nature ofplatinum supported on silica. Journal of Molecular Catalysis A: Chemical,2005,228(1):309-317
    [61]邱安定.负载型PtSn催化剂上长链烷烃脱氢反应性能的研究:[硕士学位论文].南京:南京大学,2000
    [62] Pisduangdaw S, Panpranot J, Methastidsook C, et al. Characteristics and catalytic propertiesof Pt-Sn/Al2O3nanoparticles synthesized by one-step flame spray pyrolysis in thedehydrogenation of propane. Applied Catalysis A: General,2009,370(1):1-6
    [63] Hammer B, N rskov J K. Theoretical surface science and catalysis calculations and concepts.Advances in catalysis,2000,45:71-129
    [64] Nagaraja B M, Jung H, Yang D R, et al. Effect of potassium addition on bimetallic PtSnsupported θ-Al2O3catalyst for n-butane dehydrogenation to olefins. Catalysis Today,2013
    [65] Zhang S.B., Zhou Y. M., Zhang Y.M., et al. Effect of K Addition on Catalytic Performance ofPt-Sn/ZSM-5Catalyst for Propane Dehydrogenation. Catalysis Letters,2010,135(1-2):76–82
    [66] D.Akporiaye, S. F.Jensen, U. Olsbye. A Novel, Highly Efficient Catalyst for PropaneDehydrogenation. Industrial&Engineering Chemistry Research,2001,40(22):4741-4748
    [67] Seo H, Lee J K, Hong U G, et al. Direct dehydrogenation of n-butane over Pt/Sn/M/γ-Al2O3catalysts: Effect of third metal addition. Catalysis Communications,2014,47(5):22-27
    [68] Zhang Y. W., Zhou Y.M., Liu H., et al. Effect of La addition on catalytic performance ofPt-SnNa/ZSM-5catalyst for propane dehydrogenation. Applied Catalysis A: General,2007,333(2):202-210
    [69] Connie M. Y., Yeung K. M., Fu Q. J., et al. Engineering Pt in Ceria for a Maximum MetalSupport Interaction in Catalysis. Journal of the American Chemical Society,2005,127(51):18010-18011
    [70] Yu C.L., Ge Q.J., Xu H.Y., et al. Effects of Ce addition on the Pt-Sn/g-Al2O3catalyst forpropane dehydrogenation to propylene. Applied Catalysis A: General,2006,315(23):58-67
    [71]余长林,徐恒泳,陈喜蓉,等.PtZn-Sn/SBA-15合成、表征及对丙烷催化脱氢性能.燃料化学学报,2010,38(3):308-312
    [72]余长林,徐恒泳,葛庆杰,等.Zn对Pt-Sn/γ-Al2O3催化剂中Sn的活性状态及丙烷脱氢反应的影响.高等学校化学学报,2006,27(8):1492-1495
    [73] Siddiqi G., Sun P P, Galvita V., et al. Catalyst performance of novel Pt/Mg(Ga)(Al)O catalystsfor alkane dehydrogenation. Journal of Catalysis,2010,274(2):200-206
    [74] Zhang, Y., Zhou, Y., Tang, M., et al. Effect of La calcination temperature on catalyticperformance of PtSnNaLa/ZSM-5catalyst for propane dehydrogenation. ChemicalEngineering Journal,2012,181-182:530-537
    [75]朱静.低碳烷烃脱氢负载型PtSn催化剂的研究:[硕士学位论文].武汉:东南大学,2005
    [76] Y. W. Zhang, Y. M. Zhou, H Liu, et al. Influence of the different dechlorination time oncatalytic performances of PtSnNa/ZSM-5catalyst for propane dehydrogenation. FuelProcess. Technology,2009,90(12):1524-1531
    [77] B. K. Vu, M. Song, I. Y. Ahn, et al. Oxidation of Coke Formed Over Pt-Al2O3and Pt-SBA-15in Propane Dehydrogenation. Catalysis Letters,2009,133(3-4):376-381
    [78] K. M. Santhosh, A. Holmen, D. Chen. The influence of pore geometry of Pt containingZSM-5, Beta and SBA-15catalysts on dehydrogenation of propane. Microporous andMesoporous Materials,2009,126(1-2):152-158
    [79] G. Aguilar-Ríos, P. Salas, M.A. Valenzuela, et al. Propane dehydrogenation activity of Pt andPt–Sn catalysts supported on magnesium aluminate: influence of steam and hydrogen.Catalysis Letters,1999,60(1-2):21-25
    [80] Z, Nawaz, X, P, Tang, W, Yao, et al. Parametric Characterization and Influence of Tin on thePerformance of Pt-Sn/SAPO-34Catalyst for Selective Propane Dehydrogenation toPropylene. Industrial&Engineering Chemistry Research,2010,49(3):1274–1280
    [81] Silvestre-Albero,J., Serrano-Ruiz, J.C., Sepúlveda-Escribano,A., et al. Zn-modified MCM-41as support for Pt catalysts. Applied Catalysis A: General,2008,351(1):16-23
    [82] Wang Y J, Wang Y M, Wang S R, et al. Propane Dehydrogenation Over PtSn CatalystsSupported on ZnO-Modified MgAl2O4. Catalysis Letters.2009,132(3-4):472-479
    [83]闫翔云,季洪海,程福礼,等.焙烧温度对Al2O3微观结构和表面酸性的影响.石油炼制与化工,2011,42(11):41-45
    [84] Nijikovsky B, Richardson J J, Garbrecht M, et al. Microstructure of ZnO films synthesizedon MgAl2O4from low-temperature aqueous solution: growth and post-annealing. Journal ofMaterials Science,2013,48(4):1614-1622
    [85] Zhang Y W, Zhou Y M, Yang K Z, et al. Effect of hydrothermal treatment on catalyticproperties of Pt-SnNa/ZSM-5catalyst for propane dehydrogenation. Microporous andMesoporous Materials,2006,96(1):245–254
    [86]邱安定,范以宁.添加锡组分对Pt/ZSM-5催化剂丙烷脱氢反应性能的影响.燃料化学学报,2008,36(5):637-640
    [87]邱安定,李恩霞,范以宁.载体组成对负载型PtSn/ZSM-5催化剂上丙烷脱氢反应性能的影响.催化学报,2008,28(11):970-974
    [88] Song H, Shah K, Doroodchi E, et al. Reactivity of Al2O3or SiO2Supported Cu-, Mn-,Co-based Oxygen Carriers for Chemical Looping Air Separation. Energy&Fuels,2014,28(2):1284–1294
    [89]旷成秀,李凤仪.氧化态还原态多组元贵金属尾气净化催化剂催化性能的研究.贵金属,2007,28(1):32-36
    [90]曾永康,曾利辉,潘丽娟,等.超声浸渍法制备Pd/Al2O3催化剂及其催化硝基苯加氢性能.稀有金属材料与工程,2008,37(04):674-676
    [91]杨永辉,林彦军,冯俊婷,等.超声浸渍法制备Pd/Al2O3催化剂及其催化蒽醌加氢性能.催化学报,2006,27(4):304-308
    [92] Rahsepar M, Pakshir M, Kim H. Synthesis of multiwall carbon nanotubes with a high loadingof Pt by a microwave-assisted impregnation method for use in the oxygen reduction reaction.Electrochimica Acta,2013,108(1):769-775
    [93] Kim I, Bong S, Woo S, et al. Highly active40wt.%PtRu/C anode electrocatalysts forPEMFCs prepared by an improved impregnation method. International Journal of HydrogenEnergy,2011,36(2):1803-1812
    [94]郑建东,任晓光,宋永吉,等.温度对共沉淀法制备LaMnAl11O19催化剂的影响.燃料化学学报,2007,35(1):117-120
    [95]张亚文,严铮光.沉淀条件对稀土氧化物的比表面积和形貌的影响(Ⅱ).中国稀土学报,2001,19(5):471-473
    [96]张新波,许莉勇,袁俊峰,等.共沉淀法制备氧化铝负载Co-Mo双金属氮化物催化剂.催化学报,2009,30(7):613-618
    [97]李怀峰,杨成,魏伟,等.沉淀方法对FeMnCu/ZnO合成低碳醇催化剂性能的影响.燃料化学学报,2007,35(2):198-202
    [98]王军威,靳国强,张志新,等.La/HZSM-5催化剂上丙烷的芳构化反应研究.中国稀土学报,2001,19(2):103-106
    [99]陈树伟,闫晓亮,陈佳琪,等.富氧条件下Mn/ZSM-5选择催化CH4还原NO.催化学报,2010,31(9):1107-1114
    [100] L Wang, W Li, G Qi, et al. Location and nature of Cu species in Cu/SAPO-34for selectivecatalytic reduction of NO with NH3. Journal of Catalysis,2012,289:21-29
    [101]王飞.金属铂纳米颗粒的形貌控制合成:[硕士学位论文].武汉:中南民族大学,2009
    [102]李军,王宁宁,马占华,等.贵金属纳米核壳材料的研究进展及其应用.现代化工,2012,32(4):30-34.
    [103]刘威,钟伟,都有为.核壳结构复合纳米材料研究进展.材料导报,2007,21(3):59-62
    [104]彭子青,谌伟庆,马洪波,等.核壳结构纳米复合材料在催化中的应用.化工进展,2010,29(8):1461-1467
    [105]S. H. Joo, J. Y. Park, C. Tsung, et al. Thermally stable Pt/mesoporous silica core-shellnanocatalysts for high-temperature reactions. Nature Materials.2009,8(2):126-131
    [106]C.T Kresge,M.E Leonowicz,W. J Roth,et al. Ordered mesoporous molecular sievessynthesized by a liquid crystal template mechanism. Nature,1992,359(22):710-712
    [107]Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: history and development fromthe earliest days to the present time. Chemical Reviews,2003,103(3):663-702
    [108]J.C.M. Silva,R.F.B.De Souza, L.S. Parreira, et al. Ethanol oxidation reactions usingSnO2@Pt/C as an electrocatalyst. Applied Catalysis.2010,99(1-2):265-271
    [109]N.Kristian,X.Wang. Pt-shell-Au core/C electrocatalyst with a controlled shell thickness andimproved Pt utilization for fuel cell reactions. Electrochemistry Communications.2008,10(1):12-15
    [110]N. Braidy, G. R. Purdy, G. A. Botton. Equilibrium and stability of phase-separating Au–Ptnanoparticles. Acta Materialia.2008,56(20):5972-5983
    [111]H.Zhang, N.Du, B.Chen, et al. Sub-2nm SnO2nanocrystals: A reduction/oxidation chemicalreaction synthesis and optical properties. Materials Research Bulletin.2008,43(11):3164-3170
    [112]Mastalir A, Rác B, Király Z, et al. Preparation of monodispersed Pt nanoparticles inMCM-41catalytic applications. Catalysis Communications,2008,9(5):762-768
    [113]Ikeda M, Takeshima S, Tago T, et al. Preparation of size-controlled Pt catalysts supported onalumina. Catalysis letters,1999,58(4):195-197
    [114]俞佳枫,方雯,葛庆杰,等.助剂形态对Pt/γ-Al2O3催化剂抗积炭性能的影响.ChineseJournal of Catalysis,2011,32(8):1364-1369
    [115]Yeung C M Y, Tsang S C. Noble metal core-ceria shell catalysts for water-gas shift reaction.Journal of Physical Chemistry C,2009,113(15):6074-6087
    [116]Yeung C M Y, Tsang S C. Microemulsion Prepared Pt in Ceria: Catalytically Active forWater Gas Shift Reaction but Totally Inert for Methanation. Catalysis letters,2009,128(3-4):349-355
    [117]Gates B C. Supported metal clusters: synthesis, structure, and catalysis. Chemical reviews,1995,95(3):511-522
    [118]M. Santhosh Kumar, De Chen, John C. Walmsley. Dehydrogenation of propane overPt-SBA-15: Effect of Pt particle size. Catalysis Communications,2008,9(5):747–750
    [119]Hyunjoo Lee, Susan E. Habas, Sasha Kweskin, Morphological Control of CatalyticallyActive Platinum Nanocrystals. Angewandte Chemie,2006,118(46):7988–7992
    [120]卞龙春,张保才,卢军,等.以拟薄水铝石为铝源合成中孔氧化铝.工业催化,2010,18(3):36-39
    [121]Narayanan R, El-Sayed M A. Catalysis with transition metal nanoparticles in colloidalsolution: nanoparticle shape dependence and stability. Journal of physical Chemistry B,2005,109(26):12663-12676
    [122]Pirola C, Bianchi C L, Di Michele A, et al. Ultrasound and microwave assisted synthesis ofhigh loading Fe-supported Fischer–Tropsch catalysts. Ultrasonics sonochemistry,2010,17(3):610-616
    [123]Sharma L D, Kumar M, Saxena A K, et al. Influence of pore size distribution on Ptdispersion in Pt-Sn/Al2O3reforming catalyst. Journal of Molecular Catalysis A: Chemical,2002,185(1):135-141.
    [124]J.C. Serrano-Ruiz, A. López-Cudero, J. Solla-Gullón, et al. Hydrogenation of α, βunsaturated aldehydes over polycrystalline,(111) and (100) preferentially oriented Ptnanoparticles supported on carbon. Journal of Catalysis,2008,253:159-166
    [125]L. D. Sharma, M. Kumar, A. K. Saxena, et al. Influence of pore size distribution on Ptdispersion in Pt-Sn/Al2O3reforming catalyst. Journal of Molecular Catalysis A: Chemical,2002,185(1-2):135-141
    [126]Benecildo A. Riguetto, Sonia D, Gias G, et al. Surface Behavior of Alumina-Supported PtCatalysts Modified with Cerium as Revealed by X-ray Diffraction, X-ray photoelectronSpectroscopy, and Fourier Transform Infrared Spectroscopy of CO Adsorption. The Journalof Physical Chemistry B,2004,108,5349-5358
    [127]S. Damyanova, C.A Perez, M. Schmal, et al. Characterization of ceria-coated alumina carrier.Applied Catalysis A: General234(2002)271–282
    [128] J Z Shyu, K Otto, Characterization of Pt/γ-alumina catalysts containing ceria. J. Catal.,1989,115:16-23
    [129]K Bak, L Hilaire. Quantitative XPS analysis of the oxidation state of cerium inPt-CeO2/Al2O3catalysts. Applied Surface Science,1993,70-71(1):191-195
    [130]R Barth, R Pitchai, R. L Anderson, et al. Thermal desorption-infrared study of carbonmonoxide adsorption by alumina-supported platinum. Journal of Catalysis.1989,116:61-70
    [131]J Z Shyu, W H Weber, H S Gandhi. Surface characterization of alumina-supported ceria. TheJournal of Physical Chemistry,1988,92(17):4964-4970.
    [132]W S Yang, L W Lin, Y N Fan. Surface structure and catalytic performance of supported PtSncatalysts. Catalysis Letters,1992,12:267-274
    [133]E Merlen, P Beccat, J C Bertolini, et al. Characterization of bimetallic Pt-Sn/Al2O3catalysts:relationship between particle size and structure. Journal of Catalysis,1996,159:178-188
    [134]Damyanova S, Bueno J M C. Effect of CeO2loading on the surface and catalytic behaviorsof CeO2-Al2O3supported Pt catalysts. Applied Catalysis A: Generial,2003,253:135-150
    [135]S.R. Miguel, M.C. Roman, E.L. Jablonski, et al. Characterization of bimetallic PtSn catalystssupported on purified and H2O2-functionalized carbons used for hydrogenation reactions.Journal of Catalysis,1999,184(2):514-524
    [136]K. Fatih, V. Neburchilov, V. Alzate, et al. Synthesis and characterization of quaternaryPtRuIrSn/C electrocatalysts for direct ethanol fuel cells. Journal of Power Sources,2010,195(21):7168-7175
    [137]M. M Bhasin, J.H McCain, B. V Vora, et al. Dehydrogenation and oxydehydrogenation ofparaffins to olefins. Applied Catalysis A: General,2001,221(1-2):397–419
    [138]Heinritz-Adrian, M., Wenzel, S., Youssef, F. Advanced propane dehydrogenation. PetroleumTechnology Quarterly,2008,13(1):83–91
    [139]Spiewak B E,Levin P,Cortright R D,et al.Microcalorimetric and reaction kinetic studiesof alkali metals on Pt powder and Pt/SiO2and Pt/Sn/SiO2catalysts. Journal of PhysicalChemistry,1996,100(43):17260-17265
    [140]曾丽珍,李伟,李伟善.热处理对Pt/C和PtRu/C催化剂活性的影响.电源技术,2009,33(7):567-572
    [141]Konsolakis M., Yentekakis I V. Strong promotional effects of Li, K, Rb and Cs on thePt-catalysed reduction of NO by propene. Applied Catalysis B: Environmental,2001,29(2):103-113
    [142]Avgouropoulos G, Oikonmopoulos, Kanis-Tras D, et al. Complete oxidation of ethanol overalkali-promoted Pt/Al2O3catalysts. Applied Catalysis B: Environ-mental,2006,65(12):62-69
    [143]王立英,蔡灵剑,沈頔,等.金属纳米颗粒制备中得还原剂与修饰剂.化学进展,2010,22(4):580-592
    [144]Z.M. Peng, H. Yang. Designer platinum nanoparticles: Control of shape, composition inalloy, nanostructure and electrocatalytic property. Nanotoday,2009,4(2):143-164
    [145]S. Vajda, M.J. Pellin, J.P. Greeley, et al. Subnanometre platinum clusters as highly active andselective catalysts for the oxidative dehydrogenation of propane. Nature Materials,2009,8:213-216
    [146]S. Pisduangdaw, J. Panpranot, C. Methastidsook, et al. Characteristics and catalyticproperties of Pt-Sn/Al2O3nanoparticles synthesized by one-step flame spray pyrolysis in thedehydrogenation of propane. Applied Catalysis A: General,2009,370(1-2):1-6
    [147]G. Z. Cynthia, J. L. Fernández, K. Imaduwage, et al. Evaluation of the intrinsic kineticactivity of nanoparticle ensembles under steady-state conditions. Journal of ElectroanalyticalChemistry,2011,651:80-93
    [148]M.P. Lobera, C. Téllez, J. Herguido, et al. Transient kinetic modeling of propanedehydrogenation over a Pt-Sn-K/Al2O3catalyst. Applied Catalysis A: General,2008,349(1-2):156-164
    [149]陈光文,阳永荣,戎顺熙.在Pt-Sn/Al2O3催化剂上丙烷脱氢反应动力学.化学反应工程与工艺,1998,14(2):30-137
    [150]Q. Li, Z.J. Sui, X.G. Zhou, et al. Kinetics of propane dehydrogenation over Pt-Sn/Al2O3catalyst. Applied Catalysis A: General,2011,398(1-2):18-26
    [151]A. Farjoo, F. Khorasheh, S. Niknaddaf, et al. Kinetic modeling of side reactions in propanedehydrogenation over Pt-Sn/γ-Al2O3catalyst. Scientia Iranica C,2011,18(3):458-464
    [152]Saeed S, Maryam T. R, Farnaz T. Z., et al. Kinetic study of propane dehydrogenation andside reactions over Pt-Sn/Al2O3catalyst. Chemical Engineering Research and Design,2012,90(8):1090-1097
    [153]P. Biloen, F.M. Dautzenberg, W.M.H Sachtler. Catalytic dehydrogenation of propane topropene over platinum and platinum-gold alloys. Journal of Catalysis,1977,50(1):77-86
    [154]S.B. Kogan, H. Schramm, M. Herskowitz. Dehydrogenation of propane on modifiedPt/θ-alumina performance in hydrogen and steam environment. Applied Catalysis A: General,2001,208(1-2):185-191
    [155]M.A. Vannice. Kinetics of Catalytic Reactions. USA: Springer,2005:134-136
    [156]傅献彩,沈文霞,姚天扬,等.物理化学.北京,高等教育出版社,2005:483-492
    [157]M. Larsson, N. Henriksson, B. Andersson. Investigation of the kinetics of a deactivatingsystem by transient experiments. Applied Catalysis A: General,1998,166:9-19
    [158]李庆,杨明磊,隋志军,等.基于密度泛函理论计算的丙烷脱氢动力学.化学反应工程与工艺,2012,28(2):97-103
    [159]Zhi-Pan Liu and P. Hu. General rules for predicting where a catalytic reaction should occuron metal surfaces: A density functional theory study of C-H and C-O bond breaking/makingon flat, stepped, and kinked metal surfaces. Journal of the American Chemical Society,2003,125(7):1958-1967
    [160]M. S. Kumara, D Chena, J. C. Walmsley, et al. Dehydrogenation of propane over Pt-SBA-15:Effect of Pt particle size. Catalysis Communications,2008,9(5):747-750
    [161]R. Van Hardeveld, F. Hartog. The statistics of surface atoms and surface sites on metalcrystals. Surface Science,1969,15(2):189-230
    [162]M. Ohta, Y. Ikeda, A. Igarashi. Additive effect of Sn in Pt-Sn/ZnO-Cr2O3catalyst forlow-temperature dehydrogenation of isobutane. Applied Catalysis A: General,2004,266(2):229-233
    [163]S. Vaezifar, H. Faghihian, M. Kamali. Dehydrogenation of isobutane over Sn/Pt/Na-ZSM-5catalysts: The effect of SiO2/Al2O3ratio, amount and distribution of Pt nanoparticles on thecatalytic behavior. Korean Journal of Chemical Engineering,2011,28(2):370-377

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700