用户名: 密码: 验证码:
碳纳米洋葱与碳纳米管的可控合成及其储能应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米洋葱、碳纳米管与石墨烯是石墨的三种纳米级尺寸的同素异形体,分别为零维颗粒、一维线性和二维薄膜结构。它们都具有优良的导电与导热性能,高的比表面积及良好的力学性能,因此在电子器件、复合材料、储能介质与生物材料等领域有着重要的应用价值。目前,碳纳米材料的生长与应用领域仍有很多有待解决的问题,包括碳纳米材料的可控生长,新型碳纳米材料结构的合成,碳纳米材料的在储能领域的应用。
     本文首次采用NaBH4还原法制备Fe-Ni合金催化剂,并以氧化镁为载体,利用化学气相沉积法(CVD)催化合成了碳纳米洋葱(CNOs),研究了催化剂含量、载体种类、生长温度与时间等工艺条件对CNOs结构与形貌的影响,考查了高温退火温度对空心CNOs生成的影响,并对空心CNOs合成工艺和生长机理进行了探索,研究了CNOs的电化学储氢性能。研究发现,当以MgO为载体,催化剂含量为10%,生长温度与时间分别为850°C和0.5h时,可获得分散良好且尺寸均匀的CNOs。由于Fe-Ni合金催化剂中对碳原子溶解度较小的Ni原子的存在,会推迟催化剂的失活,生成空心CNOs。在1100°C的高温退火条件下,包覆Fe-Ni合金的实心CNOs可生成大量的空心CNOs。空心CNOs的电化学储氢性能优于实心CNOs,其电化学储氢量达1.76%。本文还对比研究了浸渍法制备的Ni、Fe-Ni与Fe三种催化剂对合成CNOs的结构与形貌的影响,并研究了CNOs作为润滑油添加剂的减摩性能,同时初步研究了它们的磁存储性能。结果表明,5%的催化剂含量下,三种催化剂合成的产物为内包核的碳洋葱纳米颗粒,分别为Ni@CNOs、Fe0.64Ni0.36@CNOs与Fe3C@CNOs,产物的纯度高,无其他形式的碳产物。CNOs作为润滑剂在润滑油中的最佳添加量为0.1%,Fe3C@CNOs在500N的载荷下摩擦系数μ可达到0.026。磁学性能测试显示Ni@CNOs呈超顺磁性;Fe0.64Ni0.36@CNOs的Mr/Ms约为0.22,矫顽力Hc为228.4Oe,显示了其在高密度磁存储材料与存储介质包覆材料中的应用前景。
     本文首次利用单分散的颗粒平均直径为~4nm的AlFe2O4催化剂,采用CVD法合成了大直径单壁碳纳米管(SWCNT)阵列,研究了催化剂种类与浓度、载体的种类与涂覆量、气压与水蒸气通入量等生长条件对SWCNT阵列生长高度、质量与结构的影响,并通过透射电镜与原子力显微镜的表征和分子动力学模拟研究了少壁碳管的塌陷行为与临界直径。结果表明,AlFe2O4催化剂的催化活性优于Fe3O4催化剂,Al原子的掺杂可有效防止催化剂颗粒团聚,从而增加SWCNT阵列生长高度和质量。本实验条件下获得的生长SWCNT阵列最佳条件为乙炔、氢气与水蒸气混合气体的气压4.9Torr,溅射Al镀层为载体,AlFe2O4纳米颗粒为催化剂且催化剂溶液浓度为25nM,阵列底端的IG/ID达18.5,阵列高度达100μm。经实验表征与模拟证实,SWCNT与双壁碳管发生塌陷的临界直径分别为2.6nm和4.0nm。
     本文首次利用钾原子插层与展开法将多壁碳纳米管(Multi-Walled CarbonNanotubes, MWCNTs)阵列转化为石墨烯纳米带阵列,研究了展开处理之后MWCNT的结构变化、分析了其作为超级电容器电极材料的储能性质及机理。研究发现,展开后的MWCNT的结构为外层石墨烯纳米带-内层少壁碳管的复合结构。超级电容器的性能测试显示,展开后的MWCNT阵列的比容量为106.2F/g,是原始的MWCNT阵列的~4倍;其能量与功率密度均高于原始MWCNT阵列,在能量密度为5.2Wh/kg时功率密度达最大为103kW/kg;展开后的MWCNT的外层的石墨烯纳米带增加了有效可利用面积,内层的少壁碳管的优良的导电性提供了高效的电荷传输,且碳管垂直阵列的形貌为离子的传输提供了笔直的快速的通道。
Carbon nano-onions (CNOs), carbon nanotubes (CNTs) and graphene are thethree allotropes for graphite at nanoscale. They are0-dimensional particle,1-dimensional wire and2-dimensional film structures, respectively. Due to theirexcellent electrical and thermal conductivity, high specific surface area, as well as thegood mechanical properties, they show great application potentialities in the fields ofelectronics device, composites, energy-storage media, biomaterials, and etc. However,at present there still remains a number of problems in the growth and applications ofcarbon nano-materials, including controllable growth of carbon nano-materials,synthesis of novel-structured carbon nano-materials and applications of carbonnano-materials in energy storage field.
     This study first reports the synthesis of Fe-Ni alloy catalyst from NaBH4reduction method and the use of Fe-Ni alloy catalyst and MgO substrate for growingcarbon nano-onions by CVD method. The influence of catalyst content, types ofsubstrate, growth temperature and growth time on the structure and morphology ofCNOs has been investigated. The influence of annealing temperatures on the growthof hollow CNOs, the growth mechanism of hollow CNOs and the mechanism of itsuse in electrochemical hydrogen storage have been also investigated. Studies haveshown that well-dispersed and uniform-sized CNOs can be obtained at the optimumconditions: catalyst content of10%, use of MgO substrate, growth temperature of850°C and growth period of0.5h. Due to the presence of Ni atoms which have a lowcarbon solubility, the deactivation of Fe-Ni alloy catalyst can be retarded, allowing forthe growth of hollow CNOs. By annealing at1100°C, large amounts of hollow CNOscan be obtained from the Fe-Ni alloy encapsulated CNOs. Hollow CNOs exhibit asuperior electrochemical hydrogen storage performance to the solid CNOs, with acapacity of1.76%. A comparative study of the influence of three types of catalysts: Ni,Fe-Ni alloy and Fe on the structure and morphology of CNOs was also carried out inthis study. The anti-friction properties of the CNOs as lubricants and their magneticstorage properties have also been investigated. Studies have shown that the CNOsgrown by different catalysts are Ni@CNOs, Fe0.64Ni0.36@CNOs and Fe3C@CNOs,respectively. By growing at a catalyst content of5%, a high purity of CNOs have been obtianed without any other carbon structures. As lubricants, the optimum additionamount in the oil of the CNOs is0.1%. A friction coefficient μ of0.026is achievedunder500N from Fe3C@CNOs. The magnetic propery tests show that the Ni@CNOsexhibit paramagnetic behavior, whereas the Fe0.64Ni0.36@CNOs exhibit a Mr/Ms andcoercive Hc of0.22and228.4Oe, respectively, indicating an application potentialityin high-density magnetic storage media and its encapsulating materials.
     This study first reports the synthesis of large-diameter SWCNT carpet by CVDmethod from monodispersed AlFe2O4nanoparticles with an average diameter of~4nm. The influence of types and concentrations of catakysts, types and coatingamounts of the substrate, growth pressure and water vapor amounts on the height,growth quality and structures of the SWCNT carpet have been investigated. Thecollapsing behavior and critical diameters of the few-walled CNTs have been studiedusing atomic force microscope, transmission electron microscope and moleculardynamics simulations. Studies show that the AlFe2O4nanoparticle has a highercatalyst activity Fe3O4nanoparticle, as the doping of Al atom is able to prevent thecoalescence of catalyst nanoparticles, thus providing a high-quality and tall SWCNTcarpet. The optimum conditions for growing the best quality SWCNT carpet is:pressure of mixing gas of acetylene, hydrogen and water vapor at4.9Torr, sputteredAl as substrate, concentration of AlFe2O4nanoparticles of25nM. The SWCNT carpethas a bottom IG/IDratio of18.5and a height of100μm. Through the experimentcharacterizations and simulation verifications, the critical diameterDe eqxepforSWCNT and DWCNT collapsing are2.6nm and4.0nm, respectively.
     This study first reports the splitting of MWCNT carpet by K atom intercalationapproach into graphene nano-ribbon carpet. The structural changing, supercapacitorproperties and charge storage mechanism of the split MWCNT carpet have beeninvestigated. Studies show that the split MWCNTs have a composite structureconsisting of outer graphene nanoribbons-inner few-walled CNTs.The split MWCNTcarpet as supercapacitor electrode materials exhibit a specific capacity of106.2F/g,~4times more than that of the original MWCNT capet. The split MWCNT carpet alsoshows higher power and energy densities than that of the original MWCNTs. Powerdensity of103kW/kg was obtained while maintaining an energy density of5.2Wh/kg.The split MWCNT carpets have increased their effective surface area for storing theions. The good conductivity of the inner few-walled CNTs and the vertical CNTarrays both accout for the efficient ions conducting and transportations.
引文
[1] Kroto HW, Heath JR, O’brien SC, et al., C60: Buckminsterfullerene, Nature,1985,318:162-163.
    [2] Iijima S, Helical microtubules of graphitic carbon, Nature,1991,354:56-58.
    [3] Iijima S, Ichinashi T, Single-shell carbon nanotubes of1-nm diameter, Nature,1993,363:603-605.
    [4] Iijima S, Direct observation of the tetrahedral bonding in graphitized carbon blackby high-resolution electronmicroscopy, J Cryst Growth,1980,50:675-683.
    [5] Ugarte D, Curling and closure of graphitic networks under electron-beamirradiation, Nature,1992,359:707-709.
    [6] Kroto HW, Carbon onions introduce new flavour to fullerene studies, Nature,1992,359,670-671.
    [7] Xu BS, Tanka SI, Formation of giant onion-like fullerenes under Al nanoparticlesby electron irradiation, Acta Mater,1998,46:5249-5257.
    [8] Novoselov KS, Geim AK, Morozov SV, et al., Electric field effect in atomicallythin carbon films, Science,2004,306:666-669.
    [9] Smalley RE, Buckytubes! New materials and new devices from carbon, Abstractsof papers of the J. Am. Chem. Soc,1998,215: U257.
    [10] Lieber CM, One-dimensional nanostructures: Chemistry, physics andapplications, Solid. State. Communications.,1998,107:607-616.
    [11] Heidenreich RD, Hess WM, Ban LL, A test object and criteriafor high resolutionelectron microscopy, J. Appl. Crystalogr.,1968,1:1-19.
    [12] Bennett MJ, Chaffey GH, Myatt BL, et al., UK Atomic Energy, Authority reportAERE R7408,1973.
    [13] Fowler PW, How unusual is C60? Magic numbers for carbon clusters, Chem.Phys. Lett.,1986,131:444-450.
    [14] Zwanger MS, Banhart F, Seeger A, Formation and decay of sphericalconcentric-shell carbon clusters, J. Cryst. Growth,1996,163:445-454.
    [15]李天保,刘光焕,刘旭光等,内包铁洋葱状富勒烯的合成和表征,热处理学报,2005,26:28-30.
    [16] Xu BS, Tanaka SI, Multiple-nuclei onion-like fullerenes cultivated by electronbeam irradiation. Proc Int Conf ICSE, Cambridge,1997,355-360.
    [17] Xu BS, Prospects and research progress in nano onion-like fullerenes, NewCarbon Materials,2008,23:289-301.
    [18] Murr LE, Soto KF, A TEM study of soot, carbon nanotubes, and related fullerenenanopolyhedra in common fuel-gas combustion sources, Mater Charact,2005,55:50-65.
    [19] Banhart F, Ajayan PM, Carbon onions as nanoscopic pressure cells for diamondformation, Nature,1996,382:433-435.
    [20] Roddatis VV, Kuznetsov VL, Butenko YV, et al., Transformation of diamondnanoparticles into carbon onions under electron irradiation, Phys. Chem. Chem,Phys.,2002,4:1964-1967.
    [21]王海英,王晓敏,章海霞等,电弧放电制备内包金属纳米洋葱状富勒烯的研究,材料热处理学报,2003,24:41-42.
    [22] Ling J, Liu Y, Hao G, et a1., Preparation of carbon-coated Co and Ninanocrystallites by a modified AC discharge method, Mater. Sci. Eng. B.,2003,100:186.
    [23] Sano N, Wang H, ChhowallaM, Synthesis of carbononion in water, Nature,2001,414:506-507.
    [24]郭俊杰,王晓敏,李天保等,水下电弧放电法制备洋葱状富勒烯,新型碳材料,2006,21:171-175.
    [25] Xing G, Jia S, Shi Z, The production of carbon nano-materials by arc dischargeunder water or liquid nitrogen, New Carbon Mater.,2007,22:337-341.
    [26] Schnitzler MC, Oliveira MM, Ugarte D, et al., One-step route to iron oxide-filledcarbon nanotubes and bucky-onions based on the pyrolysis of organometallicprecursors, Chem. Phys. Lett.,2003,381:541.
    [27] Sano N, Akazawa H, Kikuchi T, et a1., Separated synthesis of iron-includedcarbon nanocapsules and nanotubes by pyrolysis of ferrocene in pure hydrogen,Carbon,2003,41:2159.
    [28] Nasibulin AG, Moisala A, Brown DP, et a1., Carbon nanotubes and onions fromcarbon monoxide using Ni(acac)2and Cu(acac)2as catalyst precursors, Carbon,2003,41:2711.
    [29] Zhang L, Yang X, Wang X, et al., The study on preparation of metalencapsulating onion-like fullerenes from cyclohexane, Mater Rev.,2006,21:148-149.
    [30] Wang X, Xu B, Liu X, et al., Synthesis of Fe-included onion-like fullerenes bychemical vapor deposition, Diam Relat Mater,2006,15:147-150.
    [31] Wang X, Xu B, Jia H, et al., HRTEM and Raman study of onion-like fullerenesencapsulated Fe, J. Phys. Chem. Solids.,2006,67:871-874.
    [32] He C, Zhao N, Shi C, et al., Carbon nanotubes and onions from methanedecomposition using Ni/Al catalysts, Mater. Chem. Phys.,2006,97:109-115.
    [33] Kang J, Li J, Du X, et al., Synthesis of carbon nanotubes and carbon onions byCVD using a Ni/Y catalyst supported on copper, Mater Sci Eng, A.,2008,475:136-140.
    [34] Qiu J, Li Q, Wang Z, et al., CVD synthesis of coal-gas-derived carbon nanotubesand nanocapsules containing magnetic iron carbide and oxide, Carbon,2006,44:2565-2568.
    [35] Lou Z, Chen Q, Wang W, et al., Synthesis of carbon nanotubes by reduction ofcarbon dioxide with metallic lithium, Carbon,2003,41:3063-3074.
    [36] Xu B, Guo J, Wang X, et al., Synthesis of carbon nano capsules containing Fe, Nior Co by arc-discharge in aqueous solution, Carbon,2006,44:2631-2634.
    [37] Lee C, Park J, Yu J, Catalyst effect on carbon nanotubes synthesized by thermalchemical vapor deposition. Chem. Phys. Lett.,2002,360:250-255.
    [38] El-Gendy AA, Ibrahim EMM, Khavrus VO, et al., The synthesis of carbon coatedFe, Co and Ni nanoparticles and an examination of their magnetic properties,Carbon,2009,47:2821-2828.
    [39] Lee GH, Huh SH, Jeong JW, et al., Excellent magnetic properties of fullereneencapsulated ferromagnetic nanoclusters. J. Magn. Magn. Mater.,2002,246,404-411.
    [40] Si P, Zhang Z, Geng D, et al., Synthesis and characteristics of carbon-coated ironand nickel nanocapsules produced by arc discharge in ethanol vapor. Carbon,2003,41,247-251.
    [41] Shen W, Huggins FK, Shah N, et al., Novel Fe-Ni nanoparticle catalyst for theproduction of CO-and CO2-free H2and carbon nanotubes by dehydrogenation ofmethane, Appl. Cata. A. Gen.,2008,351:102-110.
    [42] Luo G, Li Z, Wei F, et al., Catalysts effect on morphology of carbon nanotubesprepared by catalytic chemical vapor deposition in a nano-agglomerate bed,Physica B,2002,323:314-317.
    [43] Tsoufs T, Xidas P, Jankovic L, et al., Catalytic production of carbon nanotubesover Fe-Ni bimetallic catalysts supported on MgO, Diamond Relat Mater.,2007,16:155-160.
    [44] Qian W, Liu T, Wang Z, et al., Effect of adding nickel to iron–alumina catalystson the morphology of as-grown carbon nanotubes, Carbon,2003,41:2487-2493.
    [45] Rodriguez NM, Kim MS, Fortin F, et al., Carbon deposition on iron-nickel alloyparticles, Appl Catal A Gen,1997,148:265–282.
    [46] Herreyre S, Gadelle P, Effect of hydrogen on the morphologyof carbon depositedfrom the catalytic disproportionation of CO, Carbon,1995,33:234-237.
    [47] Lim SY, Yoon SH, Korai Y, et al., Selective synthesis of thin carbon fbers. I:Over nickel–iron alloys supported on carbon black, Carbon,2004,42:1765-1781.
    [48] Tanaka A, Yoon SH, Mochida I, Formation of fne Fe-Ni particles for thenon-supported catalytic synthesis ofuniform carbon nanofbers, Carbon,2004,42:1291-1298.
    [49] Yu Z, Chen D, R nning M, et al., Large-scale synthesis of carbon nanofbers onNi-Fe-Al hydrotalcite derived catalysts. II: Effect of Ni/Fe composition on CNFsynthesis from ethylene and carbon monoxide, Appl Catal A Gen.,2008,338:147-158.
    [50] Rodriguez NM, Kim MS, Fortin F, et al., Carbon deposition on iron-nickel alloyparticles, Appl Catal A Gen,1997,148:265–282.
    [51] Teunissen W, de Groot MF, Geus J, et al., The structure of carbon encapsulatedNiFe nanoparticles, J Catal.,2001,204:169-174.
    [52] Kim MS, Rodriguez NM, Baker RTK, The interaction of hydrocarbons withcopper–nickel and nickel in the formation of carbon flaments. J Catal.,1991,131:60-73.
    [53] Krishnankutty N, Rodriguez NM, Baker RTK, Effect of copper on thedecomposition of ethylene over an iron catalyst, J Catal.,1996;158:217-227.
    [54] Mathiowitz E, Jacob JS, Jong YS, et al., Biologically erodible microsphere aspotential oral drug delivery system, Nature,1997,386:410-414.
    [55] Huang H, Remsen EE, Kowalewski T, et al., Nanocages derived from shellcross-linked micelle templates, J. Am. Chem. Soc.,1999,121:3805-3806.
    [56] Donath E, Sukhorukov GB, Caruso F, et al., Novel hollow polymer shells bycolloid-templated assembly of polyelectrolytes, Angew. Chem. Int. Ed.,1998,37:2202-2205.
    [57] Jang J, Oh JH, Facile fabrication of photochromic dye-conducting polymer core-shellnanomaterials and their photoluminescence, Adv. Mater.,2003,15:977-980.
    [58] Wang Y, Su F, Lee JY, et al., Crystalline carbon hollow spheres, crystalline carbon-SnO2hollow spheres, and crystalline SnO2hollow spheres: synthesis and performance inreversible Li-ion storage, Chem. Mater.,2006,18:1347-1353.
    [59] Lee KT, Jung YS, Oh SM, Synthesis of Tin-encapsulated spherical hollow carbon foranode material in lithium secondary batteries, J. Am. Chem. Soc.,2003,125:5652-5653.
    [60] Wang M, Golberg D, Bando Y, Carbon onions as point electron sources, ACS Nano,2010,4:4396-4402.
    [61] Pech D, Brunet M, Durou H, et al., Ultrahigh-power micrometer-sized supercapacitorsbased on onion-like carbon, Nature Nanotech.,2010,5:651-654.
    [62] Li Z, Chen Z, Zhao X, Growth of polyaniline on hollow carbon spheres for enhancingelectrocapacitance, J. Phys. Chem. C.,2010,114:19867-19874.
    [63] He C, Zhao N, Shi C, et al., A practical method for the production of hollowcarbon onion particles, J. Alloys. Compd.,2006,425:329-333.
    [64] Lian W, Song H, Chen X, et al., The transformation of acetylene black intoonion-like hollow carbon nanoparticles at1000°C using an iron catalyst, Carbon,2008,46:525-530.
    [65] Zhong Z, Chen H, Tang S, et al., Catalytic growth of carbon nanoballs with andwithout cobalt encapsulation, Chem. Phys. Lett.,2000,330:41-47.
    [66] Ma Y, Hu Z, Huo K, et al., A practical route to the production of carbonnanocages, Carbon,2005,43:1667-1672.
    [67] Zheng J, Ekstrom TC, Gordeev SK, et al., Carbon with an onion-like structureobtained by chlorinating titanium carbide, J. Mater. Chem.,2000,10:1039-1041.
    [68] Leis J, Perkson A, Arulepp M, et al., Carbon nanostructures produced bychlorinating aluminum carbide, Carbon,2001,39:2043-2048.
    [69] Jacob M, Palmqvist U, Alberius PCA, et al., Synthesis of structurally controllednanocarbons-in particular the nanobarrel carbon. Solid State Sci.,2003,5:133-137.
    [70] Urones-Garrote E, A′vila-Brande D, Ayape-Katcho N, et al., Amorphous carbonnanostructures from chlorination of ferrocene, Carbon,2005,43:978-985.
    [71] A′vila-Brande D, Urones-Garrote E, Katcho NA, et al., Electron microscopycharacterization of nanostrcutured carbon obtained from chlorination of metallocencesand metal carbides, Micron,2007,38:335-345.
    [72] Katcho NA, Urones-Garrote E, vila-Brande D, Carbon Hollow Nanospheresfrom Chlorination of Ferrocene. Chem. Mater.,2007,19:2304-2309.
    [73] Hu G, Ma D, Cheng M, et al., Direct synthesis of uniform hollow carbon spheresby a self-assembly template approach, Chem. Commun.,2002,1948-1949.
    [74] Geng B, Ma J, Du Q, Synthesis of hollow carbon nanospheres through a ZnSenanoparticle template route, Mater. Sci. Eng., A.,2007.466:96-100.
    [75] Wang Y, Su F, Lee JY, et al., Crystalline carbon hollow spheres, crystallinecarbon-SnO2hollow spheres, and crystalline SnO2hollow spheres: synthesisand performance in reversible Li-ion storage, Chem. Mater.,2006,18:1347-1353.
    [76] Wang Z, Yin J, Graphitic hollow carbon calabashes, Chem. Phys. Lett.,1998,289:189-192.
    [77] Li Y, Wei B, Liang J, et al., Transformation of carbon nanotubes tonanopartcles by ball milling process, Carbon,1999,37:493-497.
    [78] Niwase K, Homae T, Nakamura KG., et al., Generation of giant carbon hollowspheres from C60fullerene by shock-compression, Chem. Phys. Lett.,2002,362:47-50.
    [79] Qiao Z, Li J, Zhao N, et al., Graphitization and microstructure transformation ofnanodiamond to onion-like carbon, Scrip. Mater.,2006,54:225-229.
    [80] He C, Zhao N, Du X, et al., Low-temperature synthesis of carbon onions bychemical vapor deposition using a nickel catalyst supported on aluminum, Scrip.Mater.,2006,54:689-693.
    [81] He C, Zhao N, Shi C, et al., Carbon nanotubes and onions from methanedecomposition using Ni/Al catalysts, Mater. Chem. Phys.,2006,97:109-115.
    [82] Ding F, Rosén A, Campbell Eleanor EB, et al., Graphitic encapsulation ofcatalyst particles in carbon nanotube production, J. Phys. Chem. B.,2006,110:7666-7670.
    [83] Yang Y, Liu X, Xu B. Fe-encapsulating carbon nano onion-like fullerenes fromheavy oil residue, J. Mater. Res.,2008,23:1-5.
    [84] Hou S, Tao C, Zhang G, et al., Ultrahigh vacuum scanning probe microscopystudies of carbon onions, Physica E,2001,9:300-304.
    [85] Chhowalla M, Wang H, Sano N, et al., Carbon onions: Carriers of the217.5nminterstellar absorption feature, Phys. Rev. Lett.,2003,90:155501-155504.
    [86] Lee G, Huh S, Jeong J, et al., Excellent magnetic properties of fullerenesencapsulated ferromagnetic nanoclusters, J. Magn. Magn. Mater.,2002,246:404-411.
    [87] Dillon AC, Jones KM, Bekkedahl TA, et al., Storage of hydrogen in single-walledcarbon nanotubes, Nature,1997,386:377-379.
    [88] Liu C, Fan YY, Liu M, et al., Hydrogen storage in single-walled carbonnanotubes at room temperature, Science,1999,286:1127-1129.
    [89] Nutzenadel C, Nuttel A, Chartouni D, et al., Electrochemical storage of hydrogenin nanotube materials, Electrochem. Solid-State. Lett.,1999,2:30-32.
    [90] Rajalakshmi N, Dhathathreyan KS, Govindaraj A, et al., Electrochemicalinvestigation of single-walled carbon nanotubes for hydrogen storage,Electrochimica Acta,2000,45:4511-4515.
    [91] Dai GP, Liu C, Liu M, et al., Electrochemical hydrogen storage behavior of ropesof aligned single-walled carbon nanotubes, Nano Lett.,2002,2:503-506.
    [92] Qin X, Gao X, Liu H, Electrochemical hydrogen storage of multiwalled carbonnanotubes, Solid-State Lett.,2000,3:532-535.
    [93] Chambers A, Park C, Baker RTK, et al., Hydrogen storage in graphite nanofibers,J. Phys. Chem. B.,1998,102:4253-4256.
    [94] Youn HS, Ryu H, Cho TH, et al., Purity enhancement and electrochemicalhydrogen storage property of carbon nanofibers grown at low temperature, Int. J.Hydrogen Energy,2002,27:937-940.
    [95] Chen X, Zhang Y, Gao X, et al., Electrochemical hydrogen storage of carbonnanotubes and carbon nanofibers, Int. J. Hydrogen Energy,2004,29:743-748.
    [96] Yan X, Gao X, Li Y, et al., The surface decoration and electrochemical hydrogenstorage of carbon nanofbers. Chem. Phys. Lett.,2003,372:336-341.
    [97] Gao X, Lan Y, Pan G, et al., Electrochemical hydrogen storage by carbonnanotubes decorated with metallic nickel, Electrochem. Solid-State Lett.,2001,4:A173-A175.
    [98] Hirata A, Igarashi M, Kaito T, Study on solid lubricant properties of carbononions produced by heat treatment of diamond clusters or particles. Tribol. Int.,2004,37:899-905.
    [99] Joly-Pottuz L, Matsumoto N, Kinoshita H, et al., Diamond-derived carbon onionsas lubricant additives, Tribol. Int.,2008,41:69-78.
    [100] Joly-Pottuz L, Vacher B, Mogne TL, et al., The role of nickel in Ni-containingnanotubes and onions as lubricant additives, Tribol. Lett.,2008,29:213-219.
    [101] Cabioc’h T, Thune E, Rivie`re JP, et al., Structure and properties of carbononion layers deposited onto various substrates, J. Appl. Phys.,2002,91,1560-1567.
    [102] Matsumoto N, Joly-Pottuz L, Kinoshita H, et al., Application of onion-likecarbon to micro and nanotribology, Diamond Relat. Mater.,2007,16:1227-1230.
    [103] Street KW, Marchetti M, Vander Wal RL, et al., Evaluation of the tribologicalbehavior of nano-onions in Krytox143AB, Tribol. Lett.,2004,16:143-149.
    [104] Joly-Pottuz L, Bucholz EW, Matsumoto N, et al., Friction properties of carbonnano-onions from experiment and computer simulations, Tribol. Lett.,2010,37:75-81.
    [105] Joly-Pottuz L, Martin JM, Belin M, et al., Study of inorganic fullerenes andcarbon nanotubes by in situ Raman tribometry, Appl. Phys. Lett.,2007,91:153107.
    [106] Hirata A, Igarashi M, Kaito T, Study on solid lubricant properties of carbononions produced by heat treatment of diamond clusters or particles. Tribol. Int.,2004,37:899-905.
    [107] Bacon R, Growth. Structure, and properties of graphite whiskers, J. App. Phys.,1960,31:284-290.
    [108] Oberlin A, Endo M, Koyama T, Filamentous growth of carbon through benzenedecomposition, J. Cryst. Growth.,1976,32:335-349.
    [109] Bethune DS, Kiang CH, de Vries MS, et al., Cobalt-catalyzed growth of carbonnanotubes with single-atomic-layer walls, Nature,1993,363:605-607.
    [110] Tan S, Devoret MH, Dai HJ, et al., Individual single-walled carbon nanotubes asquantum wires, Nature,1997,386:474-477.
    [111] Duerkop T, Getty SA, Cobas E, et al., Extraordinary mobility in semiconductingcarbon nanotubes, Nano lett,2004,4:35-39.
    [112] Che J, Cagin T, Goddard WA, Thermal conductivity of carbon nanotubes,Nanotechnology,2000,11:65-69.
    [113] Krishnan A, Dujardin E, Ebbesen TW, et al., Young’s Modulus of single-wallednanotubes, Phys. Rev. B.,1998,58:14013-14019.
    [114] Yu M, Files BS, Arepalli S, et al., Tensile loading of ropes of single wall carbonnanotubes and their mechanical properties, Phys. Rev. Lett.,2000,84:5552-5555.
    [115] Liu J, Rinzler AG, Dai HJ, et al., Fullerene pipes, Science,1998,280:1253-1256.
    [116] Puretzky AA, Schittenhelm H, Fan X, et al., Investigation of single-wall carbonnanotube growth by time-restricted laser vaporization, Phys. Rev. B.,2002,65:9.
    [117] Journet C, Maser WK, Bernier P, et al., Large-scale production of single-walledcarbon nanotubes by the electric-arc technique, Nature,1997,388:756-758.
    [118] Nikolaev P, Bronikowski MJ, Bradley RK, et al., Gas-phase catalytic growth ofsingle-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett.,1999,313:91-97.
    [119] Su M, Zheng B, Liu J, et al., A scalable CVD method for the synthesis ofsingle-walled carbon nanotubes with high catalyst productivity, Chem. Phys.Lett.,2000,322:321-326.
    [120] Saito Y, Nanoparticles and filled nanocapsules, Carbon,1995,33:979-988.
    [121] Hofmann S, Sharma R, Ducati C, In situ observations of catalyst dynamicsduring surface-bound carbon nanotube nucleation, Nano Lett,2007,7:602-608.
    [122] Meshot ER, Plata DL, Tawfick S, et al., Engineering vertically aligned carbonnanotube growth by decoupled thermal treatment of precursor and catalyst. ACSNano,2009,3:2477-2486.
    [123] Kanzow H, Ding A, et al., Formation mechanism of single-wall carbonnanotubes on liquid-metal particles, Phys. Rev. B.,1999,60:11180-11185.
    [124] Hata K, Futaba DN, Mizuno K, et al., Water-assisted highly efficient synthesisof impurity-free single-walled carbon nanotubes, Science,2004,306,1362-1364.
    [125] Zhu H, Suenaga K, Hashimoto A, et al., Atomic resolution imaging of thenucleation points of single-walled carbon nanotubes, Small,2005,1:1180-1183.
    [126] Pint CL, Nicholas N, Pheasant ST, et al., Temperature and gas pressure effectsin vertically aligned carbon nanotube growth from Fe-Mo catalyst. J. Phys.Chem. C.,2008,112:14041-14051.
    [127] Yamada T, Maigne A, Yudasaka M, et al., Revealing the secret of water-assistedcarbon nanotube synthesis by microscopic observation of the interaction of wateron the catalysts, Nano Lett,2008,8:4288-4292.
    [128] Li X, Cao A, Junh Y, et al., Bottom-up growth of carbon nanotube multilayers:Uprecedented growth, Nano Lett,2005,5:1997-2000.
    [129] Enhancement of field emission of CNTs array by CO2-assisted chemical vapordeposition, J. Nanosci. Nanotech,2009,9:3046-3051.
    [130] Wen Q, Qian W, Wei F, et al., Oxygen-assisted synthesis of SWNTs frommethance decomposition, Nanotechnology,2007,18:215610.
    [131] Lin M, Tan YP, Boothroyd C, et al., Direct observation of single-walled carbonnanotube growth at the atomistic scale, Nano Lett,2006,6:449-452.
    [132] Amama PB, Pint CL, McJilton L, et al., Role of water in super growth ofsingle-walled carbon nanotube carpets, Nano Lett.,2009,9:44-49.
    [133] Pan Z, Xie S, Chang B, et al., Vey long carbon nanotubes, Nature,1998,394:631-632.
    [134] Ren Z, Huang Z, Xu J, et al., Synthesis of large arrays of well-aligned carbonnanotubes on glass, Science,1998,282:1105-1107.
    [135] Fan S, Chapline MG, Franklin NR, et al., Selg-Oriented regular arrays of carbonnanotubes and their field emission properties, Science,1999,283:512-514.
    [136] Pint CL, Kim SM, Stach EA, et al., Rapid and scalable reduction of densesurface-supoorted metal-oxide catalysts with hydrazine vapor, ACS Nano,2009,3:1897-1905.
    [137] Dupuis AC, The catalyst in the CCVD of carbon nanotubes-a review, Prog.Mater. Sci.,2005,50:929-961.
    [138] Pint CL, Pheasant ST, Pasquali M, et al., Synthesis of high aspect-ratio carbonnanotube “flying carpets” from nanostructured flake substrates, Nano Lett.,2008,8:1879-1883.
    [139] Alvarez NT, Li F, Pint CL, et al., Uniform large diameter carbon nanotubes invertical arrays from premade near-monodisperse nanoparticles, Chem. Mater.,2011,23:3466-3475.
    [140] Pint CL, Sun Z, Moghazy S, et al., Supergrowth of nitrogen-dopedsingle-walled carbon nanotube arrays: Active species, dopant characterization,and doped/undoped heterojunctions, ACS Nano,2011,5:6925-6934.
    [141] Pint CL, Kim SM, Stach EA, et al., Rapid and scalable reduction of densesurface-supoorted metal-oxide catalysts with hydrazine vapor, ACS Nano,2009,3:1897-1905.
    [142] Alvarez NT, Hamilton CE, Pint CL, et al., Wet catalyst-support films forproduction of vertically aligned carbon nanotubes, ACS Appl. Mater. Int.,2010,2:1851-1856.
    [143] Pint CL, Alvarez NT, Hauge RH, Odako growth of dense arrays ofsingle-walled carbon nanotubes attached to carbon surfaces, Nano Res,2009,2:526-534.
    [144] Zhu Y, Li L, Zhang C, et al., A seamless3-dimensional carbon nanotubegraphene hybrid material, Nature Commun,2012, doi:10.1038/ncomms2234.
    [145] Kong J, Yenilmez E, Tombler TW, et al., Quantum interference and ballistictransmission in nanotube electron waveguides, Phys. Rev. Lett.,2001,87:106901.
    [146] Javey A, Guo J, Wang Q, et al., Ballistic carbon nanotube field-effect transistors,Nature,2003,424:654-657.
    [147] Javey A, Shim M, Dai H,. Electrical properties and devices of large-diametersingle-walled carbon nanotubes, Appl. Phys. Lett.,2002,80:1064-1066.
    [148] Kurachi H, Uemura S, Yotani J, et al., FED with Double-Walled CarbonNanotube Emitters. Proceedings of21st International Display ResearchConference/8th International Display Workshops; Society for InformationDisplay: San Jose, CA,2001; pp1237-1240.
    [149] Dillon AC, Jones KM, Bekkedahl TA, et al., Storage of hydrogen insingle-walled carbon nanotubes, Nature,1997,386:377-379.
    [150] Lebedkin S, Schweiss P, Renker B, et al., Single-Wall Carbon Nanotubes WithDiameters Approaching6nm Obtained by Laser Vaporization, Carbon,2002,40:417-423.
    [151] Kiang C, Growth of large-diameter single-walled carbon nanotubes, J. Phys.Chem. A.,2000,104:2454-2456.
    [152] Yang Q, Bai S, Sauvajol JL, et al., Large-diamter single-wall carbon nanotubessynthesized by chemical vapor deposition, Adv. Mater.,2003,15:792-795.
    [153] Cheung C, Kurtz A, Park H, et al., Diameter-controlled synthesis of carbonnanotubes. J. Phys. Chem. B.,2002,106:2429-2433.
    [154] Zhou W, Ding L, Yang, S, et al., Synthesis of high-density, large-diameter, andaligned single-walled carbon nanotubes by multiple-cycle growth methods, ACSNano,2011,5:3849-3857.
    [155] Zhang Y, Tang T, Girit C, et al., Direct observation of a widely tunable bandgapin bilayer graphene, Nature,2009,459:820-823.
    [156] Li X, Wang X, Zhang L, et al., Chemically derived, ultrasmooth graphenenanoribbon semiconductors. Science,2008,319:1229-1232.
    [157] Chopra NG, Benedict LX, Crespi VH, et al., Fully collapsed carbon nanotubes,Nature,1995,377:135-138.
    [158] Benedict LX, Chopra NG, Cohen ML, et al., Microscopic determination of theinterlayer binding energy in graphite, Chem. Phys. Lett.,1998,286:490-496.
    [159] Gao GH, Cagin T, Goddard WA, Energetics, structure, mechanical andvibrational properties of single-wall carbon nanotubes, Nanotechnology,1998,9:184-191.
    [160] Liu HJ, Cho KJ, A Molecular dynamics study of round and flattened carbonnanotube structures, Appl. Phys. Lett.,2004,85:807-809.
    [161] Elliott JA, Sandler JKW, Windle AH, et al., Single-wall carbon nanotube isdiameter dependent, Phys. Rev. Lett.,2004,92,095501:1-5.
    [162] Liu B, Yu MF, Huang YG, Role of lattice registry in the full collapse and twistformation of carbon nanotubes, Phys. Rev. B.,2004,70:161402(R).
    [163] Xiao J, Liu B, Huang Y, et al.,. Collapse and stability of single-and multi-wallcarbon nanotubes, Nanotechnology,2007,18,395703:1-7.
    [164] Tang T, Jagota A, Hui CY, et al., Collapse of single-wall carbon nanotubes, J.Appl. Phys.,2005,97:074310.
    [165] Zhang S, Khare R, Belytschko T, et al., Transition states and minimum energypathways for the collapse of carbon nanotubes. Phys. Rev. B.,2006,73:075423.
    [166] Pantano A, Parks DM, Boyce MC, Mechanics of deformation of single-andmulti-wall carbon nanotubes, J. Mech. Phys. Solids.,2004,52:789-821.
    [167] Chang TC, Guo ZR, Temperature-induced reversible dominoes in carbonnanotubes. Nano Lett,2010,10:3490-3493.
    [168] Sun D, Shu D, Ji M, et al., Pressure-induced hard-to-soft transition of a singlecarbon nanotube, Phys. Rev. B.,2004,70:165417.
    [169] Zhang X, Sun D, Liu Z, et al., Structure and phase transitions of single-wallcarbon nanotube bundles under hydrostatic pressure, Phys. Rev. B.,2004,70:035422.
    [170] Wang Z, Formation of a quenchable dense carbon form by compression ofdouble-walled carbon nanotubes, J. Phys. Chem. B.,2004,108:18192-18194.
    [171] Hertel T, Walkup RE. Avouris P, Deformation of carbon nanotubes by surfaceVan der Waals forces, Phys. Rev. B.,1998,58:13870-13873.
    [172] Ruoff RS, Tersoff J, Lorents DC, et al., Radial deformation of carbon nanotubesby Van der Waals forces, Nature,1993,364:514-516.
    [173] Qian W, Wei F, Liu T, et al., What causes the carbon nanotubes collapse in achemical vapor deposition process, J. Chem. Phys.C.,2003,118:878-882.
    [174] Yu M, Lourie O, Dyer MJ, et al., Strength and breaking mechanism ofmulti-walled carbon nanotubes under tensile load, Science,2000,287:637-640.
    [175] Yakobson BI, Campbell MP, Brabec CJ, et al., High strain rate fracture andC-chain unraveling in carbon nanotubes, Comput. Mater. Sci.,1997,8:341-348.
    [176] Crespi VH, Chopra NG, Cohen ML, et al., Anisotropic electron-beam damageand the collapse of carbon nanotubes, Phys. Rev. B.,1996,54:5927-5931.
    [177] Chang T, Dominoes in carbon nanotubes, Phys. Rev. Lett.,2008,101:177501.
    [178] Shklyaev OE, Mockensturm E, Crespi VH, Modeling electrostatically inducedcollapse transitions in carbon nanotubes, Phys. Rev. Lett.,2011,106:155501.
    [179] Yakobson BI, Brabec CJ, Bernholc J, Structural mechanics of carbon nanotubes:From continuum elasticity to atomistic fracture, J. Comput. Aided Mater. Des.,1996,3:173-182.
    [180] Crespi VH, Chopra NG, Cohen ML, et al., Site-selective radiation damage ofcollapsed carbon nanotubes, Appl. Phys. Lett.,1998,73:2435-2437.
    [181] Martel R, Schmidt T, Shea HR, et al., Single-and multi-wall carbon nanotubefield-effect transistors, Appl. Phys. Lett.,1998,73:2447-2449.
    [182] Lammert PE, Zhang PH, Crespi VH, Gapping by squashing: Metal-insulatorand insulator-metal transitions in collapsed carbon nanotubes, Phys. Rev. Lett.,2000,84:2453-2455.
    [183] Giusca CE, Tison Y, Silva SRP, Atomic and electronic structure in collapsedcarbon nanotubes evidenced by scanning tunneling microscopy, Phys. Rev. B.,2007,76:035429.
    [184] Yu M, Dyer MJ, Chen J, et al., Locked twist in multiwalled carbon-nanotuberibbons, Phys. Rev. B.,2001,64:241403(R).
    [185] Bourgeois LN, Bursill LA, High-resolution transmission electron microscopyand energetics of flattened carbon nanoshells, Chem. Phys. Lett.,1997,277:571-578
    [186] Motta M, Moisala A, Kinloch IA, et al., High performance fibres from ‘DogBone’carbon nanotubes, Adv. Mater.,2007,19:3721-3726.
    [187] Yu M, Kowalewski T, Ruoff RS, Investigation of the radial deformability ofindividual carbon nanotubes under controlled indentation force, Phys. Rev. Lett.,2000,85:1456-1459.
    [188] Yu M, Kowalewski T, Ruoff RS, Structural analysis of collapsed, and twistedand collapsed, multiwalled carbon nanotubes by atomic force microscopy, Phys.Rev. Lett.,2001,86:87-90.
    [189] Kiang CH, Goddard WA, Beyers R, et al., Structural modification ofsingle-layer carbon nanotubes with an electron beam, J. Phys. Chem.,1996,100:3749-3752.
    [190] Ci L, Vajtai R, Ajayan PM, Vertically aligned large-diameter double-walledcarbon nanotube arrays having ultralow density, J. Phys. Chem. C.,2007,111:9077-9080.
    [191] Yakobson BI, Smalley RE, Fullerene nanotubes: C1000000and beyond, Am.Scientist,1997,85:324-337.
    [192] Bockrath M, Cobden DH, McEuen PL, et al., Single-electron transport in ropesof carbon nanotubes, Science,1997,275:1922-1925.
    [193] McEuen PL, Fuhrer MS, Park HK, Single-walled carbon nanotube electronics,IEEE Trans. Nanotechnol.,2002,1:78-85.
    [194] Wei B, Vajtai R, Ajayan PM, Reliability and current carrying capacity of carbonnanotubes, Appl. Phys. Lett.,2001,79:1172-1174.
    [195] Yao Z, Kane CL, Dekker C, High-field electrical transport in single-wall carbonnanotubes, Phys. Rev. Lett.,2000,84:2941-2944.
    [196] Nardelli MB, Yakobson BI, Bernholc J, Mechanism of strain release in carbonnanotubes, Phys. Rev. B.,1998,57: R4277-R4280.
    [197] Krishnan A, Dujardin E, Ebbesen TW, et al., Young’s modulus of single-wallednanotubes, Phys. Rev. B.,1998,58:14013-14019.
    [198] Walters DA, Ericson LM, Casavant MJ, et al., Elastic strain of freely suspendedsingle-wall carbon nanotube ropes, Appl. Phys. Lett.,1999,74,3803-3805.
    [199] Ericson LM, Fan H, Peng H, et al., Macroscopic, neat, single-walled carbonnanotube fibers, Science,2004,305,1447-1450.
    [200] Zhou W, Vavro J, Guthy C, et al., Single wall carbon nanotube fibers extrudedfrom super-acid suspensions: Preferred orientation, electrical, and thermaltransport. J. Appl. Phys.,2004,95:649-655.
    [201] Zhang M, Fang S, Zakhidov AA, et al., Strong, transparent, multifunctional,carbon nanotube sheets, Science,2005,309:1215-1219.
    [202] Dalton AB, Steve C, Edgar M, et al., Super-tough carbon nanotube fibers,Nature,2003,423:703.
    [203] Wu Z, Chen Z, Du X, et al., Transparent, conductive carbon nanotube films,Science,2004,305:1273-1276.
    [204] Modi A, Koratkar N, Lass E, et al., Miniaturized gas ionization sensors usingcarbon nanotubes, Nature,2003,424:171-174.
    [205] Baughman RH, Zakhidov AA, de Heer WA, Carbon nanotubes-the route towardapplications, Science,2002,297:787-792.
    [206] Hu R, Cola BA, Haram N, et al., Harvesting waste thermal energy usingcarbon-nanotube-based thermo-electrochemical cell, Nano Lett,2010,10:838-846.
    [207] He C, Zhao N, Shi C, et al., An approach to obtaining homogeneously dispersedcarbon nanotubes in Al powders for preparing reinforced Al-matrix composites,Adv. Mater.,2007,19:1128-1132.
    [208] Li H, Zhao N, Liu Y, Fabrication and properties of carbon nanotubes reinforcedFe/hydroxyapatite composites by in situ chemical vapor deposition, Composites:Part A.,2008,39:1129-1132.
    [209] Kang J, Philip N, Li J, et al., Achieving highly dispersed nanofibers at highloading in carbon nanofibre-metal composites, Nanotechnology,2009,20:1-7.
    [210] Kaempgen M, Chan CK, Ma J, et al., Printable thin film supercapacitors usingsingle-walled carbon nanotubes, Nano Lett,2009,9:1872-1876.
    [211] Kim B, Chung H, Kim W, High-performance supercapacitors based onvertically aligned carbon nanotubes and nonaqueous electrolytes,Nanotechnology,2012,23:155401.
    [212] Yoon BJ, Jeong SH, Lee KH, et al., Electrical properties of electrical doublelayer capacitors with integrated carbon nanotube electrodes, Chem. Phys. Lett.,2004,388:170-174.
    [213] Shah R, Zhang X, Talapatra S, Electrochemical double layer capacitorelectrodes using aligned carbon nanotubes grown directly on metals,Nanotechnology,2009,20:395202.
    [214] Zhang H, Cao G, Wang Z, et al., Electrochemical capacitive properties of carbonnanotube arrays directly grown on glassy carbon and tantalum foils, Carbon,2008,46:822-824.
    [215] Honda Y, Haramoto T, Takeshige M, et al., Aligned MWCNT sheet electrodesprepared by transfer methodology providing high-power capacitor performance,Electrochem. Solid-State Lett.,2007,10: A106-A110.
    [216] Izadi-Najafabadi A, Yasuda S, Kobashi K, et al., Extracting the full potential ofsingle-walled carbon nanotubes as durable supercapacitor electrodes operable at4V with high power and energy density. Adv. Energy Mater.,2010,22:E235-E241.
    [217] Geim AK, Novoselov KS, The rise of graphene, Nat. Mater.,2007,6:183-191.
    [218] Geim AK, Graphene status and prospects, Science,2010,324:1530-1534.
    [219] Wang X, Ouyang Y, Li X, et al., Room-temperature all-semiconducting sub-10nm graphene nanoribbon field-effect transistors, Phy. Rev. Lett.,2008,100:206803.
    [220] Rafiee MA, Lu W, Thomas AV, et al., Graphene nanoribbon composites, ACSNano,2010,4:7415-7420.
    [221] Lalwani G, Henslee AM, Farshid B, et al., Two-dimensionalnanostructure-reinforced biodegradable polymeric nanocomposites for bonetissue engineering, Biomacromolecules,2013,14:900-909.
    [222] Han MY, Ozyilmaz B, Zhang, Y, et al., Energy band-gap engineering ofgraphene nanoribbons, Phys. Rev. Lett.,2007,98:206805.
    [223] Li X, Wang X, Zhang L, et al., Chemically derived, ultrasmoothgraphene nanoribbons semiconductors, Science,2008,319:1229-1232.
    [224] Wu ZS, Ren WC, Gao LB, et al., Efficient synthesis of graphene nanoribbonssonochemically cut from graphene sheets, Nano Res,2010,3:16-22.
    [225] Datta SS, Strachan DR, Khamis SM, et al., Crystallographic etching offew-layer graphene, Nano Lett,2008,8:1912-1915.
    [226] Ci L, Xu Z, Wang L, et al., Controlled nanocutting of graphene, Nano Res.,2008,1:116-122.
    [227] Wei D, Liu Y, Zhang H, et al., Scalabe synthesis of few-layer graphenenanoribbons with controlled morphologies by a template method and theirapplications in nanoelectromechanical switches, J. Am. Chem. Soc.,2009,131:11147-11154.
    [228] Sprinkle M, Ruan M, Hu Y, et al., Scalable tempelated growth of graphenenanoribbons on SiC, Nature Nanotech.,2010,5:727-731.
    [229] Jiao L, Zhang L, Wang X, et al., Narrow graphene nanoribbons from carbonnanotubes, Nature,2009,458:877-880.
    [230] Li Y, Zhou W, Wang H, An oxygen reduction electrocatalyst based oncarbon nanotube-graphene complexes, Nat. Nanotech.,2012,7:394-400.
    [231] Cano-Marquez AG, Rodr guez-Mac as FJ, Campos-Delgado J, et al., Graphenesheets and ribbons produced by lithium intercalation and exfoliation of carbonnanotubes. Nano Lett,2009,9:1527-1533.
    [232] Morelos-Gomez A, Vega-D az S M, Gonzalez V J, et al., Clean nanotubeunzipping by abrupt thermal expansion of molecular nitrogen: graphenenanoribbons with atomically smooth edges, ACS Nano,2012,6:2261-2272.
    [233] Kim K, Sussman A, Zettl A, Graphene nano-ribbons obtained byelectrically unwrapping carbon nanotubes, ACS Nano,2010,4:1362-1366.
    [234] Kosynkin DV, Higginbotham AL, Snitskii A, et al., Longditudial unzipping ofcarbon nanotubes to form graphene nanoribbons, Nature,2009,458:872-876.
    [235] Zhang Z, Sun Z, Yao J, et al., Transforming carbon nanotube devices intonanoribbons devices, J. Am. Chem. Soc.,2009,131:13460-13463.
    [236] Jiao L, Zhang L, Ding L, et al., Aligned graphene nanoribbons and crossbarsfrom unzipped carbon nanotubes, Nano Res.,2010,3:387-394.
    [237] Cabioc’h T, Thune E, Jaouen M, Carbon-onion thin-film synthesis onto silicasubstrates. Chem. Phys. Lett.,2000,320:202-205.
    [238] Antolini E, Carbon supports for low-temperature fuel cell catalysts, Appl. Cata.B.,2009,88:1-24.
    [239] Amama PB, Pint CL, Kim SM, et al., Influence of aluminum type on theevolution and activity of alumina-supported Fe catalysts in single-walled carbonnanotube carpet growth. ACS Nano,2010,4:895-904.
    [240] Colomer JF, Stephan C, Lefrant S, et al., Large-scale synthesis of single-wallcarbon nanotubes by catalytic chemical vapor deposition (CCVD) method,Chem. Phys. Lett.,2000,317:83-89.
    [241] Wang X, Hu W, Liu Y, et al., Bamboo-like carbon nanotubes produced bypyrolysis of iron (II) phthalocyanine. Carbon,2001,39:1533-1536.
    [242] Kovalevski VV, Safronov AN, Pyrolysis of hollow carbons on melted catalyst,Carbon,1998,36:963-968.
    [243] Amama PB, Pint CL, McJilton L, et al., Role of water in the super growth ofsingle-walled nanotube carpets, Nano Lett,2009,9:44-49.
    [244] Portet C, Yushin G, Gogotsi Y, Electrochemical performance of carbon onions,nanodiamonds, carbon black and multi-walled carbon nanotubes in electricaldouble layer capacitors, Carbon,2007,45:2511-2518.
    [245] Liu F, Zhang X, Cheng J, et al., Preparation of short carbon nanotubes bymechanical ball milling and their hydrogen adsorption behavior, Carbon,2003,41:2527-2532.
    [246] Martin JB, Kinloch IA, Dryfe RAW, Are carbon nanotubes viable materials forthe electrochemical storage of hydrogen? J. Phys. Chem. C.,2010,114:4963-703.
    [247] Chen X, Gao X, Zhang H, et al., Preparation and electrochemical hydrogenstorage of boron nitride nanotubes, J. Phys. Chem. B.,2005,109:11525-11529.
    [248] Jurewicz K, Frackowiak E, B′eguin F, Towards the mechanism ofelectrochemical hydrogen storage in nanostructured carbon materials, Appl. Phys.A.,2004,78:981-987.
    [249] Ermakova M, Ermakov D, Chuvilin A, et al., Decomposition of methane overiron catalysts at the range of moderate temperatures: The influence of structureof the catalytic systems and the reaction conditions on the yield of carbon andmorphology of carbon filaments, J. Cata.,2001,201:183-197.
    [250] Yao Y, Wang X, Guo J, et al., Tribological property of onion-like fullerenes aslubricant additive. Mater. Lett.,2008,62:2524-2527.
    [251] Joly-Pottuz L, Dassenoy F, Vacher B, et al., Ultralow friction and wear behaviorof Ni/Y-based single wall carbon nanotubes(SWNTs). Tribol. Int.,2004,37:1013-1018.
    [252] Ma M, Wu Y, Zhou J, et al., Size dependence of specifc power absorption ofFe3O4particles inAC magnetic feld, J. Magn. Magn. Mater.,2004,268:33-39.
    [253] Jordan A, Scholz R, Wust P, et al., Magnetic fuid hyperthermia (MFH): cancertreatment with AC magnetic feld induced excitation of biocompatiblesuperparamagnetic nanoparticles. J. Magn. Magn. Mater.,1999,201:413-419.
    [254] Moustafa SF, Daoush WM, Synthesis of nano-sized Fe-Ni powder by chemicalprocess for magnetic applications. J. Mater. Process. Technol.,2007,181:59-63.
    [255] Wu H, Cao Y, Yuan P, et al., Controlled synthesis, structure and magneticproperties of Fe1-xNix alloy nanoparticles attached on carbon nanotubes, Chem.Phys. Lett.,2005,406:148-153.
    [256] Liu Y, Zhang J, Yu L, et al., Magnetic and frequency properties fornanocrystalline Fe-Ni alloys prepared by high-energy milling method, J. Mag.Mag. Mater.,2005,285:138-144.
    [257] He C, Zhao N, Shi C, et al., Magnetic properties and transmission electronmicroscopy studies of Ni particles encapsulated in carbon nanocages and carbonnanotubes. Mater. Res. Bull.,2008,43,2260-2265.
    [258] Moustafa SF, Daoush WM, Synthesis of nano-sized Fe-Ni powder by chemicalprocess for magnetic applications, J. Mater. Process., Technol.,2007,181:59-63.
    [259] Liu Y, Zhang J, Yu L, et al., Magnetic and frequency properties fornanocrystalline Fe-Ni alloys prepared by high-energy milling method, J. Mag.Mag. Mater.,2005,285:138-144.
    [260] Murakami Y, Chiashi S, Miyauchi Y, et al., Growth of vertically alignedsingle-walled carbon nanotubes films on quartz substrates and their opticalanisotropy, Chem. Phys. Lett.,2004,385,298-303.
    [261] Fan S, Chapline MG, Franklin NR, et al., Self-oriented regular arrays of carbonnanotubes and their field emission properties, Science,1999,283:512-514.
    [262] Futaba DN, Hata K, Yamada T, et al., Shape-engineerable and highly denselypacked single-walled carbon nanotubes and their application as supercapacitorelectrodes, Nat. Mater.2006,5:987-994.
    [263] Kong J, Franklin NR, Zhou C, et al., Nanotube molecular wires as chemicalsensors, Science,2000,287:622-625.
    [264] Han S, Yu T, Park J, et al., Diameter-controlled synthesis of discrete anduniform-sized single-walled carbon nanotubes using monodisperse iron oxidenanoparticles embedded in zirconia nanoparticle array as catalysts, J. Phys.Chem. B.,2004,108:8091-8095.
    [265] Pint CL, Xu YQ, Pasquali M, et al., Formation of highly dense aligned ribbonsand transparent films of single-walled carbon nanotubes directly form carpets.ACS Nano2008,2:1871-1878.
    [266] Kocabas C, Kang S, Ozel T, er al., Improved synthesis of aligned arrays ofsingle-walled carbon nanotubes and their implementation in thin film typetransistors. J. Phys. Chem. C.,2007,111:17879-17886.
    [267] Hiraoka H, Yamada T, Hata K, et al., Synthesis of single-and double-walledcarbon nanotube forests on conducting metal foils, J. Am. Chem. Soc.,2006,128:13338-13339.
    [268] Hongo H, Nihey F, Ichihashi T, et al., Supported materials based on convertedaluminum films for chemical vapor deposition growth of single-wall carbonnanotubes, Chem. Phys. Lett.,2003,380:158-164.
    [269] Jansen R, Brabers VAM, van Kempen H, One-dimensional reconstructionobserved on Fe3O4(110) by scanning tunneling microscopy. Surf. Sci,1995,328:237-247.
    [270] Zhou G, Wang D, Li F, et al., Graphene-wrapped Fe3O4anode material withimproved reversible capacity and cyclic stability for lithium ion batteries, Chem.Mater.,2010,22:5306-5313.
    [271] Yamshita T, Hayes P, Analysis of XPS spectra of Fe2+and Fe3+ions in oxidematerials. Appl. Surf. Sci.,2008,254:2441-2449.
    [272] Singh MP, Shivashankar SA, Shripathi T, A study of alumina thin films grownby low pressure MOCVD: XPS and AES. Int. J. Mod. Phys. B.,2002,16:1-414.
    [273] Kareiva A, Jeff Harlan C, Brent MacQueen D, et al., Carboxylate-substitutedalumoxanes as processable precursors to transition metal-aluminum andlanthanide-aluminum mixed-metal oxides: Atomic scale mixing via a newtransmetalation reaction, Chem. Mater.,1996,8:2331-2340.
    [274] Hasegawa K, Noda S, Millimeter-tall single-walled carbon nanotubes rapidlygrown with and without water, ACS Nano,2011,5:975-984.
    [275] Miyata Y, Mizuno K, Kataura H, Purity and defect characterization ofsingle-wall carbon nanotubes using Raman spectroscopy, J. Nanomater,2011,doi:10.1155/2011/786763.
    [276] Sears A, Batra RC, Buckling of multi-walled carbon nanotubes under axialcompression, Phys. Rev. B.,2006,73:085410.
    [277] Stuart SJ, Tutein AB, Harrison JA, A reactive potential for hydrocarbons withintermolecular interactions, J. Chem. Phys.,2000,112,6472-6487.
    [278] Wei Y, Wang B, Wu J, et al., Bending rigidity and Gaussian bending stiffness ofsingle-layered graphene, Nano Lett,2013,13:26-30.
    [279] Simon P, Gogotsi Y, Materials for electrochemical capacitors, Nature Mater,2008,7:845-854.
    [280] Kosynkin DV, Lu W, Sinitskii A, et al., Highly conductive graphenenanoribbons by longitudinal splitting of carbon nanotubes using potassium vapor,ACS Nano,2011,5:968-974.
    [281] Suzuki S, Bower C, Zhou O, In-situ TEM and EELS studies of alkali-metalintercalation with single-walled carbon nanotubes, Chem. Phys. Lett.,1998,285:230-234.
    [282] Lee RS, Kim HJ, Fischer JE, et al., Conductivity enhancement in single-walledcarbon nanotube bundles doped with K and Br, Nature,1997,388:255-257.
    [283] Miyata Y, Suzuki M, Fujihara M, et al., Solution-phase extraction of ultrathininner shells from double-wall carbon nanotubes, ACS Nano,2010,4:5807-5812.
    [284] Viculis LM, Mack JJ, Kaner RB, A chemical route to carbon nanoscrolls.Science,2003,299:1361.
    [285] Ferrari AC, Robertson J, Interpretation of Raman spectra of disordered andamorphous carbon, Carbon,2000,61:14095-14107.
    [286] Ci L, Manikoth SH, Li X, et al., Ultrathick freestanding aligned carbonnanotube films, Adv. Mater.,2007,19:3300-3303.
    [287] Nian Y, Teng H, Influence of surface oxides on the impedance behavior ofcarbon-based electrochemical capacitors. J. Electroanalytical. Chem.,2003,540:119-127.
    [288] Taberna PL, Simon P, Fauvarque JF, Electrochemical characteristics andimpedance spectroscopy studies of carbon-carbon supercapacitors, J.Electrochem. Soc.,2003,150: A292-A300.
    [289] Miller JR, Battery-capacitor power source for digital communication:Simulations using advanced electrochemical capacitors, Proc. Electrochem. Soc.,1996,95-29:246-254.
    [290] Miller JR, Simon P, Electrochemical capacitors for energy management, Science,2008,321:651-652.
    [291] Lu W, Qu L, Henry K, et al., High performance electrochemical capacitors fromaligned carbon nanotube electrodes and ionic liquid electrolytes, J. PowerSources.,2009,189:1270-1277.
    [292] Burke A, Arulepp M, Electrochem. Soc. Proc. PV20012001-21,576.
    [293] Chen J, Li W, Wang D, et al., Electrochemical characterization of carbonnanotubes as electrode in electrochemical double-layer capacitors, Carbon,2002,40:1193-1197.
    [294] Niu Z, Zhou W, Chen J, et al., Compact-designed supercapacitors usingfree-standing single-wall carbon nanotube films, Energy&Envir. Sci,2011,4:1440-1446.
    [295] Gao L, Peng A, Wang Z, et al., Growth of aligned carbon nanotube arrays onmetallic substrate and its application to supercapacitors, Solid State Comm,2008,146:380-383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700